Contents Overview

Notational Conventions ... 33

A ... 35

B ... 81

C ... 89

D ... 121

E ... 201

F ... 215

G ... 247

H ... 275

I ... 297

J ... 309

K ... 313

L ... 317

M ... 347

N ... 371

O ... 383

P ... 389

Q ... 467

R ... 469

S ... 505

T ... 583

U ... 603

V ... 609

W ... 625

X ... 647

Y ... 657

Z ... 659

Index .. 667
Notational Conventions

A

aa Abort acquisition with error (C) ... 37
abort Terminate action of calling macro and all higher macros (C) 37
abortallacqs Reset acquisition computer in a drastic situation (C) 38
abortoff Terminate normal functioning of abort in a macro (C).................... 38
aborton Restore normal functioning of abort in a macro (C)..................... 38
abs Find absolute value of a number (C) ... 38
ACIS-AC11S Autocalibration macros (M) .. 39
ACbackup Make backup copy of current probe file (M) 39
acct Writes records for operator login and logoff (M) 39
ACreport Print copy of probe file after autocalibration (M) 39
acos Find arc cosine of number (C) .. 39
acosy Automatic analysis of COSY data (C) .. 40
acosyold Automatic analysis of COSY data, old algorithm (C) 40
acdisp Display message on the acquisition status line (C) 40
acqi Interactive acquisition display process (C) 40
acqcmeter Open Acqmeter window (M) .. 42
Acqmeter Open Acqmeter window (U) .. 42
acqmode Acquisition mode (P) ... 43
acqstat Open Acquisition Status window (M) .. 43
Acqstat Open Acquisition Status window (U) .. 43
acqstatus Acquisition status (P) ... 44
acquire Acquire data (M) .. 46
actionid Current study queue node id (P) .. 46
activestudy Active study name (P) ... 47
add Add current FID to add/subtract experiment (C) 47
addi Start interactive add/subtract mode (C) ... 48
addnucleus Add new nucleus to existing probe file (M) 49
addpar Add selected parameters to current experiment (M) 49
addparams Add parameter to current probe file (M) 50
addprobe Create new probe directory and probe file (M) 51
adept Automatic DEPT analysis and spectrum editing (C) 51
aexppl Automatic plot of spectral expansion (M) 52
ai Select absolute-intensity mode (C) ... 52
aig Absolute-intensity group (P) .. 52
alfa Set alfa delay before acquisition (P) .. 53
alock Automatic lock control (P) ... 53
ampmode Independent control of amplifier mode (P) 54
ampertype Amplifier type (P) ... 54
analyzer Calculate standard peak height (M) .. 55
analyze Generalized curve fitting (C) ... 55
ap Print out “all” parameters (C) .. 57
ap “All” parameters display control (P) .. 57
apa Plot parameters automatically (M) ... 57
aph Automatic phase adjustment of spectra (C) 58
aph0 Automatic phase of zero-order term (C) .. 58
aphb Auto phasing for Bruker data (C) .. 58
aphx Perform optimized automatic phasing (M) 59
appdirs Starts Applications Directory Editor (M) 59
appmode Application mode (P) ... 60
apptype Application type (P) ... 60
Apt Set up parameters for APT experiment (M) 60
aptaph Automatic processing for APT spectra (M) 60
array Easy entry of linearly spaced array values (M) 60
array Parameter order and precedence (P) .. 61
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>assign</td>
<td>Assign transitions to experimental lines (M)</td>
</tr>
<tr>
<td>at</td>
<td>Acquisition time (P)</td>
</tr>
<tr>
<td>atan</td>
<td>Find arc tangent of a number (C)</td>
</tr>
<tr>
<td>atan2</td>
<td>Find arc tangent of two numbers (C)</td>
</tr>
<tr>
<td>atcmd</td>
<td>Call a macro at a specified time (M)</td>
</tr>
<tr>
<td>atext</td>
<td>Append string to current experiment text file (M)</td>
</tr>
<tr>
<td>attval</td>
<td>Calculate pulse width (M)</td>
</tr>
<tr>
<td>au</td>
<td>Submit experiment to acquisition and process data (M)</td>
</tr>
<tr>
<td>AuCALch3i</td>
<td>Set up autocalibration with CH3I sample (M)</td>
</tr>
<tr>
<td>AuCALch3i1</td>
<td>Get autocalibration with CH3I sample (M)</td>
</tr>
<tr>
<td>AuCALch3oh</td>
<td>Set up autocalibration with Autotest sample (M)</td>
</tr>
<tr>
<td>AuCALch3oh1</td>
<td>Get autocalibration with Autotest sample (M)</td>
</tr>
<tr>
<td>AuCalibz0</td>
<td>Automatic Hz to DAC calibration for Z0 (M)</td>
</tr>
<tr>
<td>AuDec</td>
<td>Carbon decoupler calibration macro (M)</td>
</tr>
<tr>
<td>AuCGrad</td>
<td>Carbon/proton gradient ratio calibration macro (M)</td>
</tr>
<tr>
<td>AuCobs</td>
<td>Carbon observe calibration macro (M)</td>
</tr>
<tr>
<td>audiofilter</td>
<td>Audio filter board type (P)</td>
</tr>
<tr>
<td>Aufindz0</td>
<td>Automatic adjustment of Z0 (M)</td>
</tr>
<tr>
<td>Augcal</td>
<td>Probe gcal calibration macro (M)</td>
</tr>
<tr>
<td>Augmap</td>
<td>Automated gradient map generation (M)</td>
</tr>
<tr>
<td>Augmapz0</td>
<td>Automatic lock gradient map generation and z0 calibration (M)</td>
</tr>
<tr>
<td>AuHdec</td>
<td>Proton decoupler calibration (M)</td>
</tr>
<tr>
<td>AuHobs</td>
<td>Proton observe calibration macro (M)</td>
</tr>
<tr>
<td>Aumakegmap</td>
<td>Auto lock gradient map generation (M)</td>
</tr>
<tr>
<td>AuNuc</td>
<td>Get parameters for a given nucleus (M)</td>
</tr>
<tr>
<td>auto</td>
<td>Controlling macro for automation (M)</td>
</tr>
<tr>
<td>auto au</td>
<td>Back up current probe file (M)</td>
</tr>
<tr>
<td>Autobackup</td>
<td>Automated complete analysis of DEPT data (M)</td>
</tr>
<tr>
<td>autodept</td>
<td>Automation directory absolute path (P)</td>
</tr>
<tr>
<td>autodir</td>
<td>Start automation run (C)</td>
</tr>
<tr>
<td>autog</td>
<td>Set up and start chained acquisition (M)</td>
</tr>
<tr>
<td>autoname</td>
<td>Create path for data storage (C)</td>
</tr>
<tr>
<td>autoname</td>
<td>Prefix for automation data file (P)</td>
</tr>
<tr>
<td>autora</td>
<td>Resume suspended automation run (C)</td>
</tr>
<tr>
<td>autosa</td>
<td>Suspend current automation run (C)</td>
</tr>
<tr>
<td>autoscale</td>
<td>Resume autoscaling after limits set by scalelimits macro (M)</td>
</tr>
<tr>
<td>autostack</td>
<td>Automatic stacking for processing and plotting arrays (M)</td>
</tr>
<tr>
<td>autotest</td>
<td>Open Auto Test Window (C)</td>
</tr>
<tr>
<td>autotime</td>
<td>Displays approximate time for automation (M)</td>
</tr>
<tr>
<td>av</td>
<td>Set abs. value mode in directly detected dimension (C)</td>
</tr>
<tr>
<td>av1</td>
<td>Set abs. value mode in 1st indirectly detected dimension (C)</td>
</tr>
<tr>
<td>av2</td>
<td>Set abs. value mode in 2nd indirectly detected dimension (C)</td>
</tr>
<tr>
<td>averag</td>
<td>Calculate average and standard deviation of input (C)</td>
</tr>
<tr>
<td>awc</td>
<td>Additive weighting const. in directly detected dimension (P)</td>
</tr>
<tr>
<td>awc1</td>
<td>Additive weighting const. in 1st indirectly detected dimension (P)</td>
</tr>
<tr>
<td>awc2</td>
<td>Additive weighting const. in 2nd indirectly detected dimension (P)</td>
</tr>
<tr>
<td>axis</td>
<td>Provide axis labels and scaling factors (C)</td>
</tr>
<tr>
<td>axis</td>
<td>Axis label for displays and plots (P)</td>
</tr>
<tr>
<td>axisf</td>
<td>Axis label for FID displays and plots (P)</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bandinfo</td>
<td>Display pulse information for calibration (M)</td>
</tr>
<tr>
<td>banner</td>
<td>Display message with large characters (C)</td>
</tr>
<tr>
<td>bc</td>
<td>1D and 2D baseline correction (C)</td>
</tr>
<tr>
<td>beepoff</td>
<td>Turn beeper off (C)</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>beepon</td>
<td>Turn beeper on (C)</td>
</tr>
<tr>
<td>bigendian</td>
<td>Determine system byte order (C)</td>
</tr>
<tr>
<td>binom</td>
<td>Set up parameters for BINOM pulse sequence (M)</td>
</tr>
<tr>
<td>bioref</td>
<td>Bio-NMR Referencing (P)</td>
</tr>
<tr>
<td>bootup</td>
<td>Macro executed automatically (M)</td>
</tr>
<tr>
<td>box</td>
<td>Draw a box on a plotter or graphics display (C)</td>
</tr>
<tr>
<td>boxes</td>
<td>Draw boxes selected by the mark command (M)</td>
</tr>
<tr>
<td>bpa</td>
<td>Plot boxed parameters (M)</td>
</tr>
<tr>
<td>br24</td>
<td>Set up parameters for BR24 pulse sequence (M)</td>
</tr>
<tr>
<td>bs</td>
<td>Block size (P)</td>
</tr>
<tr>
<td>btune</td>
<td>Tune broadband channel on MERCURYplus/-Vx (M)</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c13</td>
<td>Automated carbon acquisition (M)</td>
</tr>
<tr>
<td>c13p</td>
<td>Process 1D carbon spectra (M)</td>
</tr>
<tr>
<td>calcdim</td>
<td>Calculate dimension of experiment (C)</td>
</tr>
<tr>
<td>calfa</td>
<td>Recalculate alfa so that first-order phase is zero (M)</td>
</tr>
<tr>
<td>calibflag</td>
<td>Correct systematic errors in DOSY experiments (P)</td>
</tr>
<tr>
<td>calibrate</td>
<td>Start a dialog for autocalibration routines (M)</td>
</tr>
<tr>
<td>callacq</td>
<td>Utility macro to call Acq command (M)</td>
</tr>
<tr>
<td>capt</td>
<td>Automated carbon and APT acquisition (M)</td>
</tr>
<tr>
<td>Carbon</td>
<td>Set up parameters for 13C experiment (M)</td>
</tr>
<tr>
<td>cat</td>
<td>Display one or more text files in text window (C)</td>
</tr>
<tr>
<td>cattn</td>
<td>Coarse attenuator type (P)</td>
</tr>
<tr>
<td>cd</td>
<td>Change working directory (C)</td>
</tr>
<tr>
<td>cdc</td>
<td>Cancel drift correction (C)</td>
</tr>
<tr>
<td>cdept</td>
<td>Automated carbon and DEPT acquisition (M)</td>
</tr>
<tr>
<td>cdump</td>
<td>Prints the current graphics screen (M)</td>
</tr>
<tr>
<td>celem</td>
<td>Completed FID elements (P)</td>
</tr>
<tr>
<td>center</td>
<td>Set display limits for center of screen (C)</td>
</tr>
<tr>
<td>centersw</td>
<td>Move cursor to center of spectrum (M)</td>
</tr>
<tr>
<td>centersw1</td>
<td>Move cursor to center of spectrum in 1st indirect dimension (M)</td>
</tr>
<tr>
<td>centersw2</td>
<td>Move cursor to center of spectrum in 2nd indirect dimension (M)</td>
</tr>
<tr>
<td>cexp</td>
<td>Create an experiment (M)</td>
</tr>
<tr>
<td>cf</td>
<td>Current FID (P)</td>
</tr>
<tr>
<td>cfpmult</td>
<td>Calculate first-point multiplier for 2D experiments (M)</td>
</tr>
<tr>
<td>change</td>
<td>Submit a change sample experiment to acquisition (M)</td>
</tr>
<tr>
<td>checkstring</td>
<td>Find and replace unwanted characters (C)</td>
</tr>
<tr>
<td>chiliConf</td>
<td>Control flag set by ecc_on and ecc_off (P)</td>
</tr>
<tr>
<td>Cigar2j3j</td>
<td>Convert the parameter to a CIGAR2j3j experiment (M)</td>
</tr>
<tr>
<td>cla</td>
<td>Clear all line assignments (M)</td>
</tr>
<tr>
<td>claf</td>
<td>Calculated transition number (P)</td>
</tr>
<tr>
<td>clamp</td>
<td>Calculated transition amplitude (P)</td>
</tr>
<tr>
<td>cleanexp</td>
<td>Remove old files and directories from an experiment (M)</td>
</tr>
<tr>
<td>clear</td>
<td>Clear a window (C)</td>
</tr>
<tr>
<td>cleardosy</td>
<td>Delete temporarily saved data in current sub experiment (M)</td>
</tr>
<tr>
<td>clfreq</td>
<td>Calculated transition frequency (P)</td>
</tr>
<tr>
<td>clindex</td>
<td>Index of experimental frequency of a transition (P)</td>
</tr>
<tr>
<td>clradd</td>
<td>Clear add/subtract experiment (C)</td>
</tr>
<tr>
<td>color</td>
<td>Select plotting colors from a graphical interface (M)</td>
</tr>
<tr>
<td>combiplate</td>
<td>View a color map for visual analysis of VAST microtiter plate (U)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Display regions (red, green, and blue) in CombiPlate window (M)</td>
</tr>
<tr>
<td>combishow</td>
<td>Compress double-precision FID data (M,U)</td>
</tr>
<tr>
<td>compressfid</td>
<td>Display current configuration and possibly change it (M)</td>
</tr>
<tr>
<td>config</td>
<td>Confirm message using the mouse (C)</td>
</tr>
<tr>
<td>confirm</td>
<td>System console type (P)</td>
</tr>
<tr>
<td>Console</td>
<td>MAS cross-polarization spin-lock contact time (M)</td>
</tr>
<tr>
<td>contact_time</td>
<td>Continue movie in either forward or backward direction (C)</td>
</tr>
<tr>
<td>continueMovie</td>
<td>Convert data set from a VXR-style system (M,U)</td>
</tr>
<tr>
<td>convert</td>
<td>Convert Bruker data (M,U)</td>
</tr>
<tr>
<td>convertbru</td>
<td></td>
</tr>
</tbody>
</table>
copy
Copy a file (C) ... 109

cos
Find cosine value of an angle (C) .. 109

Cosy
Convert the parameter to a COSY experiment (M) 109

cosyps
Set up parameters for phase-sensitive COSY pulse sequence (M). 109

cp
Copy a file (C) .. 110

cp
Cycle phase (P) .. 110

cpmgt2
Set up parameters for CPMGT2 pulse sequence (M) 110

cpos_cvt
Convert experiment data set from a VXR-style system (M,U) 110

cptmp
Copy experiment data into experiment subfile (M) 111

cpx
Create pbox shape file (M) .. 111

cqexp
Load experiment from protocol (M)... 111

cqfindz0
Run an experiment to find the value of z0 (M)............................ 112

cqmap
Perform gradient shimming utility functions (M) 112

cqinit
Initialize liquids study queue (M)... 112

cqpars
Create study queue parameters for liquids (M) 112

cqplot
Macro to perform generic 2D plot (M) ... 112

cqprotocol
Macro to create protocols (M)... 112

cqreset
Reset study queue parameters (M)... 113

cqsavestudy
Macro to save study queue parameters (M)................................. 113

cqwtmenu
Macro to set weighting functions from a panel (M) 113

cr
Cursor position in directly detected dimension (P) 113

crl1
Cursor position in 1st indirectly detected dimension (P) 113

cr2
Cursor position in 2nd indirectly detected dimension (P) 114

crcm
Create user macro without using text editor (M) 114

crc
Create new parameter in a parameter tree (C) 114

crc
Create qcomp parameter (M)... 115

crf
Clear time-domain cursor position (P) 115

crl1
Clear reference line in directly detected dimension (M)............. 116

crl2
Clear reference line in 1st indirectly detected dimension (M) 116

crmode
Current state of the cursors in df, ds, or dconi programs (P) 116

crof2
Recalculate rof2 so that lp = 0 (M) .. 117

cryo_noisetest
Run Cold Probe conditioning experiments (M).......................... 117

cryo_client
Start the CryoBay Monitor program (M, U) 117

crtext
Completed transients (P)... 117

curexp
Current experiment directory (P).. 118

curscan
Scan currently in progress (P)... 118

curwin
Current window (P) .. 118

cutoff
Data truncation limit (P)... 118

cyclenoe
Set up parameters for CYCLENOIE pulse sequence (M)............ 119

cylbr24
Set up parameters for cycled BR24 pulse sequence (M) 119

cylmrev
Set up parameters for cycled MREV8 pulse sequence (M)......... 119

cz
Clear integral reset points (C) ... 119

D

do
Overhead delay between FIDs (P) .. 125

d1
First delay (P) .. 126

d2
Incremented delay in 1st indirectly detected dimension (P) 126

d2pul
Set up parameters for D2PUL pulse sequence (M) 126

d3
Incremented delay in 2nd indirectly detected dimension (P) 126

d4
Incremented delay in 3rd indirectly detected dimension (P) 127

DAC_to_G
Store gradient calibration value in DOSY sequences (P) 126

da
Display acquisition parameter arrays (C) 127

daslp
Increment for t1 dependent first-order phase correction (P) 128

date
Date (P) .. 128

daxis
Display horizontal LC axis (M).. 128

Dbppste
Set up parameters for Dbppste pulse sequence (M) 128

Dbppsteinept
Set up parameters for Dbppsteinept pulse sequence (M)......... 129

dbsetup
Set up VnmrJ database (U) ... 129

dbupdate
Update the VnmrJ database (U) ... 129
dc
Calculate spectral drift correction (C) ... 130

dc2d
Apply drift correction to 2D spectra (C).. 130

dcg
Drift correction group (P) .. 130

dcon
Display noninteractive color intensity map (C) 130

dconi
Interactive 2D data display (C) .. 131

dconl
Control display selection for the dconi program (P) 133

dcoon
Display color intensity map without screen erase (C) 134

dcrmv
Remove dc offsets from FIDs in special cases (P) 134

ddf
Display data file in current experiment (C) 134

ddff
Display FID file in current experiment (C) 134

ddfp
Display phase file in current experiment (C) 135

ddif
Synthesize and show DOSY plot (C) ... 135

ddrcr
Direct digital receiver coefficient ratio (P) 135

ddrpm
Set ddr precession mode (P) ... 136

ddrtc
Set ddr time constant (P) .. 136

dds
Default display (M) ... 136

dds_seqfil
Sequence-specific default display (M) 137

debug
Trace order of macro and command execution (C) 137

decasynctype
Select the type of decoupler asynchronous mode (P) 137

decchwarnings
Control reporting of DECC warnings from PSG (P) 138

decomp
Decompose a VXR-style directory (M) .. 138

def_osfilt
Default value of osfilt parameter (P) .. 138

defaultdir
Default directory for Files menu system (P) 139

delcom
Delete a user macro (M) .. 139

delete
Delete a file, parameter directory, or FID directory (C) 139

delexp
Delete an experiment (M) .. 139

deletenucleus
Removes nucleus entry from current probe file (M) 140

dels
Delete spectra from T \textsubscript{1} or T \textsubscript{2} analysis (C) 140

delta
Cursor difference in directly detected dimension (P) 140

delta1
Cursor difference in 1st indirectly detected dimension (P) 141

delta2
Cursor difference in 2nd indirectly detected dimension (P) 141

deltahf
Difference of two time-domain cursors (P) 141

Dept
Set up parameters for DEPT experiment (M) 141

depgl
Set up parameters for DEPTGL pulse sequence (M) 141

deptrd
Process array of DEPT spectra (M) ... 142

destroy
Destroy a parameter (C) ... 142

destroygroup
Destroy parameters of a group in a tree (C) 142

df
Display a single FID (C) .. 143

df2d
Display FIDs of 2D experiment (C) ... 143

dfid
Display a single FID (C) .. 144

dfmode
Current state of display of imaginary part of a FID (P) 144

dfrq
Transmitter frequency of first decoupler (P) 144

dfrq2
Transmitter frequency of second decoupler (P) 144

dfrq3
Transmitter frequency of third decoupler (P) 144

dfrq4
Transmitter frequency of fourth decoupler (P) 145

dfs
Display stacked FIDs (C) .. 145

dfsa
Display stacked FIDs automatically (C) 146

dfsan
Display stacked FIDs automatically without screen erase (C) 146

dfsn
Display stacked FIDs horizontally (C) 146

dfshn
Display stacked FIDs horizontally without screen erase (C) 147

dfsn
Display stacked FIDs without screen erase (C) 147

dfww
Display FIDs in whitewash mode (C) ... 147

dg
Display group of acquisition/processing parameters (C) 147

dg
Control dg parameter group display (P) 148

dg1
Display group of display parameters (M) 148

dg1
Control dg1 parameter group display (P) 148

dg2
Display group of 3rd and 4th rf channel/3D parameters (M) 148

dg2
Control dg2 parameter group display (P) 149

dga
Display group of spin simulation parameters (M) 149

DgcsteSL
Set up parameters for DgcsteSL pulse sequence (M) 149

Dgcsteoscosy
Set up parameters for Dgcsteoscosy pulse sequence (M) 149

Dgcstehmqc
Set up parameters for Dgcstehmqc pulse sequence (M) 149
do_pcss
Calculate proton chemical shifts spectrum (C)............................... 167
dosytimecubed
Gyromagnetic constant of phase encoded nucleus in DOSY (P) ... 169
dosyfrq
Gyromagnetic constant of phase encoded nucleus in DOSY (P) ... 169
dosy2d
Apptype macro for dosy 2D experiments (M)................................. 168
dosy
Process DOSY experiments (M)... 168
dodialog
Start a dialog window with
Frequency offset for first decoupler (P).. 166
dof
Start a dialog with
dopardialog
Set up parameters for Doneshot pulse sequence (M) 167
dof4
Frequency offset for fourth decoupler (P)...................................... 167
dof3
Frequency offset for third decoupler (P)... 167
dof2
Frequency offset for second decoupler (P).................................... 167
dof
Frequency offset for first decoupler (P) 167
dopar
Retrieve a shimset set from the locator (M) 165
dndshims
Retrieve a parameter set from the locator (M)................................ 165
dnode
Join a work space from the locator (M).. 165
dndopen
Retrieve and process fid data from the locator (M) 165
dnjoin
Join a work space from the locator (M).. 165
dnpar
Retrieve a parameter set from the locator (M)............................... 165
dnshims
Retrieve a shimset set from the locator (M)................................. 165
dip
Decoupler low-power control with class C amplifier (P)............. 165
dim
Decoupler mode for first decoupler (P)....................................... 165
dim2
Decoupler mode for second decoupler (P)................................... 165
dim3
Decoupler mode for third decoupler (P).................................... 165
dim4
Decoupler mode for fourth decoupler (P).................................. 165
dmf
Decoupler modulation frequency for first decoupler (P) 165
dm2f
Decoupler modulation frequency for second decoupler (P) 165
dm3f
Decoupler modulation frequency for third decoupler (P) 165
dm4f
Decoupler modulation frequency for fourth decoupler (P) 165
dm4fadj
Adjust tip-angle resolution time for first decoupler (M) 165
dm2fadj
Adjust tip-angle resolution time for second decoupler (M) 165
dm3fadj
Adjust tip-angle resolution time for third decoupler (M) 165
dm4fadj
Adjust tip-angle resolution time for fourth decoupler (M) 165
dmg
Data display mode in directly detected dimension (P).............. 165
dmg1
Data display mode in 1st indirectly detected dimension (P) 165
dmg2
Data display mode in 2nd indirectly detected dimension (P) 165
dmgf
Absolute-value display of FID data or spectrum in acqi (P) 165
dmm
Decoupler modulation mode for first decoupler (P).................. 165
dm2m
Decoupler modulation mode for second decoupler (P)............... 165
dm3m
Decoupler modulation mode for third decoupler (P)................ 165
dm4m
Decoupler modulation mode for fourth decoupler (P) 165
dn
Nucleus for first decoupler (P).. 165
dn2
Nucleus for second decoupler (P)... 165
dn3
Nucleus for third decoupler (P)... 165
dn4
Nucleus for fourth decoupler (P)... 165
dndfid
Retrieve and process fid data from the locator (M) 166
dndjoin
Join a work space from the locator (M).. 166
dnode
Display list of normalized integrals (M).................................... 166
dlni
Display list of integrals (C).. 166
dlalong
Long display of spin simulation parameter arrays (C) 166
dlivar
Display list of valid limNET nodes (M,U) 166
dll
Display list of line frequencies and intensities (C).................... 166
dlln
Display list of line frequencies and intensities (C).................... 166
dll
Display list of line frequencies and intensities (C).................... 166
dlln
Display list of line frequencies and intensities (C).................... 166
dll
Display list of line frequencies and intensities (C).................... 166
dlln
Display list of line frequencies and intensities (C).................... 166
dll
Display list of line frequencies and intensities (C).................... 166
dlln
Display list of line frequencies and intensities (C).................... 166
dll
Display list of line frequencies and intensities (C).................... 166
dlln
Display list of line frequencies and intensities (C).................... 166
dll
Display list of line frequencies and intensities (C).................... 166
dlln
Display list of line frequencies and intensities (C).................... 166
dll
Display list of line frequencies and intensities (C).................... 166
dlln
Display list of line frequencies and intensities (C).................... 166
dll
Display list of line frequencies and intensities (C).................... 166
dlln
Display list of line frequencies and intensities (C).................... 166
dll
Display list of line frequencies and intensities (C).................... 166
dlln
Display list of line frequencies and intensities (C).................... 166
dll
Display list of line frequencies and intensities (C).................... 166
dlln
Display list of line frequencies and intensities (C).................... 166
dll
Display list of line frequencies and intensities (C).................... 166
Set up a T1 experiment (M) ... 169
Display FID as connected dots (P) ... 169
Downsampling factor applied after digital filtering (P) 170
Double precision (P) .. 170
Display plotted contours (C) .. 170
Display plotted contours without screen erase (C) 171
Display peak frequencies over spectrum (C) 171
Display integral amplitudes below spectrum (C) 172
Display normalized integral amplitudes below spectrum (M) 172
Display integral values below spectrum (M) 172
Display normalized integral values below spectrum (M) 173
Default plot (M) .. 173
Sequence-specific default plot (M) ... 173
Display a 3D plane (M) .. 174
Default process (M) ... 174
Sequence-specific default process (M) .. 174
Display pulse excitation profile (M) .. 174
Display a 3D plane projection (M) .. 175
Display pulse sequence (C) ... 175
Power level for first decoupler with linear amplifier (P) 176
Power level for second decoupler with linear amplifier (P) 176
Power level for third decoupler with linear amplifier (P) 177
Power level for fourth decoupler amplifier (P) 177
First decoupler fine power (P) ... 178
Second decoupler fine power (P) ... 178
Third decoupler fine power (P) ... 178
First decoupler linear modulator power (P) 179
Second decoupler linear modulator power (P) 179
Third decoupler linear modulator power (P) 179
Convert the parameter to a DQCOSY experiment (M) 179
Measure linewidth and digital resolution (C) 180
Tip-angle resolution for first decoupler (P) 180
Tip-angle resolution for second decoupler (P) 181
Tip-angle resolution for third decoupler (P) 181
Tip-angle resolution for fourth decoupler (P) 181
Display a spectrum (C) ... 182
Display 2D spectra in whitewash mode (C) 183
Display 2D spectra in whitewash mode without screen erase (C)... 183
Report statistical signal-to-noise for Cold Probes (M) 184
Display scale before spectrum or FID (C) 184
Digital filter coefficients for downsampling (P) 184
Decoupler sequence for first decoupler (P) 185
Decoupler sequence for second decoupler (P) 185
Decoupler sequence for third decoupler (P) 185
Decoupler sequence for fourth decoupler (P) 186
Digital filter bandwidth for downsampling (P) 186
Display pulse shape or modulation pattern (M) 186
Display last generated pulse shape (M) 186
Display pulse shape or modulation pattern interactively (M) 187
Display a shim “method” string (M) .. 187
Bandpass filter offset for downsampling (P) 187
Measure signal-to-noise (C) .. 188
Calculate maximum signal-to-noise (M) 188
Display calculated spectrum (C) ... 189
Type of DSP for data acquisition (P) .. 190
Display a series of 3D planes (M) .. 191
Type of DSP (P) ... 191
Display stacked spectra (C) .. 191
Display stacked spectra automatically (C) 193
Display stacked spectra automatically without erasing (C) 194
Display stacked spectra horizontally (C) 194
dssln
Display stacked spectra without screen erase (C) 196

dss1
Label a display of stacked spectra (M) 196

dssn
Display stacked spectra without screen erase (C) 196

dsvast
Display VAST data in a stacked 1D-NMR matrix format (M) 197

dsvast2d
Display VAST data in a pseudo-2D format (M) 197

dsww
Display spectra in whitemode (C) 197

dtext
Display a text file in graphics window (M) 198

dtrig
Delay to wait for another trigger or acquire a spectrum (P) 199

dutyc
Duty cycle for homodecoupling (optional) (P) 199

E

e
Eject sample (M) .. 201

eaddr
Display Ethernet address (M,U) .. 202

ecc_on
Turns on eddy current compensation for Cold Probes (M) 202

ecc_off
Turns off eddy current compensation for Cold Probes (M) 202

echo
Display strings and parameter values in text window (C) 202

edit
Edit a file with user-selectable editor (M) 202

eject
Eject sample (M) .. 203

elist
Display directory on remote VXR-style system (M,U) 203

email
Email address (P) .. 203

enter
Enter sample information for automation run (M,U) 204

enterdialog
Start a dialog window using enterexp file (M) 204

erad
Transfer file from remote source (M,U) 204

ernst
Calculate the Ernst angle pulse (C) 205

errlog
Display recent error messages (C) 205

errloglen
Number of lines in error message display (P) 205

erwrite
Transfer file to remote destination (M,U) 206

exec
Execute a command (C)... 206

execpars
Set up the exec parameters (M) ... 206

execplot
Execute plotting macro (P) .. 206

execprep
Execute prepare macro (P) ... 207

execprescan
Execute prescan macro (P) ... 207

execproc
Execute processing macro (P) .. 207

execprocess
Execute processing macro (P) .. 207

execsetup
Execute setup macro (P) ... 207

exists
Checks if parameter, file, or macro exists and file type (C) 207

exit
Call the vnmrexit command (M) .. 210

exp
Find exponential value of a number (C) 210

expactive
Determine if experiment has active acquisition (C) 210

expfit
Make least-squares fit to polynomial or exponential curve (U) .. 211

expl
Display exponential or polynomial curves (C) 212

expladd
Add another diffusion analysis to current display (M) 213

explib
Display experiment library (M) .. 214

explog
Display log file for experiment (M) 214

exploglen
Display current experiment chain and approx. time for each (M) 214

explogtime
Display experiment log file for experiment (M) 214

expontime
Display experiment time (C) .. 214

F

f
Set display parameters to full spectrum (C) 216

f19
Automated fluorine acquisition (M) 216

f19p
Process 1D fluorine spectra (M) .. 217

f1coef
Coefficient to construct F1 interferogram (P) 217

f2coef
Coefficient to construct F2 interferogram (P) 218

fattn
Fine attenuator (P) .. 218

fb
Filter bandwidth (P) ... 218

fbc
Apply baseline correction for each spectrum in an array (M) 219

fdm1
Set, write 1D FDM parameters, run FDM (M) 219

fiddc3d
3D time-domain dc correction (P) 220

fiddle
Perform reference deconvolution (M) 220

fiddlee
Perform reference deconvolution subtracting alternate FIDs (C)... 221

fiddled
Perform reference deconvolution subtracting successive FIDs (C) 222
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fiddle2d</td>
<td>Perform 2D reference deconvolution (C) .. 222</td>
</tr>
<tr>
<td>fiddle2D</td>
<td>Perform 2D reference deconvolution (C) .. 222</td>
</tr>
<tr>
<td>fiddle2dd</td>
<td>2D reference deconvolution subtracting alternate FIDs (C)............... 222</td>
</tr>
<tr>
<td>fiddle2dD</td>
<td>2D reference deconvolution subtracting alternate FIDs (C)............... 222</td>
</tr>
<tr>
<td>fidmax</td>
<td>Find the maximum point in an FID (C) .. 222</td>
</tr>
<tr>
<td>fidpar</td>
<td>Add parameters for FID display in current experiment (M) 223</td>
</tr>
<tr>
<td>fidsave</td>
<td>Save data (M) ... 223</td>
</tr>
<tr>
<td>fifolsize</td>
<td>FIFO loop size (P) ... 223</td>
</tr>
<tr>
<td>file</td>
<td>File name of parameter set (P) .. 223</td>
</tr>
<tr>
<td>files</td>
<td>Interactively handle files (C) .. 223</td>
</tr>
<tr>
<td>filesinfo</td>
<td>Return file information for files display (C) 224</td>
</tr>
<tr>
<td>filtfile</td>
<td>File of FIR digital filter coefficients (P) 224</td>
</tr>
<tr>
<td>findxmlmenu</td>
<td>Find an xml menu (M) ... 225</td>
</tr>
<tr>
<td>fitspec</td>
<td>Perform spectrum deconvolution (C, U) .. 225</td>
</tr>
<tr>
<td>fixgrd</td>
<td>Convert gauss/cm value to DAC (M) ... 226</td>
</tr>
<tr>
<td>fixpar</td>
<td>Correct parameter characteristics in experiment (M) 226</td>
</tr>
<tr>
<td>fixpar3rf</td>
<td>Create parameters for third rf channel (M) 226</td>
</tr>
<tr>
<td>fixpar4rf</td>
<td>Create parameters for fourth rf channel (M) 226</td>
</tr>
<tr>
<td>fixpar5rf</td>
<td>Create parameters for fifth rf channel (M) 227</td>
</tr>
<tr>
<td>fixup</td>
<td>Adjust parameter values selected by setup macros (M) 227</td>
</tr>
<tr>
<td>fixpsg</td>
<td>Update psg libraries (M) .. 227</td>
</tr>
<tr>
<td>flashc</td>
<td>Convert compressed 2D data to standard 2D format (C) 227</td>
</tr>
<tr>
<td>flipflop</td>
<td>Set up parameters for FLIPFLOP pulse sequence (M) 228</td>
</tr>
<tr>
<td>Fluorine</td>
<td>Set up parameters for 19F experiment (M) 228</td>
</tr>
<tr>
<td>flush</td>
<td>Write out data in memory (C) ... 228</td>
</tr>
<tr>
<td>fn</td>
<td>Fourier number in directly detected dimension (P) 229</td>
</tr>
<tr>
<td>fn1</td>
<td>Fourier number in 1st indirectly detected dimension (P) 229</td>
</tr>
<tr>
<td>fn2</td>
<td>Fourier number in 2nd indirectly detected dimension (P) 229</td>
</tr>
<tr>
<td>fn2D</td>
<td>Fourier number to build up 2D DOSY display in freq. domain (P) 229</td>
</tr>
<tr>
<td>focus</td>
<td>Send keyboard focus to input window (C) 230</td>
</tr>
<tr>
<td>foldcc</td>
<td>Fold INADEQUATE data about two-quantum axis (C) 230</td>
</tr>
<tr>
<td>folddj</td>
<td>Fold J-resolved 2D spectrum about f1=0 axis (C) 230</td>
</tr>
<tr>
<td>foldt</td>
<td>Fold COSY-like spectrum along diagonal axis (C) 230</td>
</tr>
<tr>
<td>fontsselect</td>
<td>Open FontSelect window (C) .. 231</td>
</tr>
<tr>
<td>format</td>
<td>Format a real number or convert a string for output (C) 231</td>
</tr>
<tr>
<td>fp</td>
<td>Find peak heights or phases (C) .. 232</td>
</tr>
<tr>
<td>fpmult</td>
<td>First point multiplier for np FID data (P) 232</td>
</tr>
<tr>
<td>fpmult1</td>
<td>First point multiplier for ni interferogram data (P) 233</td>
</tr>
<tr>
<td>fpmult2</td>
<td>First point multiplier for ni2 interferogram data (P) 233</td>
</tr>
<tr>
<td>fr</td>
<td>Full recall of a display parameter set (M) 233</td>
</tr>
<tr>
<td>fread</td>
<td>Read parameters from file and load them into a tree (C) 233</td>
</tr>
<tr>
<td>fsave</td>
<td>Save parameters from a tree to a file (C) 234</td>
</tr>
<tr>
<td>fsq</td>
<td>Frequency-shifted quadrature detection (P) 234</td>
</tr>
<tr>
<td>ft</td>
<td>Fourier transform 1D data (C) .. 235</td>
</tr>
<tr>
<td>ft1d</td>
<td>Fourier transform along f1 dimension (C) 236</td>
</tr>
<tr>
<td>ft1da</td>
<td>Fourier transform phase-sensitive data (M) 237</td>
</tr>
<tr>
<td>ft1dac</td>
<td>Combine arrayed 2D FID matrices (M) .. 238</td>
</tr>
<tr>
<td>ft2d</td>
<td>Fourier transform 2D data (C) .. 238</td>
</tr>
<tr>
<td>ft2da</td>
<td>Fourier transform phase-sensitive data (M) 241</td>
</tr>
<tr>
<td>ft2dac</td>
<td>Combine arrayed 2D FID matrices (M) .. 242</td>
</tr>
<tr>
<td>ft3d</td>
<td>Perform a 3D Fourier transform on a 3D FID data set (M,U) 242</td>
</tr>
<tr>
<td>full</td>
<td>Set display limits for a full screen (C) 246</td>
</tr>
<tr>
<td>fullsq</td>
<td>Display largest square 2D display (M) .. 246</td>
</tr>
<tr>
<td>fullt</td>
<td>Set display limits for a full screen with room for traces (C) 246</td>
</tr>
</tbody>
</table>

G

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>g2pul_ecc</td>
<td>Setup macro for eddy current compensation parameters (M) 248</td>
</tr>
<tr>
<td>ga</td>
<td>Submit experiment to acquisition and FT the result (M) 249</td>
</tr>
<tr>
<td>gain</td>
<td>Receiver gain (P) ... 249</td>
</tr>
<tr>
<td>gap</td>
<td>Find gap in the current spectrum (M) .. 250</td>
</tr>
<tr>
<td>gaussian</td>
<td>Set up unshifted Gaussian window function (M) 250</td>
</tr>
</tbody>
</table>
gcal Gradient calibration constant (P) ... 251
gcoil Current gradient coil (P) ... 251
Gcosy Convert the parameter to a gradient COSY experiment (M) 252
diff Diffusion gradient level (P) ... 252
Gdqcosy Convert the parameter to a gradient DQ COSY experiment (M) 252
get1d Select a 1D experiment for processing (M) 252
get2d Select a 2D experiment for processing (M) 253
getdim Return dimensionality of experiment (M) 253
getfile Get information about directories and files (C) 253
getlimit get the limits of a variable in a tree (C) 254
getll Get intensity and line frequency of line (C) 254
getparam Retrieve parameter from probe file (M) 255
getplane Extract planes from a 3D spectral data set (M) 255
getreg Get frequency limits of a specified region (C) 256
getsn Get signal-to-noise estimate of a spectrum (M) 256
gettoken Utility macro to separate a string into tokens (M) 257
gettxt Get the type of a variable (C) .. 257
getvalue Get value of parameter in a tree (C) 258
gf Prepare parameters for FID/spectrum display in acqi (M) 258
gf Gaussian function in directly detected dimension (P) 259
gf1 Gaussian function in 1st indirectly detected dimension (P) 259
gf2 Gaussian function in 2nd indirectly detected dimension (P) 259
gflow Flow encoding gradient level (P) ... 259
gfs Gaussian shift const. in directly detected dimension (P) 259
gfs1 Gaussian shift const. in 1st indirectly detected dimension (P) 260
gfs2 Gaussian shift const. in 2nd indirectly detected dimension (P) 260
Ghmbc Convert the parameter to a gradient HMBC experiment (M) 260
ghmqc Convert the parameter to a gradient HMQC experiment (M) 260
GhMQC15 Set up parameters for 1H, 15N gHMQC experiment (M) 261
GhMQC_d2 Set up parameters for 1H, 15N gHMQC experiment using dec. 2 (M) 261
GhMQC_d213 Set up parameters for 1H, 13C gHMQC experiment using dec. 2 (M) 261
ghmqcps Set up a PFG HMQC phase-sensitive pulse sequence (M) 261
ghsqc Set up a PFG HSQC pulse sequence (M) 261
Ghsqc Convert the parameter to a gradient HSQC experiment (M) 261
GHSQC15 Set up parameters for 1H, 13C gHSQC experiment (M) 261
GHSQC_d2 Set up parameters for 1H, 13C gHSQC experiment using dec. 2 (M) 261
GHSQC_d213 Set up parameters for 1H, 15N gHSQC experiment using dec. 2 (M) 261
Ghsqcox Convert parameters for gradient HSQCOTXY experiment (M) 261
gilson Open the Gilson Liquid Handler window (C) 262
gin Return current mouse position and button values (C) 262
globalauto Automation directory name (P) 262
glue Create a pseudo-2D dataset (M) ... 263
gmapshim Start gradient autoshimming (M) 263
gmapshim_au Start acquisition with gradient shimming (M) 263
gmmapspin Enable or disable spinning during gradient shimming (P) ... 263
gmmapsys Run gradient autoshimming, set parameters, map shims (M) 264
gmmapz Get parameters and files for gmapz pulse sequence (M) 265
ghshim_flag to first find tof (P) .. 265
ghshim_flag to first shim z1-z4 (P) 265
gmax Maximum gradient strength (P) ... 266
gmqcosy Set up PFG absolute-value MQF COSY parameter set (M) 266
gnoesy Set up a PFG NOESY parameter set (M) 266
go Submit experiment to acquisition (M) 266
go_ Pulse sequence setup macro called by go, ga, and au (M) 267
go__ Gradient shape (P) ... 268
gradientdisable Disable PFG gradients (P) 268
gradientshaping Activate shaping on the gradient pulses (P) 268
gradstepsz Gradient step size (P) ... 268
gradtype Gradients for X, Y, and Z axes (P) 269
graphis
Return the current graphics display status (C) ... 269

grayctr
Gray level window adjustment (P) ... 270

grays1
Gray level slope (contrast) adjustment (P) ... 270

grecovery
Eddy current testing (M) .. 270

grid
Draw a grid on a 2D display (M) ... 270

groupcopy
Copy parameters of group from one tree to another (C) 271

gspoil
Spoiler gradient level (P) ... 271

gsspat
Slice-select gradient shape (P) ... 271

gtnnoesy
Set up a PFG TNNOESY parameter set (M) 271

gtproesy
Set up a PFG absolute-value ROESY parameter set (M) 272

gtotlimit
Gradient total limit (P) .. 272

h
hallt
Abort acquisition with no error (C) .. 278

hc
Automated proton and carbon acquisition (M) 278

hcapt
Automated proton, carbon, and APT acquisition (M) 279

hccorr
Automated proton, carbon, and HETCOR acquisition (M) 279

hcdept
Automated proton, carbon, and DEPT acquisition (M) 279

hcpsy
Automated proton and COSY acquisition (M) 280

hdmf
Modulation frequency for homonuclear decoupling (P) 280

hcmult
Execute protocol actions of apptype hcmult (M) 280

hdof
Frequency offset for homodecoupling (P) .. 281

hdpswr
Power level for homodecoupling (P) .. 281

hdpsr
Homodecoupling fine power (optional) (P) .. 282

hdres
Sets the tip angle resolution (P) ... 282

hdseq
Waveform filename for band selective decoupling (P) 283

hdwshim
Hardware shimming (P) .. 283

hdwshimlist
List of shims for hardware shimming (P) .. 283

het2dj
Set up parameters for HET2DJ pulse sequence (M) 284

HETCOR
Change parameters for HETCOR experiment (M) 284

hetcor
Set up parameters for HETCOR pulse sequence (M) 284

hetcorcp1
Set up parameters for solids HETCOR pulse sequence (M) 284

hetcorps
Set up parameters for HETCORPS pulse sequence (M) 284

hetero2d
Execute protocol actions of apptype hetero2d (M) 284

hidecommand
Execute macro instead of command with same name (C) 285

hipwramenable
High Power Amplifier Enable (P) ... 285

Hmbc
Convert the parameter to a HMBBC experiment (M) 285

Hmqc
Convert the parameter to a HMQC experiment (M) 285

HMQC15
Set up parameters for 15N HMQC experiment (M) 285

HMQC d2
Set up parameters for 13C HMQC experiment using dec. 2 (M) 286

HMQC d213
Set up parameters for 13C HMQC experiment using dec. 2 (M) 286

hmqcr
Set up parameters for HMQCR pulse sequence (M) 286

hmqctoxy
Convert the parameter to a HMQCTOXY experiment (M) 286

HMQCTOXY15
Set up parameters for 15N HMQCTOXY experiment (M) 286

HMQCTOXY d2
Set up parameters for 15N HMQCTOXY using decoupler 2 (M) 286

HMQCTOXY d213
Set up parameters for 15N HMQCTOXY using decoupler 2 (M) 286

hmqctoxy3d
Set up parameters for HMQC-TOCSY 3D pulse sequence (M) 286

ho
Horizontal offset (P) .. 286

hom2dj
Set up parameters for HOM2DJ pulse sequence (M) 286

homo
Homodecoupling control for the observe channel (P) 287

homo2
Homodecoupling control for second decoupler (P) 287
homo3 Homodecoupling control for third decoupler (P) 287
homo4 Homodecoupling control for fourth decoupler (P) 288
HOMODEC Change parameters for HOMODEC experiment (M) 288
homo2d Execute protocol actions of appytype homo2d (M) 288
homorof1 Delay before turning on homo decoupling rf (P) 288
homorof2 Delay after blanking the amp and setting T/R switch to recv (P) 289
homorof3 Delay between setting T/R to receive and gating the recv on (P) 289
hout Set parameters alfa and rof2 according to Hout (M) 290
hpa Plot parameters on special preprinted chart paper (C) 290
Hprescan Proton prescan (P) .. 290
hregions Select integral regions in proton spectrum (M) 290
hs Homospoil pulses (P) ... 290
Hsqc Convert the parameter to a HSQC experiment (M) 291
HSQC15 Set up parameters for 15N HSQC experiment (M) 291
HSQC_d2 Set up parameters for 15N HSQC experiment using dec. 2 (M) 291
HSQC_d213 Set up parameters for 13C HSQC experiment using dec. 2 (M) 291
HsqcHT Set up the HsqcHT experiment (M) 291
Hsqctoxy Convert parameters to a HSQCTOXY experiment (M) 291
HSQCTOXY15 Set up parameters for 15N HSQCTOXY experiment (M) .. 291
HSQCTOXY_d2 Set up parameters for 15N HSQCTOXY using decoupler 2 (M) 291
HSQCTOXY_d213 Set up parameters for 13C HSQCTOXY using decoupler 2 (M) 291
hsqctoxySE Set parameters for HSQC-TOCSY 3D pulse sequence (M) 292
hsrotor Display rotor speed for solids operation (P) 292
hst Homospoil time (P) .. 292
htbitrev Hadamard bit reversal flag (P) .. 292
htbw1 Hadamard pulse excitation bandwidth in ni (P) 292
htcall RF calibration flag for Hadamard waveforms in ni (P) 293
htfql Hadamard frequency list in ni (P) 293
htofsl Hadamard offset in ni (P) .. 293
htpwr1 Power level for RF calibration of Hadamard waveforms in ni (P) 293
htssl Step size for Hadamard waveforms in ni (P) 294
hzmm Scaling factor for plots (P) .. 294
htzomm Convert locations from Hz or ppm to plotter units (C) 294
i Insert sample (M).. 297
ihwinfo Hardware status of console (U) .. 298
il Interleave arrayed and 2D experiments (P) 298
ilfid Interleave FIDs during data processing (C) 298
imagefile Display an image file (M) ... 298
imagemath Fit images to an specified function (M) 299
imageprint Plot non interactive gray scale image (M) 300
imconi Display 2D data in interactive grayscale mode (M) 300
in Lock and spin interlock (P) ... 300
inadqt Set up parameters for INADEQUATE pulse sequence (M) 300
index2 Projection or 3D plane index selected (P) 301
inept Set up parameters for INEPT pulse sequence (M) 301
initialize_iterate Set iterate string to contain relevant parameters (M) 301
input Receive input from keyboard (C) ... 301
ins Integral normalization scale (P) .. 301
ins2 2D volume value (P) ... 302
insref Fourier number scaled value of an integral (P) 302
ins2ref Fourier number scaled volume of a peak (P) 302
insert Insert sample (M) .. 302
inset Display an inset spectrum (C) .. 303
integ Find largest integral in a specified region (C) 303
integrate Automatically integrate 1D spectrum (M) 303
intmod Integral display mode (P) .. 304
intvast Produces a text file of integral regions (M) 304
io Integral offset (P) ... 304
is Integral scale (P) ... 304
isadj
isadj2
isreal
isstring
iterate

J
jcurwin
jdesign
jexp
jexp1–jexp9999
jplot
jplotscale
jplotunscale
jprint
jumpret
jviewport
jviewportlabel
jviews
jwin

K
killft3d
killplot
killprint
kind
kinds
kini
kinesis

L
lastlk
lastmenu
latch
lb
lb1
lb2
lc1d
lcpar2d
lceak
lcplot
lcspsset
lcset2d
left
legrelay
length
lf
liamp
llifrq
lilgbear
listenoff
listenon
lkof
ll2d
ll2dbackup
ll2dmode
llamp
llfrq
ln
load

Automatic integral scale adjustment (M) ... 304
Automatic integral scale adjustment by powers of two (M) 305
Utility macro to determine a parameter type (M) 305
Utility macro to determine a parameter type (M) 306
Parameters to be iterated (P) .. 307

Work space numbers of all viewports (P) ... 309
Start Plot Designer Program (M) .. 309
Join existing experiment (C) .. 309
Join existing experiment and display new parameters (M) 310
Plot from Plot Designer program (C) .. 310
Scale plot parameters (M) ... 310
Restore current experiment parameters (M) 311
Prints the selected images to a printer or file (M) 311
Set up parameters for JUMPRET pulse sequence (M) 311
Work space numbers of the current viewports (P) 311
Work space labels for all viewport buttons (P) 311
Viewport layout (P) ... 312
Activate and record activity in current window (M) 312

Terminate any ft3d process started in an experiment (M,U) 313
Stop plot jobs and remove from plot queue (M) 313
Stop print jobs and remove from print queue (M) 314
Kinetics analysis, decreasing intensity (M) 314
Kinetics analysis, decreasing intensity, short form (M) 314
Kinetics analysis, increasing intensity (M) .. 314
Kinetics analysis, increasing intensity, short form (M) 315

Last lock solvent used (P) .. 318
Menu to display when Return button is selected (P) 319
Frequency synthesizer latching (P) .. 319
Line broadening in directly detected dimension (P) 319
Line broadening in 1st indirectly detected dimension (P) 319
Line broadening in 2nd indirectly detected dimension (P) 320
Pulse sequence for LC-NMR (M) .. 320
Create 2D LC-NMR acquisition parameters (M) 320
Peak number (P) .. 321
Plot LC-NMR data (M) .. 321
Set up parameters for various LC-NMR pulse sequences (M) 321
General setup for 2D LC-NMR experiments (M) 321
Set display limits to left half of screen (C) .. 321
Independent control of magnet leg relay (P) 322
Determine length of a string (C) .. 322
List files in directory (C) .. 322
Amplitudes of integral reset points (P) ... 322
Frequencies of integral reset points (P) ... 323
Liquids Bearing Air Level (P) ... 323
Disable receipt of messages from send2Vnmr (M) 323
Enable receipt of messages from send2Vnmr (M) 323
Track changes in lock frequency (P) .. 323
Automatic and interactive 2D peak picking (C) 324
Copy current ll2d peak file to another file (M) 327
Control display of peaks picked by ll2d (P) 327
List of line amplitudes (P) .. 327
List of line frequencies (P) .. 327
Find natural logarithm of a number (C) .. 327
Load status of displayed shims (P) .. 328
loadcolors
loc
locaction
lock
lockacqtc
lockfreq
lockgain
lockphase
lockpower
locktc
logate
lookup
locprotoexec
lp
lp1
lp2
lpalg
lpalg1
lpalg2
lpext
lpext1
lpext2
lpfilt
lpfilt1
lpfilt2
lnupts
lnupts1
lnupts2
lpopt
lpopt1
lpopt2
lpprint
lpprint1
lpprint2
lptrace
lptrace1
lptrace2
ls
lsfid
lsfid1
lsfid2
lsfrq
lsfrq1
lsfrq2
lvt
lvtltlt

M
macro
macrocat
macrocp
macrodir
macroedit
macrold
macrom
macrosyscat
macrosyscp
macrosysdir
macrosysrm
macrovi
make3dcoef

Macro name (P) ... 348
Display a user macro file in text window (C) 348
Copy a user macro file (C) .. 348
List user macro files (C) .. 349
Edit a macro with user-selectable editor (M) 349
Load a macro into memory (C) 349
Remove a user macro (C) ... 350
Display a system macro file in text window (C) 350
Copy a system macro to become a user macro (C) 350
List system macros (C) ... 351
Remove a system macro (C) 351
Edit a user macro with the vi text editor (M) 351
Make a 3D coefficients file from 2D coefficients (M) 352
makedosyparams
makefid
makeecckglobals
makeslice
man
managedb
manvi
mapwin
mark
masvt
maxattench1-4
maxpen
md
menu
menuvi
method
mf
mfb1k
mfclose
mfdata
mfopen
mftrace
minsw
mkdir
mlabel
move
movedssw
moveossw
movebw
movetof
mp
mqcosy
mref
mrev8
mrfb
mrgain
mstat
mstring
mtune
mv
mxconst

Create parameters for DOSY processing (M)................................. 353
Make a FID element using numeric text input (C).......................... 353
Create global parameters for ECC control (M).............................. 354
Synthesize 2D projection of 3D DOSY experiment (C)................... 354
Display online description of command or macro (M).................... 354
Update user files (U).. 355
Path to user’s manual directory (P).. 355
Edit online description of a command or macro (M)....................... 355
List of experiment numbers (P)... 355
Determine intensity of spectrum at a point (C)............................ 355
Type of variable temperature system (P).................................... 357
Maximum limit for attenuator setting for rf channel 1-4 (P)......... 358
Maximum number of pens to use (P)... 358
Move display parameters between experiments (C)...................... 358
Change status of menu system (C)... 359
Edit a menu with vi text editor (M)... 359
Autoshim method (P).. 359
Move FIDs between experiments (C)... 360
Copy FID block (C).. 360
Close memory map FID (C).. 361
Move FID data (C)... 361
Memory map open FID file (C).. 362
Move FID trace (C).. 362
Reduce spectral width to minimum required (M).......................... 363
Create new directory (C)... 363
Menu label (P).. 364
Move to an absolute location to start a line (C)............................ 364
Set downsampling parameters for selected spectral region (M)..... 364
Set oversampling parameters for selected spectral region (M)..... 364
Move spectral window according to cursors (M)............................. 365
Move transmitter offset (M).. 365
Move parameters between experiments (C)................................. 365
Set up parameters for MQCOSY pulse sequence (M).................... 366
Set referencing based on a existing spectrum of the sample (M).... 366
Set up parameters for MREV8 pulse sequence (M)..................... 367
Set the filter bandwidths for multiple receivers (P).................... 367
Set the gain for multiple receivers (P)....................................... 368
Display memory usage statistics (C).. 368
Menu string (P).. 368
Tune probe using swept-tune graphical display (M)..................... 369
Move and/or rename a file (C).. 369
Maximum scaling constant (P).. 369
Name storage for macros (P)... 371
Select a menu without immediate activation (C).......................... 372
Interactively create a shim method with options (M).................... 372
Display the next 3D plane (M)... 373
Number of increments in 1st indirectly detected dimension (P).... 373
Number of increments in 2nd indirectly detected dimension (P).... 373
Number of increments in 3rd indirectly detected dimension (P).... 374
Number of iterations (P)... 374
Maximum limit of ni (P)... 374
Position cursor at the nearest line (C)...................................... 374
Find integral values (C)... 374
Produces a text file of integral regions without a sum region (M). 375
Produces a text file with normalized integral regions (M)............. 375
Produces a text file with normalized integral regions (M)............. 375
Find line frequencies and intensities (C).................................... 375
Select normalized intensity mode (C)....................................... 376
Select Automatic 2D normalization (M).................................... 376
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
Create additional parameters used by oversampling (M).............. 404
Parameter step size values (P).. 404
Version of parameter set (P)... 404
Path to currently displayed 2D planes from a 3D data set (P)...... 405
Plot horizontal LC axis (M)... 405
Pulse shaping software (U)... 406
Define excitation band (M)... 407
Define excitation band for solvent suppression (notch) pulses (M)407
Extract dfm value from pbox.cal or Pbox shape file (M)............. 407
Extract dres value from pbox.cal or Pbox shape file (M)............. 408
Extract name of last shape generated by Pbox from pbox.cal (M).408
Extract pulse length from pbox.cal or Pbox shape file (M)........... 408
Extract power level from Pbox.cal or Pbox shape file (M)............ 408
Extract fine power level from pbox.cal or Pbox shape file (M).... 409
Extract Pbox calibration data (M)... 409
Add parameter definition to the Pbox.inp file (M)...................... 410
Reset temporary Pbox variables (M).. 410
Converts to Pbox default units (M).. 410
Plot contours on a plotter (C).. 410
Calculate and show proton chemical shifts spectrum (M).......... 411
Find tallest peak in specified region (C)................................ 411
Return information about maximum in 2D data (C)................... 412
Select a pen or color for drawing (C)..................................... 412
Plot exponential or polynomial curves (C)............................. 413
Add another diffusion analysis to current plot (M)................... 413
Pulsed field gradient amplifiers on/off control (P)................... 413
Plot FIDs in whitewash mode (C).. 414
Convert parameter set to PGE pulse sequence (M).................... 414
Calibrate gradient strengths for PGE pulse sequence (M)........... 414
Extract data from single element of PGE pulse sequence (M)...... 415
Output results from PGE pulse sequence (M).......................... 415
Automated processing of data from PGE pulse sequence (M)....... 415
Calculate diffusion constant for integral region (M)................ 415
Set up gradient control parameters for PGE pulse sequence (M).... 416
Set phased mode in directly detected dimension (C)................ 416
Set phased mode in 1st indirectly detected dimension (C)........... 417
Set phased mode in 2nd indirectly detected dimension (C).......... 417
Change frequency-independent phase rp (M)............................ 418
Phase selection (P)... 418
Phase of first pulse (P)... 418
Phase selection for 3D acquisition (P).................................... 418
Phase selection for 4D acquisition (P).................................... 419
Control update region during interactive phasing (P)................ 419
Zero-order phasing constant for the np FID (P)......................... 419
Zero-order phasing constant for ni2 interferogram (P).............. 420
Zero-order phasing constant for ni2 interferogram (P).............. 420
Set up parameters for 31P experiment (M)......................... 420
Set up pi/3 shifted sinebell-squared window function (M)......... 420
Set up pi/4 shifted sinebell-squared window function (M)......... 421
Pneumatics Router Interlock ((P).. 421
Plots of integral regions (M).. 422
Plot integral amplitudes below spectrum (C).......................... 422
Plot normalized integral amplitudes below spectrum (M)........... 422
Plot integral values below spectrum (M)................................. 422
Plot normalized integral values below spectrum (M)................ 422
Plot spectra (C).. 423
Plot 2D spectra in whitewash mode (C)................................. 424
Currently displayed 3D plane type (P).................................. 424
Plot APT-type spectra automatically (M)............................... 425
Plotting macro for arrayed 1D spectra (M)............................. 425
Define a glue order for plotting and display (U)..................... 426
Plot a carbon spectrum (M)... 426
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>plcossy</td>
<td>Plot COSY- and NOESY-type spectra automatically (M) 426</td>
</tr>
<tr>
<td>plddept</td>
<td>Plot DEPT data, edited or unedited (M) .. 427</td>
</tr>
<tr>
<td>plfid</td>
<td>Plot FIDs (C) .. 427</td>
</tr>
<tr>
<td>plfit</td>
<td>Plot deconvolution analysis (M) .. 428</td>
</tr>
<tr>
<td>plgrid</td>
<td>Plot a grid on a 2D plot (M) .. 428</td>
</tr>
<tr>
<td>plh</td>
<td>Plot proton spectrum (M) ... 428</td>
</tr>
<tr>
<td>plhet2dj</td>
<td>Plot heteronuclear J-resolved 2D spectra automatically (M) 429</td>
</tr>
<tr>
<td>plhom2dj</td>
<td>Plot homonuclear J-resolved 2D spectra automatically (M) 429</td>
</tr>
<tr>
<td>plhxcor</td>
<td>Plot X,H-correlation 2D spectrum (M) .. 430</td>
</tr>
<tr>
<td>pl1</td>
<td>Plot a line list (M) ... 431</td>
</tr>
<tr>
<td>pl12d</td>
<td>Plot results of 2D peak picking (C) ... 431</td>
</tr>
<tr>
<td>plockport</td>
<td>Port number to use to lock out multiple ProTune processes (P) 431</td>
</tr>
<tr>
<td>plot</td>
<td>Automatically plot spectra (M) .. 432</td>
</tr>
<tr>
<td>plot1d</td>
<td>Plotting macro for simple (non-arrayed) 1D spectra (M) 432</td>
</tr>
<tr>
<td>plot2D</td>
<td>Plot 2D spectra (M) ... 433</td>
</tr>
<tr>
<td>plotfile</td>
<td>Plot to a file (M) .. 433</td>
</tr>
<tr>
<td>plotahi</td>
<td>High resolution plot output preparation (M) 434</td>
</tr>
<tr>
<td>plotman</td>
<td>Plot manually (M) ... 434</td>
</tr>
<tr>
<td>plotlogo</td>
<td>Plots a logo (M) .. 434</td>
</tr>
<tr>
<td>plotpreview</td>
<td>Creates temporary plots of the current plot output (M) 434</td>
</tr>
<tr>
<td>plotside</td>
<td>Plot spectrum on side (M) .. 434</td>
</tr>
<tr>
<td>plotter</td>
<td>Plotter device (P) ... 434</td>
</tr>
<tr>
<td>plottop</td>
<td>Plot spectrum on top (M) .. 434</td>
</tr>
<tr>
<td>plottopside</td>
<td>Plot spectrum on top and side (M) .. 435</td>
</tr>
<tr>
<td>plp</td>
<td>Plot phosphorus spectrum (M) ... 435</td>
</tr>
<tr>
<td>plplanes</td>
<td>Plot a series of 3D planes (M) .. 435</td>
</tr>
<tr>
<td>plt2darg</td>
<td>Plot 2D arguments (P) ... 436</td>
</tr>
<tr>
<td>plttext</td>
<td>Plot text file (M) ... 436</td>
</tr>
<tr>
<td>plmod</td>
<td>Plotter display mode (P) .. 436</td>
</tr>
<tr>
<td>plvast</td>
<td>Plot VAST data in a stacked 1D-NMR matrix format (M) 437</td>
</tr>
<tr>
<td>plvast2d</td>
<td>Plot VAST data in a stacked pseudo-2D format (M)............................. 437</td>
</tr>
<tr>
<td>plww</td>
<td>Plot spectra in whitewash mode (C) .. 438</td>
</tr>
<tr>
<td>pmode</td>
<td>Processing mode for 2D data (P) .. 438</td>
</tr>
<tr>
<td>poly0</td>
<td>Display mean of the data in regression.inp file (M) 439</td>
</tr>
<tr>
<td>pp</td>
<td>Decoupler pulse length (P) .. 439</td>
</tr>
<tr>
<td>ppa</td>
<td>Plot a parameter list in plain English (M) .. 440</td>
</tr>
<tr>
<td>ppca1</td>
<td>Proton decoupler pulse calibration (M) ... 440</td>
</tr>
<tr>
<td>ppf</td>
<td>Plot peak frequencies over spectrum (C) ... 440</td>
</tr>
<tr>
<td>pph</td>
<td>Print pulse header (M) ... 441</td>
</tr>
<tr>
<td>ppmu</td>
<td>Resolution on printers and plotters (P) ... 441</td>
</tr>
<tr>
<td>pprofile</td>
<td>Plot pulse excitation profile (M) ... 441</td>
</tr>
<tr>
<td>pps</td>
<td>Plot pulse sequence (C) .. 442</td>
</tr>
<tr>
<td>prealpha</td>
<td>Specify a delay for longer ring down (P) .. 442</td>
</tr>
<tr>
<td>prep</td>
<td>Run prepare acquisition macro (M) ... 442</td>
</tr>
<tr>
<td>Presat</td>
<td>Set up parameters for presat 1H experiment (M) 443</td>
</tr>
<tr>
<td>prevpl</td>
<td>Display the previous 3D plane (M) .. 443</td>
</tr>
<tr>
<td>prescan</td>
<td>Study queue prescan (P) .. 443</td>
</tr>
<tr>
<td>prescan_CoilTable</td>
<td>Read or update the CoilTable File (M) .. 443</td>
</tr>
<tr>
<td>prescan_tn</td>
<td>Return or update the tn string for a given atomic number (M) 443</td>
</tr>
<tr>
<td>printer</td>
<td>Printer device (P) ... 444</td>
</tr>
<tr>
<td>printfile</td>
<td>Path to the print-to-file image (P) ... 444</td>
</tr>
<tr>
<td>printformat</td>
<td>Format of saved-to-file image (P) .. 444</td>
</tr>
<tr>
<td>printlayout</td>
<td>Layout of printed image (P) .. 444</td>
</tr>
<tr>
<td>printoff</td>
<td>Stop sending text to printer and start print operation (C) 444</td>
</tr>
<tr>
<td>printon</td>
<td>Direct text output to printer (C) .. 444</td>
</tr>
<tr>
<td>printregion</td>
<td>Screen region to be printed (P) .. 445</td>
</tr>
<tr>
<td>printsise</td>
<td>Size of printed image (P) ... 445</td>
</tr>
<tr>
<td>printsend</td>
<td>Defines where image will print (P) ... 445</td>
</tr>
<tr>
<td>probe</td>
<td>Probe type (P) .. 445</td>
</tr>
<tr>
<td>probeConnect</td>
<td>Specify which nucleus can be acquired on each RF channel (P) 445</td>
</tr>
<tr>
<td>Probe_edit</td>
<td>Edit probe for specific nucleus (U) .. 446</td>
</tr>
<tr>
<td>probe_edit</td>
<td>Edit probe for specific nucleus (M) ... 446</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>probe_protection</td>
<td>Probe protection control (P)</td>
</tr>
<tr>
<td>proc</td>
<td>Type of processing on np FID (P)</td>
</tr>
<tr>
<td>proc1</td>
<td>Type of processing on ni interferogram (P)</td>
</tr>
<tr>
<td>proc1d</td>
<td>Processing macro for simple (non-arrayed) 1D spectra (M)</td>
</tr>
<tr>
<td>proc2</td>
<td>Type of processing on ni2 interferogram (P)</td>
</tr>
<tr>
<td>proc2d</td>
<td>Process 2D spectra (M)</td>
</tr>
<tr>
<td>procarray</td>
<td>Process arrayed 1D spectra (M)</td>
</tr>
<tr>
<td>process</td>
<td>Generic automatic processing (M)</td>
</tr>
<tr>
<td>proctune</td>
<td>Automatically process FIDs (M)</td>
</tr>
<tr>
<td>profile</td>
<td>Set up pulse sequence for gradient calibration (M)</td>
</tr>
<tr>
<td>proj</td>
<td>Project 2D data (C)</td>
</tr>
<tr>
<td>Proton</td>
<td>Set up parameters for 1H experiment (M)</td>
</tr>
<tr>
<td>protune</td>
<td>Macro to start ProTune (M)</td>
</tr>
<tr>
<td>protune</td>
<td>Shell script for start ProTune operation (U)</td>
</tr>
<tr>
<td>protunegui</td>
<td>Macro to start ProTune in graphical user interface (M)</td>
</tr>
<tr>
<td>prune</td>
<td>Prune extra parameters from current tree (C)</td>
</tr>
<tr>
<td>pscale</td>
<td>Plot scale below spectrum or FID (C)</td>
</tr>
<tr>
<td>psudo</td>
<td>Set default parameters for pseudo-echo weighting (M)</td>
</tr>
<tr>
<td>psg</td>
<td>Display pulse sequence generation errors (M)</td>
</tr>
<tr>
<td>psgen</td>
<td>Compile a user PSG object library (M,U)</td>
</tr>
<tr>
<td>psgset</td>
<td>Set up parameters for various pulse sequences (M)</td>
</tr>
<tr>
<td>psgupdateon</td>
<td>Enable update of acquisition parameters (C)</td>
</tr>
<tr>
<td>psgupdateoff</td>
<td>Prevent update of acquisition parameters (C)</td>
</tr>
<tr>
<td>pshape</td>
<td>Plot pulse shape or modulation pattern (M)</td>
</tr>
<tr>
<td>pshapef</td>
<td>The last created pulse shape (M)</td>
</tr>
<tr>
<td>pslabel</td>
<td>PostScript High Resolution plotting control (P)</td>
</tr>
<tr>
<td>pslw</td>
<td>Pulse sequence label (P)</td>
</tr>
<tr>
<td>pslow</td>
<td>Plot Script Line Width control (P)</td>
</tr>
<tr>
<td>pss1</td>
<td>Plot Arrayed Numbers (C)</td>
</tr>
<tr>
<td>ptext</td>
<td>Print out a text file (M)</td>
</tr>
<tr>
<td>ptspec3d</td>
<td>Region-selective 3D processing (P)</td>
</tr>
<tr>
<td>ptsval</td>
<td>PTS frequency synthesizer value (P)</td>
</tr>
<tr>
<td>pulseinfo</td>
<td>Shaped pulse information for calibration (M)</td>
</tr>
<tr>
<td>pulsetool</td>
<td>RF pulse shape analysis (U)</td>
</tr>
<tr>
<td>purge</td>
<td>Remove macro from memory (C)</td>
</tr>
<tr>
<td>puttxt</td>
<td>Put text file into a data file (C)</td>
</tr>
<tr>
<td>putwave</td>
<td>Write a wave into Pbox.inp file (M)</td>
</tr>
<tr>
<td>pw</td>
<td>Enter pulse width pw in degrees (C)</td>
</tr>
<tr>
<td>pw90</td>
<td>Pulse width (P)</td>
</tr>
<tr>
<td>pwr</td>
<td>90° pulse width (P)</td>
</tr>
<tr>
<td>pwr90</td>
<td>Display current working directory (C)</td>
</tr>
<tr>
<td>pwpat</td>
<td>Shape of refocusing pulse (P)</td>
</tr>
<tr>
<td>pwr</td>
<td>Set power mode in directly detected dimension (C)</td>
</tr>
<tr>
<td>pwr1</td>
<td>Set power mode in 1st indirectly detected dimension (C)</td>
</tr>
<tr>
<td>pwr2</td>
<td>Set power mode in 2nd indirectly detected dimension (C)</td>
</tr>
<tr>
<td>pwsadj</td>
<td>Adjust pulse interval time (M)</td>
</tr>
<tr>
<td>pwxcal</td>
<td>Decoupler pulse calibration (M)</td>
</tr>
<tr>
<td>pxbs</td>
<td>Bloch-Siegert shift correction during Pbox pulse generation (P)</td>
</tr>
<tr>
<td>pxrep</td>
<td>Flag to set the level of Pbox reports (P)</td>
</tr>
<tr>
<td>pxxsset</td>
<td>Assign Pbox calibration data to experimental parameters (M)</td>
</tr>
<tr>
<td>pxxshape</td>
<td>Generates a single-band shape file (M)</td>
</tr>
<tr>
<td>Pxxsim</td>
<td>Simulate Bloch profile for a shaped pulse (U)</td>
</tr>
<tr>
<td>Pxxspy</td>
<td>Create shape definition using Fourier coefficients (U)</td>
</tr>
<tr>
<td>Q</td>
<td>Longer dead time for longer ring down (P)</td>
</tr>
<tr>
<td>QKexp</td>
<td>Set up quick experiment (M)</td>
</tr>
<tr>
<td>qtune</td>
<td>Tune probe using swept-tune graphical tool (C)</td>
</tr>
<tr>
<td>?</td>
<td>Display the value of an individual parameter (C)</td>
</tr>
</tbody>
</table>
R

r(n) Recall display parameter set (M) .. 470
r(n) Recall some display parameters (C) 471
r1-r7 Real-value storage for macros (P) 471
ra Resume acquisition stopped with sa command (C) 471
rcvrwt Weighting for different receivers (P) 471
react Recover from error conditions during werr processing (M) 471
readallshims Read all shims from hardware (M) 472
readbrutape Read Bruker data files from 9-track tape (U) 473
readfile Read the contents of a text file into two parameters (C) 473
readhw Read current values of acquisition hardware (C) 474
readlk Read lock level (C) ... 476
readparam Read one of more parameters from a file (C) 476
readultra Read shim coil setting for Ultra nmr shim system (M) 477
real Create a real variable without a value (C) 477
recon all Reconstruct images from 2D MRI fid data (C) 477
record Record keyboard entries as a macro (M) 480
redor1 Set up parameters for REDOR1 pulse sequence (M) 480
redosy Restore 2D DOSY display from sub experiment (M) 480
reff1 Reference f1 Indirect Dimension from Observe Dimension (M) 480
reff2 Reference f2 Indirect Dimension from Observe Dimension (M) 481
reffrq Reference frequency of reference line (P) 482
reffrq1 Reference freq. of reference line in 1st indirect dimension (P) 482
reffrq2 Reference freq. of reference line in 2nd indirect dimension (P) 482
reffpos Position of reference frequency (P) 483
reffpos1 Position of reference frequency in 1st indirect dimension (P) 483
reffpos2 Position of reference frequency in 2nd indirect dimension (P) 483
refsourcel Center frequency in 1st indirect dimension (P) 483
refsourse2 Center frequency in 2nd indirect dimension (P) 484
region Divide spectrum into regions (C) 484
relayh Set up parameters for RELAYH pulse sequence (M) 485
rename Move and/or rename a file (C) 485
reqparcheck Flag which enables/disables required parameters (P) 485
reqparclear Clears the parameters in required parameter list (M) 485
reqparlist List of required parameters (P) 486
reqparset Test whether required parameters are set (M) 486
resetf3 Reset parameters after a partial 3D Fourier transform (M) 487
resetuplotter Reset plotter to system plotter (M) 488
resolv Set resolution enhancement parameters (M) 488
restore Reconstruct images from sub experiment (M) 488
renumber Calculate & store accurate nuctable for current system (M) 488
resumeadv Resume paused acquisition queue (C) 488
return Terminate execution of a macro (C) 489
rev System software revision level (P) 489
revdate System software preparation date (P) 489
revf3 Reverse FID block from sub experiment (M) 489
rfband RF band in use (P) ... 489
rfblk Reverse FID block (C) .. 489
rfchtype Independent control of rf channel selection (P) 490
rfchannel Type of rf channel (P) .. 491
rfdata Reverse FID data (C) ... 492
rf1 Reference peak position in directly detected dimension (P) 493
rf11 Reference peak position in 1st indirectly detected dimension (P) 493
rf12 Reference peak position in 2nd indirectly detected dimension (P) 493
rfp Reference peak frequency in directly detected dimension (P) 494
rfp1 Reference peak freq. in 1st indirectly detected dimension (P) 494
rfp2 Reference peak freq. in 2nd indirectly detected dimension (P) 494
rftrace Reverse FID trace (C) ... 494
rftrtype Type of rf generation (P) 495
rfwg RF waveform generator (P) 496
right Set display limits to right half of screen (C) 496
rights Determine an operator’s specified right (C) 496
rinput Input data for a regression analysis (M) 497
r1
r1l
r12
rm
rmdir
rmsAddData
Roesy
Roesy1d
rof1
rof2
rof3
rotate
rotorsync
rp
rp1
rp2
rt
rtcmx
rtp
rts
rttmp
rtv
rtx

S
s
s(n)
s2Pul
sa
sample
samplename
save
savefile
saveglobal
sb
sb1
sb2
sb3
sb1
sb3
sb2
sb2
sc
sc2
scalelimits
scalenw
scalenw
scalenw
scalenw
scalenw
scalenw
sd
sd2
sd3
sda
sd2a
sd3a
sd
selld
select
selex
selexcit
selexHT
send2vnmr

Save display parameters as a set (M).. 509
Save display parameters (C).. 509
Set up parameters for standard two-pulse sequence (M)............. 510
Stop acquisition (C) ... 510
Submit change sample, Autoshim experiment to acquisition (M)... 510
Sample name (P).. 511
Save data (M)... 511
Base file name for saving files (P).. 511
Save selected parameters from global tree (P)........................... 511
Sinbell constant in directly detected dimension (P)................... 512
Sinbell constant in 1st indirectly detected dimension (P)........... 512
Sinbell constant in 2nd indirectly detected dimension (P)......... 512
Sinbell shift in directly detected dimension (P)....................... 513
Sinbell shift in 1st indirectly detected dimension (P).............. 513
Sinbell shift in 2nd indirectly detected dimension (P)............. 513
Start of chart (P).. 513
Start of chart in second direction (P).................................... 514
Set limits for scales in regression (M)................................. 514
Set scaling factor for multipulse experiments (M)................... 514
Scale spectral width in directly detected dimension (P)........... 514
Set f1 scaling factor for 2D multipulse experiments (M)........... 515
Scale spectral width in 1st indirectly detected dimension (P).... 515
Scale spectral width in 2nd indirectly detected dimension (P).... 515
Set first decoupler frequency to cursor position (M)............... 515
Set second decoupler frequency to cursor position (M)............ 516
Set third decoupler frequency to cursor position (M).............. 516
Set first decoupler frequency array (M)............................... 516
Set second decoupler frequency array (M)............................. 516
Set third decoupler frequency array (M)................................. 517
Show diffusion projection (M).. 517
Apptype macro for Selective 1D experiments (M)..................... 517
Select spectrum, FID, trace, or 2D plane without display (C)..... 517
Defines excitation band (M)... 518
Set up PFG selective excitation pulse sequence (M)............... 518
Set up a selective Hadamard experiment (M)......................... 519
Send a command to VnmrJ (U)... 519
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>segf2l</td>
<td>Pulse sequence name (P)</td>
</tr>
<tr>
<td>seggen</td>
<td>Initiate compilation of user’s pulse sequence (M,U)</td>
</tr>
<tr>
<td>serverport</td>
<td>Returns the VnmrJ network listening port value (C)</td>
</tr>
<tr>
<td>set2D</td>
<td>General setup for 2D experiments (M)</td>
</tr>
<tr>
<td>set2d</td>
<td>General setup for 2D experiments (M)</td>
</tr>
<tr>
<td>set3dproc</td>
<td>Set 3D processing (C)</td>
</tr>
<tr>
<td>setallshims</td>
<td>Set all shims into hardware (M)</td>
</tr>
<tr>
<td>setcolor</td>
<td>Set colors for graphics window and for plotters (C)</td>
</tr>
<tr>
<td>setdecpars</td>
<td>Set decoupler parameter values from probe file (M)</td>
</tr>
<tr>
<td>setdec2pars</td>
<td>Set decoupler 2 parameter values from probe file (M)</td>
</tr>
<tr>
<td>setdgroup</td>
<td>Set the Dgroup of a parameter in a tree (C)</td>
</tr>
<tr>
<td>setenumberal</td>
<td>Set values of a string parameter in a tree (C)</td>
</tr>
<tr>
<td>setether</td>
<td>Connect or reconnect host computer to Ethernet (U)</td>
</tr>
<tr>
<td>setexport</td>
<td>Set parameter bits for use with protocols (M)</td>
</tr>
<tr>
<td>setf2r</td>
<td>Set frequency of rf channels (C)</td>
</tr>
<tr>
<td>setgauss</td>
<td>Set a Gaussian fraction for lineshape (M)</td>
</tr>
<tr>
<td>setgcal</td>
<td>Set the gradient calibration constant (M)</td>
</tr>
<tr>
<td>setgcoil</td>
<td>Assign sysgcoil configuration parameter (M)</td>
</tr>
<tr>
<td>setgrid</td>
<td>Divide graphics window into rows and columns (C)</td>
</tr>
<tr>
<td>setgroup</td>
<td>Set group of a parameter in a tree (C)</td>
</tr>
<tr>
<td>sethtf2r1</td>
<td>Set a Hadamard frequency list from a line list (M)</td>
</tr>
<tr>
<td>sethw</td>
<td>Set values for hardware in acquisition system (C)</td>
</tr>
<tr>
<td>setint</td>
<td>Set value of an integral (M)</td>
</tr>
<tr>
<td>setlimit</td>
<td>Set limits of a parameter in a tree (C)</td>
</tr>
<tr>
<td>set1k</td>
<td>Set up lock parameters (M)</td>
</tr>
<tr>
<td>setlockfreq</td>
<td>Set lock frequency (M)</td>
</tr>
<tr>
<td>setLP</td>
<td>Set up linear prediction in the direct dimension (M)</td>
</tr>
<tr>
<td>setLP1</td>
<td>Set F1 linear prediction parameters (M)</td>
</tr>
<tr>
<td>setlp0</td>
<td>Set parameters for zero linear phase (M)</td>
</tr>
<tr>
<td>setnoether</td>
<td>Disconnect host computer from Ethernet (U)</td>
</tr>
<tr>
<td>setoffset</td>
<td>Calculate offset frequency for given nucleus and ppm (M)</td>
</tr>
<tr>
<td>setparams</td>
<td>Write parameter to current probe file (M)</td>
</tr>
<tr>
<td>setpen</td>
<td>Set maximum number of HP plotter pens (M)</td>
</tr>
<tr>
<td>setplotdev</td>
<td>Return characteristics of a named plotter (C)</td>
</tr>
<tr>
<td>setpower</td>
<td>Set power and pulsewidth for a given γB1 value (M)</td>
</tr>
<tr>
<td>setprotect</td>
<td>Set protection mode of a parameter (C)</td>
</tr>
<tr>
<td>setrc</td>
<td>Set receiver constants (M)</td>
</tr>
<tr>
<td>setref</td>
<td>Set frequency referencing (M)</td>
</tr>
<tr>
<td>setref1</td>
<td>Set freq. referencing for 1st indirectly detected dimension (M)</td>
</tr>
<tr>
<td>setref2</td>
<td>Set freq. referencing for 2nd indirect detected dimension (M)</td>
</tr>
<tr>
<td>setscout</td>
<td>Set up a scout run (M)</td>
</tr>
<tr>
<td>setssf2r</td>
<td>Set ss2frq to the frequencies of each suppressed solvents (M)</td>
</tr>
<tr>
<td>setsw</td>
<td>Set spectral width (M)</td>
</tr>
<tr>
<td>setsw1</td>
<td>Set spectral width in evolution dimension (M)</td>
</tr>
<tr>
<td>setsw2</td>
<td>Set spectral width in 2nd evolution dimension (M)</td>
</tr>
<tr>
<td>setselffrqc</td>
<td>Set selective frequency and width (M)</td>
</tr>
<tr>
<td>setselfinv</td>
<td>Set up selective inversion (M)</td>
</tr>
<tr>
<td>seetcc1default</td>
<td>Opens the Auto Tune Setup dialog (M)</td>
</tr>
<tr>
<td>settype</td>
<td>Change type of a parameter (C)</td>
</tr>
<tr>
<td>setup</td>
<td>Set up parameters for basic experiments (M)</td>
</tr>
<tr>
<td>setup_dosy</td>
<td>Set up gradient levels for DOSY experiments (M)</td>
</tr>
<tr>
<td>setvalue</td>
<td>Set value of any parameter in a tree (C)</td>
</tr>
<tr>
<td>setwave</td>
<td>Write a wave definition string into Pbox.inp file (M)</td>
</tr>
<tr>
<td>setwin</td>
<td>Activate selected window (C)</td>
</tr>
<tr>
<td>sf</td>
<td>Start of FID (P)</td>
</tr>
<tr>
<td>sf1</td>
<td>Start of interferogram in 1st indirectly detected dimension (P)</td>
</tr>
<tr>
<td>sf2</td>
<td>Start of interferogram in 2nd indirectly detected dimension (P)</td>
</tr>
<tr>
<td>sf2pul</td>
<td>Start of interferogram in 2nd indirectly detected dimension (P)</td>
</tr>
<tr>
<td>sh2pul</td>
<td>Start of interferogram in 1st indirectly detected dimension (P)</td>
</tr>
<tr>
<td>shdec</td>
<td>Set up for shaped observe excitation sequence (M)</td>
</tr>
<tr>
<td>shell</td>
<td>Start a UNIX shell (C)</td>
</tr>
</tbody>
</table>
shell
 Start an interactive UNIX shell (C) .. 544
shim
 Submit an Autoshim experiment to acquisition (C) 544
shimset
 Type of shim set (P) .. 545
showconfig
 Show system configuration settings (M) 546
showconsole
 Show system configuration settings (U) 546
showfit
 Display numerical results of deconvolution (M) 547
showloginbox
 Shows operator login dialog (M) ... 547
shownumx
 Show x position of number (P) .. 547
shownumy
 Show y position of number (P) .. 547
showoriginal
 Restore first 2D spectrum in 3D DOSY experiment (M) 547
showplotter
 Show list of currently defined plotters and printers (M) 547
showplotq
 Display plot jobs in plot queue (M) .. 547
showprintq
 Display print jobs in print queue (M) 547
showprotunegui
 show the graphical interface while tuning (P) 548
showrfmon
 Show RF Monitor Button in Hardware Bar (P) 548
showstat
 Display information about status of acquisition (M,U) 548
sin
 Find sine value of an angle (C) .. 548
sine
 Find values for a sine window function (M) 549
sinebell
 Select default parameters for sinebell weighting (M) 549
sinesq
 Find values for a sine-squared window function (M) 549
size
 Returns the number of elements in an arrayed parameter (O) 550
slfreq
 Measured line frequencies (P) .. 550
slw
 Spin simulation linewidth (P) ... 550
smaxf
 Maximum frequency of any transition (P) 551
sminf
 Minimum frequency of any transition (P) 551
smsport
 Sample Management System serial port connection (P) 551
sn
 Signal-to-noise ratio (P) ... 551
solppm
 Return ppm and peak width of solvent resonances (M) 552
solvent
 Lock solvent (P) ... 552
solvinfo
 Retrieve information from solvent table (C) 552
sort
 Sort real values of a parameter (M) 553
sp
 Start of plot in directly detected dimension (P) 553
sp1
 Start of plot in 1st indirectly detected dimension (P) 553
sp2
 Start of plot in 2nd indirectly detected dimension (P) 553
spadd
 Add current spectrum to add/subtract experiment (C) 554
spcfrq
 Display frequencies of rf channels (M) 554
specdc3d
 3D spectral drift correction (P) ... 555
spin
 Submit a spin setup experiment to acquisition (C) 555
spin
 Sample spin rate (P) ... 555
spinccad
 Run SpinCAD program (C) .. 556
spingen
 Compile SpinCAD pulse sequence (M,U) 556
spinll
 Set up a slfreq array (M) .. 557
spinner
 Open the Spinner Control window (C) 557
spinopt
 Spin automation (P) ... 558
spins
 Perform spin simulation calculation (C) 558
split
 Split difference between two cursors (M) 560
spintype
 Spinner Type ((P) .. 560
spmmax
 Take the maximum of two spectra (C) 560
spmin
 Take minimum of two spectra in add/subtract experiment (C) 560
spsm
 Enter spin system (M) .. 561
spsub
 Subtract current spectrum from add/subtract experiment (C) 561
sqccosine
 Set up unshifted cosine-squared window function (M) 562
sqdir
 Study queue directory (P) .. 562
sqend
 End a study queue (M) .. 562
sqexp
 Load experiment from protocol (M) .. 562
sqfilemenu
 Study queue file menu commands (M) 563
sqmode
 Study queue mode (P) ... 563
sqpars
 Create study queue parameters for imaging (M) 564
sqprotocol
 Macro to create protocols (M) .. 564
sqreset
 Reset study queue parameters for imaging (M) 564
sqr
 Return square root of a real number (O) 564
sgsavestudy
sgsinebell
srate
sread
srof2
ss
ssecho
ssecho1
ssfilter
sslsfrq
ssntaps
ssorder
stack
stackmode
stackmode
startq
status
std1d
stdshm
sth
string
strtext
strtext1
strtext2
strtlp
strtlp1
strtlp2
studyid
studypar
studystatus
studystatus
studytime
sub
substr
suselfrq
svdat
svf
svfdf
svmdir
Svfname
svfname
svp
svs
svs
svtmp
sw
t1
t1s
t2
t2s	T_1 exponential analysis (M)...............................584
	T_1 exponential analysis with short output table (M)........584
	T_2 exponential analysis (M)....................................585
	T_2 exponential analysis with short output table (M).........585
t1s

VnmrJ system directory (P) ..582
System gradient coil (P)..582
Spectral width in 3rd indirectly detected dimension (P).................581
Spectral width in 2nd indirectly detected dimension (P)................581
Spectral width in 1st indirectly detected dimension (P)581
Spectral width in directly detected dimension (P)580
Spin simulation vertical scale (P) ...580
Save shim coil settings (C) ...579
Save parameters from current experiment (M)...............................579
Save data (C)...575
Save FIDs in current experiment (M)..576
Save FID data in FDF format (M)..576
Directory for non-study data (P)..577
Create path for data storage (C)..577
Filename parameter template for non-study data ((P)579
Save parameters from current experiment (M)...............................579
Save shim coil settings (C) ...579
Spin simulation vertical scale (P) ...580
Move experiment data into experiment subfile (M)..........................580
Spectral width in directly detected dimension (P).........................580
Spectral width in 1st indirectly detected dimension (P)..................581
Spectral width in 2nd indirectly detected dimension (P)..................581
Spectral width in 3rd indirectly detected dimension (P)..................581
System gradient coil (P)...582
System type (P)..582
VnmrJ system directory (P) ..582
Start a chained study queue (M)...568
Display status of sample changer (C,U) ...568
Apptype macro for Standard 1D experiments (M).........................569
Interactively create a method string for autoshimming (M).............569
Minimum intensity threshold (P)..570
Create a string variable (C)..570
Starting point for LP data extension in np dimension (P)...............570
Starting point for LP data extension in ni dimension (P)...............570
Starting point for LP data extension in n2 dimension (P)..............571
Starting point for LP calculation in np dimension (P)....................571
Starting point for LP calculation in ni dimension (P)....................571
Starting point for LP calculation in n2 dimension (P)....................571
Study identification (P)..572
Study parameters (P)..572
Study status (P)...572
Study time (P)..572
Submit a setup experiment to acquisition (M)...............................573
Subtract current FID from add/subtract experiment (C)................573
Select a substring from a string (C)..574
Select peak, continue selective excitation experiment (M)............575
Save data (C)..575
Save FIDs in current experiment (M)..576
Save FID data in FDF format (M)..576
Directory for non-study data (P)..577
Create path for data storage (C)..577
Filename parameter template for non-study data ((P)579
Save parameters from current experiment (M)...............................579
Save shim coil settings (C) ...579
Spin simulation vertical scale (P) ...580
Move experiment data into experiment subfile (M)..........................580
Spectral width in directly detected dimension (P).........................580
Spectral width in 1st indirectly detected dimension (P)..................581
Spectral width in 2nd indirectly detected dimension (P)..................581
Spectral width in 3rd indirectly detected dimension (P)..................581
System gradient coil (P)...582
System type (P)..582
VnmrJ system directory (P) ..582
T

T_1 exponential analysis (M)...584
T_1 exponential analysis with short output table (M).....................584
target_bval
 Adjust \texttt{gdiff} to achieve target b-value (M) .. 587
 RF channel number used for tuning (P) .. 588
 Send Tcl script to Tcl version of dg window (C) 588
 Sample temperature (P) ... 589
 Temperature calculation (C) .. 589
 Measure approximate sample temperature in Cold Probes (M) 589
 Test acquire mode (P) .. 589
 Check ct for resuming signal-to-noise testing (M) 590
 Test signal-to-noise of a spectrum (M) .. 590
 Find which array matches a string (M) ... 590
 Display text or set new text for current experiment (C) 591
 Return the current text display status (C) .. 592
 Edit text file of current experiment (M) .. 592
 Threshold (P) .. 592
 Threshold for integrating peaks in 2D spectra (P) 592
 Adjust threshold for peak printout (M) ... 593
 Display experiment time or recalculate number of transients (M) 593
 Temperature interlock (P) .. 594
 First-order baseline correction (P) ... 594
 Left-shift FID to time-domain cursor (M) .. 594
 Reference 1D proton or carbon spectrum to TMS (M) 594
 Nucleus for observe transmitter (P) ... 595
 Set up parameters for TNCOSYPS pulse sequence (M) 595
 Set up parameters for TNDCOSY pulse sequence (M) 595
 Set up parameters for TNNQOCOSY pulse sequence (M) 595
 Set up parameters for TNOESY pulse sequence (M) 595
 Set up parameters for TRNOESY pulse sequence (M) 596
 Set up parameters for TTNCOCT pulse sequence (M) 596
 Convert the parameters to a TOCSY experiment (M) 596
 Convert the parameter set to a TOCSy1d experiment (M) 596
 Set up the TOCSYHT experiment (M) .. 596
 Frequency offset for observe transmitter (P) 596
 Observe transmitter power level with linear amplifiers (P) 597
 Observe transmitter fine power (P) ... 597
 Observe transmitter linear modulator power (P) 598
 Mode for \(n\)-dimensional data display (P) .. 598
 Sample changer tray slots (P) .. 598
 Set up parameters for TROESY pulse sequence (M) 598
 Truncate real numbers (O) .. 598
 Adjust tau2 to current cursor position (M) 599
 Receiver gain used in tuning (P) .. 599
 Assign a frequency to a channel for probe tuning (C) 599
 Tune both H1 and F19 on an HFX probe (M) 600
 Default match target, in percent of optimum (P) 600
 Method to use for tuning (P) .. 601
 Turn off probe tuning mode on MERCURYplus/Vx (M) 601
 Message indicating how well the tuning succeeded (P) 601
 Width of the tuning sweep in Hz (P) ... 601
 Transmitter power used in tuning (P) .. 602
 Return identifier for argument type (O) .. 602
 Selects the Ultra 8 shim configuration (M) 603
 Select 18 shim configuration for Ultra 18 shim power supply (M) 603
 Restore spin system as before last iterative run (M) 603
 Restore original 1D NMR data from sub experiment (M) 604
 Define conversion units (C) .. 604
 Remove inactive lock and join experiment (C) 605
 Update all parameter sets saved in a directory (M) 605
 Update probe file (M) ... 606
V

- **vast1d**: Set up initial parameters for VAST experiments (M).................610
- **vastget**: Selects and displays VAST spectra (M).................................610
- **vastglue**: Assemble 1D datasets into a 2D (or pseudo-2D) datasets (M)....610
- **vastglue2**: Assemble 1D datasets into a 2D (or pseudo-2D) datasets (M)....610
- **vastgo**: Turn off LC stop flow automation, start VAST automation (M)....611
- **vbg**: Run VNMR processing in background (U)..................................611
- **vf**: Vertical scale of FID (P)..612
- **vi**: Edit text file with vi text editor (M)...612
- **vibradd**: Display relative amplitudes of Cold Probe vibrations (M).........614
- **vjhelp**: Start VNMR directly (U)...614
- **vn**: Starts VnmrJ (U)...615
- **vnmr**: VNMR to SpinCAD pulse sequence translator (M)...................615
- **vnmr2sc**: Open Accounting window (U)...616
- **vnmr2scacct**: Commands to invoke the GUI popup (C)........................616
- **vnmrj**: Exit from the VNMR system (C)..617
- **vnmrjdialog**: Start VnmrJ (U)...617
- **vnmrjplot**: Plot files (U)..617
- **vnmrjprint**: Print text files (U)...617
- **vo**: Vertical offset (P)..618
- **vp**: Vertical position of spectrum (P)..618
- **vpaction**: Set initial state for multiple viewports (M)..........................618
- **vpf**: Current vertical position of FID (P)...618
- **vpfii**: Current vertical position of imaginary FID (P).............................619
- **vpset3def**: Set the viewport state to three default viewports (M)........619
- **vpsetup**: Set new viewports (M)...619
- **vs**: Vertical scale (P)...619
- **vs2d**: Vertical scale for 2D displays (P)..620
- **vsadj**: Automatic vertical scale adjustment (M).................................620
- **vsadj2**: Automatic vertical scale adjustment by powers of 2 (M)...........620
- **vsadjc**: Automatic vertical scale adjustment for 13C spectra (M)........621
- **vsadjh**: Automatic vertical scale adjustment for 1H spectra (M)..........621
- **vsproj**: Vertical scale for projections and traces (P).............................622
- **vtairflow**: Variable Temperature Air Flow (P)..................................622
- **vtairlimits**: Variable Temperature Air Flow Limits (P).......................622
- **vtc**: Variable temperature cutoff point (P).......................................623
- **vtcomplvl**: Variable temperature compensation for gradient shimming (P)....623
- **vtwait**: Variable temperature wait time (P)....................................624
- **vxr_unix**: Convert VXR-style text files to UNIX format (M, U)............624

W

- **w**: Who is using system (C)...626
- **walkup**: Walkup automation (M)...626
- **waltz**: WALTZ decoupling present (P)..626
- **wbs**: Specify action when bs transients accumulate (C).....................627
- **wbs**: When block size (P)...627
- **wc**: Width of chart (P)...627
- **wc2**: Width of chart in second direction (P)....................................627
- **wcmax**: Maximum width of chart (P)..628
- **wc2max**: Maximum width of chart in second direction (P)................628
- **wdone**: Specify action when experiment is done (C)..........................628
Load time counter (M) .. 649
Threshold for excluding diagonal peaks when peak picking (P) ... 649
X4 shim gradient (P) .. 648
X3 shim gradient (P) .. 648
X4 shim gradient (P) .. 648
Threshold for excluding diagonal peaks when peak picking (P) ... 649
Load time counter (M) .. 649
xml

Utility macro for study queue experiment manager (M) 649

xmaction

Perform study queue action (M) ... 649

xmactionw

Perform study queue action for walkup (M) 649

xmadreq

Add a required protocol before the main protocol (M) 650

xmlcheckreq

Check required protocol name (M) 650

xmlconvert

Convert a temporarily stored study into a submitted study (M) ... 650

xmlcopy

Copy protocols in a study queue (M) 650

xmldelete

Delete nodes in a study queue (M) 650

xmlenablepanel

Enable or disable a parameter panel (M) 650

xmlendq

End a chained study queue (M) ... 650

xmlgetatts

Get study queue attributes (M) .. 651

xmHprescan

Set up and process Proton prescans (M) 651

xmlinit

Initialize an imaging study queue (M) 651

xmllockup

Move a study queue node up and lock it (M) 651

xmmakenode

Make a new study queue node (M) 651

xmlnext

Find next prescan or next experiment in study queue (M) 651

xmprescan

Run prescans in study queue (M) 652

xmrreact

Recover from error conditions during automation study (M) 652

xmlreadnode

Read attributes from a study queue node (M) 652

xmlrpar

Retrieve parameters from a study queue node (M) 652

xmsample

Write enterQ entry for a sample for study queue – liquids (M) ... 652

xmsara

Write enterQ entry for a sample for study queue – imaging (M) ... 653

xmsatfreq

Processing for Presat experiment (M) 653

xmsel

Action when study queue node is selected (M) 653

xmsetatts

Set an attribute for a study queue node (M) 653

xmsetattr

Set an attribute for a study queue node (M) 653

xmshowdata

Show data from a study queue node (M) 653

xmsstartnightq

Start the night queue (M) .. 654

xmsubmit

Submit sample(s) to the study queue (M) 654

xmltime

Update the study queue time (M) 654

xmtune

Check tune parameter during automation (M) 654

xmwerr

Recover from acquisition error in study queue (M) 655

xmwxp

Processing macro for end of acquisition in study queue (M) 655

xmwritenode

Write study queue node attributes (M) 655

xmwritesq

Write study queue node order (M) 655

xpol

Cross-polarization (P) ... 655

xpolr1

Set up parameters for XPOLAR1 pulse sequence (M) 655

xy

XY shim gradient (P) .. 656

xz

XZ shim gradient (P) .. 656

xz2

XZ2 shim gradient (P) .. 656

y

Y-zero position of HP pen plotter or Postscript device (P) 657

y0

Y1 shim gradient (P) .. 657

y1

Y3 shim gradient (P) .. 657

y3

Y4 shim gradient (P) .. 657

y4

YZ shim gradient (P) .. 657

yz

YZ shim gradient (P) .. 657

yz2

YZ2 shim gradient (P) .. 658

z

Add integral reset point at cursor position (C) 659

z0

Z0 field position (P) .. 660

z1

Z1 shim gradient (P) .. 660

z1c

Z1C shim gradient (P) ... 660

z2

Z2 shim gradient (P) .. 660

z2c

Z2C shim gradient (P) .. 661

z2x2y2

Z2X2Y2 shim gradient (P) .. 661

z2x3

Z2X3 shim gradient (P) .. 661

z2xy

Z2XY shim gradient (P) ... 661

z2y3

Z2Y3 shim gradient (P) .. 661

z3

Z3 shim gradient (P) .. 661
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>z3c</td>
<td>Z3C shim gradient (P)</td>
<td>661</td>
</tr>
<tr>
<td>z3x</td>
<td>Z3X shim gradient (P)</td>
<td>661</td>
</tr>
<tr>
<td>z3x2y2</td>
<td>Z3X2Y2 shim gradient (P)</td>
<td>662</td>
</tr>
<tr>
<td>z3x3</td>
<td>Z3X3 shim gradient (P)</td>
<td>662</td>
</tr>
<tr>
<td>z3xy</td>
<td>Z3XY shim gradient (P)</td>
<td>662</td>
</tr>
<tr>
<td>z3y</td>
<td>Z3Y shim gradient (P)</td>
<td>662</td>
</tr>
<tr>
<td>z3y3</td>
<td>Z3Y3 shim gradient (P)</td>
<td>662</td>
</tr>
<tr>
<td>z4</td>
<td>Z4 shim gradient (P)</td>
<td>662</td>
</tr>
<tr>
<td>z4c</td>
<td>Z4C shim gradient (P)</td>
<td>662</td>
</tr>
<tr>
<td>z4x</td>
<td>Z4X shim gradient (P)</td>
<td>662</td>
</tr>
<tr>
<td>z4x2y2</td>
<td>Z4X2Y2 shim gradient (P)</td>
<td>663</td>
</tr>
<tr>
<td>z4xy</td>
<td>Z4XY shim gradient (P)</td>
<td>663</td>
</tr>
<tr>
<td>z4y</td>
<td>Z4Y shim gradient (P)</td>
<td>663</td>
</tr>
<tr>
<td>z5</td>
<td>Z5 shim gradient (P)</td>
<td>663</td>
</tr>
<tr>
<td>z5x</td>
<td>Z5X shim gradient (P)</td>
<td>663</td>
</tr>
<tr>
<td>z5y</td>
<td>Z5Y shim gradient (P)</td>
<td>663</td>
</tr>
<tr>
<td>z6</td>
<td>Z6 shim gradient (P)</td>
<td>663</td>
</tr>
<tr>
<td>z7</td>
<td>Z7 shim gradient (P)</td>
<td>663</td>
</tr>
<tr>
<td>z8</td>
<td>Z8 shim gradient (P)</td>
<td>664</td>
</tr>
<tr>
<td>zeroneg</td>
<td>Set all negative intensities of 2D spectra to zero (C)</td>
<td>664</td>
</tr>
<tr>
<td>zoom</td>
<td>Adjust display to given width (M)</td>
<td>664</td>
</tr>
<tr>
<td>zx2y2</td>
<td>ZX2Y2 shim gradient (P)</td>
<td>664</td>
</tr>
<tr>
<td>zx3</td>
<td>ZX3 shim gradient (P)</td>
<td>664</td>
</tr>
<tr>
<td>zxy</td>
<td>ZXY shim gradient (P)</td>
<td>664</td>
</tr>
<tr>
<td>zy3</td>
<td>ZY3 shim gradient (P)</td>
<td>664</td>
</tr>
</tbody>
</table>

Index .. 667
Notational Conventions

The VnmrJ Command and Parameter Reference describes in detail the commands, macros, and parameters in VnmrJ software. Information new to VnmrJ in this version is shown by a change bar (as shown to the left of this paragraph).

Title Line Codes
Each entry has a letter in parentheses in the title line that identifies the type of entry:

(C) VnmrJ command
(M) VnmrJ macro command (from the maclib directory)
(O) MAGICAL programming operator
(P) VnmrJ parameter
(U) UNIX command (not executable within VnmrJ)
(C,U) (M,U) Executable from UNIX or VnmrJ (note that syntax is different)

Applicability
An entry with applicability information applies only to the system or accessory listed. If the entry does not include applicability information, the entry applies to all systems.

Command and Macro Syntax
Each command and macro entry includes the syntax used when entering it into the system. The following examples illustrate this syntax:

halt
If no parentheses are shown, enter the command or macro exactly as shown, e.g., enter halt.

delexp(exp_num)
If parentheses are shown, enter the command or macro name as shown, but replace arguments with a value, e.g., if exp_num is 5, enter delexp (5).

rttmp(file)
Arguments can be a string (e.g., name of file or solvent), number, variable, or parameter (e.g., pw). If a string, enclose it with single quote marks, e.g., if file is samp02, enter rttmp (‘samp02’).
If number, variable, or parameter, do not use marks.

rl<(frequency)>
Angle brackets (< and >) indicate optional input, e.g., if frequency not needed or the default value of frequency is acceptable, enter rl, but if frequency has a value such as 10, enter rl(10).
Parameter Syntax

Parameter syntax is always in the form parameter_name=value. If value is a string, enclose it in single quote marks; otherwise, no marks are used, e.g., auto='y', plotter='ThinkJet', spin=5. Note that some parameters are not user-enterable.

Notational Conventions

Throughout all Varian, Inc. NMR manuals, typewriter-like characters identify commands, parameters, directories, file names, and text displayed on the screen.

Because pressing the Return key is required at the end of almost every command or line of text you type on the keyboard, assume this use of the Return key unless stated otherwise.

Other Sources of Information

For further information about an entry, refer to the manual listed under “See also.” For general coverage on VnmrJ, refer to the following manuals (each manual is also online):

VnmrJ Walkup
NMR Spectroscopy User Guide
VnmrJ Installation and Administration
VnmrJ Imaging NMR
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aa</td>
<td>Abort acquisition with error (C)</td>
</tr>
<tr>
<td>abort</td>
<td>Terminate action of calling macro and all higher macros (C)</td>
</tr>
<tr>
<td>abortallacqs</td>
<td>Reset acquisition computer in a drastic situation (C)</td>
</tr>
<tr>
<td>abortoff</td>
<td>Terminate normal functioning of abort in a macro (C)</td>
</tr>
<tr>
<td>aborton</td>
<td>Restore normal functioning of abort in a macro (C)</td>
</tr>
<tr>
<td>abs</td>
<td>Find absolute value of a number (C)</td>
</tr>
<tr>
<td>AC1S-AC11S</td>
<td>Autocalibration macros (M)</td>
</tr>
<tr>
<td>ACbackup</td>
<td>Make backup copy of current probe file (M)</td>
</tr>
<tr>
<td>acct</td>
<td>Writes records for operator login and logoff (M)</td>
</tr>
<tr>
<td>ACreport</td>
<td>Print copy of probe file after autocalibration (M)</td>
</tr>
<tr>
<td>acos</td>
<td>Find arc cosine of number (C)</td>
</tr>
<tr>
<td>acosyold</td>
<td>Automatic analysis of COSY data, old algorithm (C)</td>
</tr>
<tr>
<td>acons</td>
<td>Automatic analysis of COSY data (C)</td>
</tr>
<tr>
<td>acqdisp</td>
<td>Display message on the acquisition status line (C)</td>
</tr>
<tr>
<td>acqi</td>
<td>Interactive acquisition display process (C)</td>
</tr>
<tr>
<td>acqmeter</td>
<td>Open Acqmeter window (M)</td>
</tr>
<tr>
<td>Acqmeter</td>
<td>Open Acqmeter window (U)</td>
</tr>
<tr>
<td>acqmode</td>
<td>Acquisition mode (P)</td>
</tr>
<tr>
<td>acqstat</td>
<td>Open Acquisition Status window (M)</td>
</tr>
<tr>
<td>Acqstat</td>
<td>Open Acquisition Status window (U)</td>
</tr>
<tr>
<td>acqstatus</td>
<td>Acquisition status (P)</td>
</tr>
<tr>
<td>acquire</td>
<td>Acquire data (M)</td>
</tr>
<tr>
<td>actionid</td>
<td>Current study queue node id (P)</td>
</tr>
<tr>
<td>activestudy</td>
<td>Active study name (P)</td>
</tr>
<tr>
<td>add</td>
<td>Add current FID to add/subtract experiment (C)</td>
</tr>
<tr>
<td>addi</td>
<td>Start interactive add/subtract mode (C)</td>
</tr>
<tr>
<td>addnucleus</td>
<td>Add new nucleus to existing probe file (M)</td>
</tr>
<tr>
<td>addpar</td>
<td>Add selected parameters to current experiment (M)</td>
</tr>
<tr>
<td>addparams</td>
<td>Add parameter to current probe file (M)</td>
</tr>
<tr>
<td>addprobe</td>
<td>Create new probe directory and probe file (M)</td>
</tr>
<tr>
<td>adept</td>
<td>Automatic DEPT analysis and spectrum editing (C)</td>
</tr>
<tr>
<td>aexppl</td>
<td>Automatic plot of spectral expansion (M)</td>
</tr>
<tr>
<td>ai</td>
<td>Select absolute-intensity mode (C)</td>
</tr>
<tr>
<td>aig</td>
<td>Absolute-intensity group (P)</td>
</tr>
<tr>
<td>alfa</td>
<td>Set alfa delay before acquisition (P)</td>
</tr>
<tr>
<td>alock</td>
<td>Automatic lock control (P)</td>
</tr>
<tr>
<td>ampmode</td>
<td>Independent control of amplifier mode (P)</td>
</tr>
<tr>
<td>amptype</td>
<td>Amplifier type (P)</td>
</tr>
<tr>
<td>analyz</td>
<td>Calculate standard peak height (M)</td>
</tr>
<tr>
<td>analyze</td>
<td>Generalized curve fitting (C)</td>
</tr>
<tr>
<td>ap</td>
<td>Print out “all” parameters (C)</td>
</tr>
<tr>
<td>ap</td>
<td>“All” parameters display control (P)</td>
</tr>
<tr>
<td>apa</td>
<td>Plot parameters automatically (M)</td>
</tr>
</tbody>
</table>
aph Automatic phase adjustment of spectra (C)
aph0 Automatic phase of zero-order term (C)
aphb Auto phasing for Bruker data (C)
aphx Perform optimized automatic phasing (M)
appdirs Starts Applications Directory Editor (M)
apmode Application mode (P)
apptype Application type (P)
Apt Set up parameters for APT experiment (M)
aptaph Automatic processing for APT spectra (M)
array Easy entry of linearly spaced array values (M)
array Parameter order and precedence (P)
arraydim Dimension of experiment (P)
asin Find arc sine of number (C)
asize Make plot resolution along f1 and f2 the same (M)
assign Assign transitions to experimental lines (M)
at Acquisition time (P)
atan Find arc tangent of a number (C)
atan2 Find arc tangent of two numbers (C)
atcmd Call a macro at a specified time (M)
atext Append string to current experiment text file (M)
atvval Calculate pulse width (M)
atune ProTune Present (P)
aSubmit experiment to acquisition and process data (M)
AuCALch3i Set up autocalibration with CH3I sample (M)
AuCALch3i1 Get autocalibration with CH3I sample (M)
AuCALch3oh Set up autocalibration with Autotest sample (M)
AuCALch3oh1 Get autocalibration with Autotest sample (M)
AuCalibZ0 Automatic Hz to DAC calibration for Z0 (M)
AuCddec Carbon decoupler calibration macro (M)
AuCgrad Carbon/proton gradient ratio calibration macro (M)
AuCobs Carbon observe calibration macro (M)
audiofilter Audio filter board type (P)
AufindZ0 Automatic adjustment of Z0 (M)
Augcal Probe gcal calibration macro (M)
Augmap Automated gradient map generation (M)
AugmapZ0 Automatic lock gradient map generation and z0 calibration (M)
AuHdec Proton decoupler calibration (M)
AuHobs Proton observe calibration macro (M)
Aumakegmap Auto lock gradient map generation (M)
AuNuc Get parameters for a given nucleus (M)
auto Prepare for an automation run (C)
auto Automation mode active (P)
auto_au Controlling macro for automation (M)
Autobackup Back up current probe file (M)
autodept Automated complete analysis of DEPT data (M)
autodir Automation directory absolute path (P)
autogo Start automation run (C)
Abort acquisition with error (C)

Syntax: aa

Description: Aborts an experiment that has been submitted to acquisition. If the experiment is active, it is aborted immediately, all data is discarded, and the experiment is interpreted as an error. Any data collected from an earlier block size transfer is retained. If any werr processing is defined, that processing occurs, followed by any queued experiments. The login name, and the FID directory path in file are used as keys to find the proper experiment to abort.

In some circumstances, there is a delay between the time go is entered and the acquisition is started. During this time, instructions based on the selected pulse sequence are being generated. This is signified by the letters “PSG” appearing in the upper left corner of the status window. An aa command issued under these circumstances reports that no acquisition is active but it instead stops the instruction generation process and the message "PSG aborted" appears.

See also: NMR Spectroscopy User Guide

Related: file File name of a parameter set (P)
 go Submit experiment to acquisition (C)
 halt Abort acquisition with no error (C)
 werr Specify action when error occurs (C)
 werr When error (P)

Terminate action of calling macro and all higher macros (C)

Syntax: abort

Description: Terminates the action of the calling macro and all higher levels of nested macros. abort is used only in macros and not entered from the keyboard. It generates an error condition, which is the reason why the calling macro and any
parent (nested) macros above will also be aborted. To exit from the execution of a macro without generating an error, use `return`.

See also: *VnmrJ User Programming*

Related: `abortoff` Terminate normal functioning of `abort` in a macro (C)

`aborton` Restore normal functioning of `abort` in a macro (C)

`return` Terminate execution of a macro (C)

`abortallacqs` *Reset acquisition computer in a drastic situation (C)*

Syntax:

`abortallacqs`

Description: Reboots the acquisition system from the host computer. Wait at least 30 seconds before attempting new acquisitions.

See also: *NMR Spectroscopy User Guide*

`abortoff` *Terminate normal functioning of abort in a macro (C)*

Syntax:

`abortoff`

Description: Changes the action of an `abort` command in a macro. Normally, `abort` (or any command aborting with an error condition) terminates the action of the calling macro and all higher levels of nested macros; however if the `abortoff` command is executed prior to a macro containing the `abort` command, only the macro containing `abort` terminates and execution continues to the next macro. The operation of the `abortoff` command is nullified by the `aborton` command. `abortoff` is used only in macros and not entered from the keyboard.

See also: *VnmrJ User Programming*

Related: `abort` Terminate action of calling macro and all higher macros (C)

`aborton` Restore normal functioning of `abort` in a macro (C)

`aborton` *Restore normal functioning of abort in a macro (C)*

Syntax:

`aborton`

Description: Nullifies the operation of a `abortoff` command and restores the normal functioning of the `abort` command. `aborton` is used only in macros and not entered from the keyboard.

See also: *VnmrJ User Programming*

Related: `abortoff` Terminate normal functioning of `abort` in a macro (C)

`abs` *Find absolute value of a number (C)*

Syntax:

`abs (number) <value>`

Description: Finds the absolute value of a number. Absolute value is a nonnegative number equal in numerical value to the given number (e.g., `abs (-6.5)` is 6.5).

Arguments:

- `number` is the given real number.
- `value` is the return value with the absolute value of the given number. The default is to display the value in the status window.

Examples:

`abs (-25)`

`abs (n) : abs_val`

See also: *VnmrJ User Programming*
AC1S-AC11S Autocalibration macros (M)

Syntax: ACnS, where n is a number from 1 to 11.

Description: Performs automatic system calibration. When finished with the calibration routines, the current probe file is updated. If the probe is new to the system (i.e., all values in the probe file are zero), system power levels are determined followed by calibration. If power levels are listed in the current probe file, these values are used. The macro AC1S determines 1H pw90, AC5S begins ^{13}C calibration, including decoupler power calibrations. AC10S performs ^{19}F calibration, and AC11S performs ^{31}P calibration.

See also: NMR Spectroscopy User Guide

ACbackup Make backup copy of current probe file (M)

Syntax: ACbackup

Description: Called by the autocalibration macros AC1S-AC11S to back up the probe file after calibration ends. This macro is not usually called by the user.

See also: NMR Spectroscopy User Guide

acct Writes records for operator login and logoff (M)

Applicability: VnmrJ

Syntax: acct('start'|'done')

Description: acct writes operator login and logoff records to the system ad\n/tmp/ macrorecords.txt file used by the accounting package.

See also: VnmrJ Installation and Administration manual

Related: operator name (P) operatorlogin Sets work space and parameters for the operator (M) vnmr_accounting Open Accounting window (U)

ACreport Print copy of probe file after autocalibration (M)

Syntax: ACreport

Description: Called by the autocalibration macros AC1S-AC11S to print a copy of the probe file before beginning a new autocalibration run.

See also: NMR Spectroscopy User Guide

Related: AC1S-AC11S Autocalibration macros (M)

acos Find arc cosine of number (C)

Syntax: acos(value)<:n>

Description: Finds the arc cosine (also called the inverse cosine) of a number.

Arguments: value is a number in the range of \pm1.0 to +1.0.

n is a return argument giving the arc cosine, in radians, of value. The default is to display the arc cosine value in the status window.

Examples: acos(.5)
acos(value):acos_val

See also: VnmrJ User Programming

Related: sin Find sine value of an angle (C)
acosy
Automatic analysis of COSY data (C)

Syntax: `acosy`

Description: Automatically analyzes a 2D COSY data set with `fn=fn1` and `sw=sw1`. In this algorithm, a fuzzy pattern recognition technique is used to detect peaks and cluster the cross peaks into groups. Symmetry measures and chemical shifts for all cross peaks are calculated. Connectivities and the correlation table are displayed on the computer screen. This method is less sensitive to the threshold and rejects most artifacts in the peak list.

See also: [NMR Spectroscopy User Guide](#)

Related:
- `acosyold`: Automatic analysis of COSY data (C)
- `fn`: Fourier number in 1st indirectly detected dimension (P)
- `fn1`: Fourier number in directly detected dimension (P)
- `ll2d`: Automatic and interactive 2D peak picking (C)
- `sw`: Spectral width in directly detected dimension (P)
- `sw1`: Spectral width in 1st indirectly detected dimension (P)

acosyold
Automatic analysis of COSY data, old algorithm (C)

Syntax: `acosyold`

Description: Analyzes COSY data using an old algorithm.

See also: [NMR Spectroscopy User Guide](#)

Related:
- `acosy`: Automatic analysis of COSY data (C)
- `fn`: Fourier number in 1st indirectly detected dimension (P)
- `fn1`: Fourier number in directly detected dimension (P)
- `ll2d`: Automatic and interactive 2D peak picking (C)
- `sw`: Spectral width in directly detected dimension (P)
- `sw1`: Spectral width in 1st indirectly detected dimension (P)

acqdisp
Display message on the acquisition status line (C)

Syntax: `acqdisp(message)`

Description: Displays the message specified on the acquisition status line. `acqdisp` is used primarily by the acquisition process to update the screen.

Arguments: `message` is a text string, up to 8 characters long.

See also: [NMR Spectroscopy User Guide](#)

acqi
Interactive acquisition display process (C)

Syntax: `acqi<('par'|'disconnect'|'exit'|'standby')><:$ret>`

Description: Opens the Acquisition window for interactive locking and shimming on the lock signal, FID, or spectrum. When using a spectrometer, `acqi` normally automatically starts. On all systems, if the console has been recently rebooted, enter `su` before running `acqi`.

If `acqi` is connected to the console and you start an acquisition (`su/go/au`), `acqi` automatically disconnects.

The pulse sequence and parameter set for the FID/spectrum display can be selected by entering `gf`. Note that if clicking the FID button in `acqi` causes `acqi` to “disconnect,” the common cause is that `gf` had not been executed.

The FID display is controlled by the parameters `lsfid`, `phfid`, and `dmgf`. These display parameters are automatically sent to `acqi` when `acqi` is first invoked. These parameters may subsequently be changed and sent again to
acqi with the command acqi('par'). If phfid is not set to “Not Used” for the FID display in acqi, a slide control will be available in acqi for the interactive adjustment of the phfid parameter. The slide will be in the IPA set of adjustments. If the parameter dmgf exists and is set to ‘av’, the FID display in acqi displays the square root of the sum of the squares of the real and imaginary channels.

The spectrum display is controlled by parameters sp, wp, dmg, rp, lp, rfl, rfp, vs, vp, sw, and fn. These parameters are automatically sent to acqi when acqi is first invoked. These parameters can subsequently be changed and sent again to acqi with the command acqi('par'). The preparation macro gf also calls acqi('par'), thereby causing these parameters to be sent to acqi. If fn is greater than 64K, it is lowered to 64K.

A convenient method of setting these parameters is to acquire a spectrum with go, then ft and adjust the display with the ds command options. Once the display is set the way you want, enter gf. The same display should then appear when the spectrum display is selected from acqi. Note that weighting parameters are not used in the acqi spectrum display.

Arguments: 'par' causes the current values of parameters lsfid, phfid, dmgf, sp, wp, dmg, rp, lp, rfl, rfp, vs, vp, sw, and fn to be sent to acqi.

'disconnect' causes acqi to be disconnected. Clicking the Close button in acqi is equivalent, and puts acqi in the standby mode. Lock parameters, the spin parameter, and the shim values are sent back to the current experiment when acqi is “disconnected.” If the experiment has the load parameter set to 'y', then the shim values are not delivered to the experiment.

'exit' causes an exit from acqi. Clicking the exit button in the Acquisition window is equivalent.

ret is a return value with the success or failure of running acqi. The default is a warning displayed in the status window if acqi fails.

'standby' starts acqi and puts it into the standby mode.

Examples:

```shell
acqi
acqi('par')
acqi('disconnect')
acqi('exit')
acqi:$ok
```

See also: *NMR Spectroscopy User Guide*

Related:

- **Acqstat** Bring up the acquisition status display (U)
- **dmg** Display mode in directly detected dimension (P)
- **dmgf** Absolute-value display of FID data or spectrum in acqi (P)
- **ds** Display a spectrum (C)
- **fn** Fourier number in directly detected dimension (P)
- **ft** Fourier transform 1D data (C)
- **gf** Prepare parameters for FID/spectrum display in acqi (M)
- **go** Submit an experiment to acquisition (C)
- **load** Load status of displayed shims (P)
- **lkof** Track changes in lock frequency (P)
- **lp** First-order phase in directly detected dimension (P)
- **lsfid** Number of complex points to left-shift the np FID (P)
- **phfid** Zero-order phasing constant for np FID (P)
- **rfl** Ref. peak position in 1st indirectly detected dimension (P)
- **rfp** Ref. peak frequency in directly detected dimension (P)
- **rp** Zero-order phase in directly detected dimension (P)
- **sp** Start of plot in directly detected dimension (P)
acqmeter: Open Acqmeter window (M)

Syntax: acqmeter<(remote_system)>

Description: Opens the Acqmeter window and shows a time line of lock level, temperature (VT), and/or spinner speed. When first opened, only lock level is displayed. By clicking anywhere in the lock level window with the right mouse button, a menu pops up with choices to close the lock level window, show a temperature (VT) window, show a spinner window, open a properties window, or close the Acqmeter window. Click on the choice desired in the menu with either the left or right mouse button. In the properties window, the host, font, color, and graphical mode can be changed. Continue to click in any Acqmeter window with the right mouse button to open the menu and then open or close windows, or close the Acqmeter window, as desired.

Arguments: remote_system is the host name of a remote machine on the same network. The default is the local machine. To activate the remote feature, the local and remote machines must be on the same Ethernet LAN (local area network) and the local machine must be able to get the Internet address of the remote machine (usually in the /etc/hosts file).

Examples:
- acqmeter
- acqmeter('nmr500')

See also: NMR Spectroscopy User Guide

Related: acqi Interactive acquisition display (C)
Acqmeter Open Acqmeter window (U)

Acqmeter: Open Acqmeter window (U)

Syntax: Acqmeter <remote_system> <-f file> <&>

Description: Opens the Acqmeter window and shows a time line of lock level, temperature (VT), and/or spinner speed. When first opened, only lock level is displayed. By clicking anywhere in the lock level window with the right mouse button, a menu pops up with choices to close the lock level window, show a temperature (VT) window, show a spinner window, open a properties window, or close the Acqmeter window. Click on the choice desired in the menu with either the left or right mouse button. In the properties window, the host, font, color, and graphical mode can be changed. Continue to click in any Acqmeter window with the right mouse button to open the menu and then open or close windows, or close the Acqmeter window, as desired.

Arguments: remote_system is the host name of a remote machine on the same network. The default is the local machine. To activate the remote feature, the local and remote machines must be on the same Ethernet LAN (local area network) and the local machine must be able to get the Internet address of the remote machine (usually in the /etc/hosts file).

-f file is the name of a template file in the directory $vnmruser/vnmsys/templates/acqstat used to set the attributes of the Acqmeter window when it opens. This allows customizing the Acqmeter window for different users and experiments. The default name of the file is default.
& (ampersand) character added to the command makes Acqmeter into a background process. For example, if “lab” is the remote machine host name, entering the command Acqmeter lab & displays the acquisition status of the “lab” remote machine as a background process. To activate the remote feature, the local and remote machines must be on the same Ethernet LAN (local area network) and the local machine must be able to get the Internet address of the remote machine (usually in the /etc/hosts file).

Examples: Acqmeter &

Acqmeter nmr400 &

Acqmeter gem300 -f inova500.lisa &

See also: NMR Spectroscopy User Guide

Related: acqi Interactive acquisition display (C)

acqmeter Open Acqmeter window (M)

acqmode Acquisition mode (P)

Description: A global parameter specifying the normal acquisition mode for acquiring, locking, fid shimming, and prescan in VnmrJ.

Values:

' ' (empty string) normal acquisition

'lock' lock acquisition

'fidscan' fid shimming acquisition

'prescan' prescan acquisition

See also: VnmrJ Imaging, User Guide, NMR Spectroscopy User Guide

acqstat Open Acquisition Status window (M)

Syntax: acqstat<(remote_system)>

Description: Opens the Acquisition Status window, which displays acquisition information such as the current acquisition task, experiment number, spinner status, and temperature status. When the host computer is attached to a spectrometer, this window should open automatically when VnmrJ is started. In the properties window, the host, font, color, and graphical mode can be changed. For a complete description of these windows, refer to the manual NMR Spectroscopy User Guide.

Arguments: remote_system is the host name of a remote machine on the same network. The default is the local machine. To activate the remote feature, the local and remote machines must be on the same Ethernet LAN (local area network) and the local machine must be able to get the Internet address of the remote machine (usually in the /etc/hosts file).

Examples: acqstat

acqstat('u500')

See also: NMR Spectroscopy User Guide

Related: Acqstat Open the Acquisition Status window (U)

showstat Display information about status of acquisition (C,U)

Acqstat Open Acquisition Status window (U)

Syntax: Acqstat <remote_system> <-f file> &

Description: Opens the Acquisition Status window, which displays acquisition information such as the current acquisition task, experiment number, spinner status, and temperature status. When the host computer is attached to a spectrometer, this
window should open automatically when VnmrJ is started. In the properties window, the host, font, color, and graphical mode can be changed. For a complete description of these windows, refer to the manual NMR Spectroscopy User Guide.

Arguments: remote_system is the host name of a remote machine on the same network. The default is the local machine. To activate the remote feature, the local and remote machines must be on the same Ethernet LAN (local area network) and the local machine must be able to get the Internet address of the remote machine (usually in the /etc/hosts file).

-f file is the name of a template file in the directory $vnmruser/vnmrsys/templates/acqstat used to set the attributes of the Acquisition Status window when it opens. This allows customizing the Acquisition Status window for different users and experiments. The default name of the file is default.

& (ampersand) character added to the command makes Acqstat into a background process. For example, if “lab” is the remote machine host name, entering the command Acqstat lab & displays the acquisition status of the “lab” remote machine as a background process. To activate the remote feature, the local and remote machines must be on the same Ethernet LAN (local area network) and the local machine must be able to get the Internet address of the remote machine (usually in the /etc/hosts file).

Examples:

```
Acqstat &
Acqstat nmr400 &
Acqstat gem300 -f inova500.lisa &
```

See also: NMR Spectroscopy User Guide

Related:

- Acqstat - Open the Acquisition Status window (U)
- showstat - Display information about status of acquisition (C,U)

acqstatus

Acquisition status (P)

Description: Whenever wbs, wnt, wexp, or werr processing occurs, the acquisition condition that initiated that processing is available from the parameter acqstatus. This acquisition condition is represented by two numbers, a “done” code and an “error” code. The done code is set in acqstatus[1] and the error code is set in acqstatus[2]. Macros can take different actions depending on the acquisition condition.

The done codes and error codes are listed below and in the file acq_errors in /vnmr/manual. For example, a werr macro could specify special processing if the maximum number of transients is accumulated. The appropriate test in the macro would be:

```
if (acqstatus[2] = 200) then
  "do special processing, e.g. dp='y' au"
endif
```

Done codes:

11. FID complete
12. Block size complete (error code indicates bs number completed)
13. Soft error
14. Warning
15. Hard error
16. Experiment aborted
17. Setup completed (error code indicates type of setup completed)
101. Experiment complete
102. Experiment started

Error codes:
Warnings
101. Low-noise signal
102. High-noise signal
103. ADC overflow occurred
104. Receiver overflow occurred*

Soft errors
200. Maximum transient completed for single-precision data
201. Lost lock during experiment (LOCKLOST)

300. Spinner errors:
301. Sample fails to spin after three attempts at repositioning
302. Spinner did not regulate in the allowed time period (RSPINFAIL)*
303. Spinner went out of regulation during the experiment (SPINOUT)*
395. Unknown spinner device specified (SPINUNKNOWN)*
396. Spinner device is not powered up (SPINNOPOWER)*
397. RS-232 cable not connected from console to spinner (SPINRS232)*
398. Spinner does not acknowledge commands (SPINTIMEOUT)*

400. VT (variable temperature) errors:
401. VT did not regulate in the given time \(\text{vttime} \) after being set
402. VT went out of regulation during the experiment (VTOUT)
403. VT safety sensor has reached limit (see Oxford manual)*
404. VT cannot turn on cooling gas (see Oxford manual)*
405. VT main sensor on bottom limit (see Oxford manual)*
406. VT main sensor on top limit (see Oxford manual)*
407. VT sc/ss error (see Oxford manual)*
408. VT oc/ss error (see Oxford manual)*
495. Unknown VT device specified (VTUNKNOWN)*
496. VT device not powered up (VTNOPOWER)*
497. RS-232 cable not connected between console and VT (VTRS232)*
498. VT does not acknowledge commands (VTTIMEOUT)

500. Sample changer errors:
501. Sample changer has no sample to retrieve
502. Sample changer arm unable to move up during retrieve
503. Sample changer arm unable to move down during retrieve
504. Sample changer arm unable to move sideways during retrieve
505. Invalid sample number during retrieve
506. Invalid temperature during retrieve
507. Gripper abort during retrieve
508. Sample out of range during automatic retrieve
509. Illegal command character during retrieve*
510. Robot arm failed to find home position during retrieve*
511. Sample tray size is not consistent*
512. Sample changer power failure during retrieve*
513. Illegal sample changer command during retrieve*
514. Gripper failed to open during retrieve*
515. Air supply to sample changer failed during retrieve*
525. Tried to insert invalid sample number*
526. Invalid temperature during sample changer insert*
527. Gripper abort during insert*
528. Sample out of range during automatic insert
529. Illegal command character during insert*
530. Robot arm failed to find home position during insert*
531. Sample tray size is not consistent*
532. Sample changer power failure during insert*
533. Illegal sample changer command during insert*
534. Gripper failed to open during insert*
535. Air supply to sample changer failed during insert*
593. Failed to remove sample from magnet*
594. Sample failed to spin after automatic insert
595. Sample failed to insert properly
596. Sample changer not turned on
597. Sample changer not connected to RS-232 interface
598. Sample changer not responding*

600. Shimming errors:
601. Shimming user aborted*
602. Lost lock while shimming*
604. Lock saturation while shimming*
608. A shim coil DAC limit hit while shimming*

700. Autolock errors:
701. User aborted (ALKABORT)*
702. Autolock failure in finding resonance of sample (ALKRESFAIL)
703. Autolock failure in lock power adjustment (ALKPOWERFAIL)*
704. Autolock failure in lock phase adjustment (ALKPHASFAIL)*
705. Autolock failure, lock lost in final gain adjustment (ALKGAINFAIL)*

800. Autogain errors.
801. Autogain failure, gain driven to 0, reduce pw (AGAINFAIL)

Hard errors
901. Incorrect PSG version for acquisition
902. Sum-to-memory error, number of points acquired not equal to np
903. FIFO underflow error (a delay too small?)*
904. Requested number of data points (np) too large for acquisition*
905. Acquisition bus trap (experiment may be lost)*

1000. SCSI errors:
1001. Recoverable SCSI read transfer from console*
1002. Recoverable SCSI write transfer from console**
1003. Unrecoverable SCSI read transfer error*
1004. Unrecoverable SCSI write transfer error*

1100. Host disk errors:
1101. Error opening disk file (most likely a UNIX permission problem)*
1102. Error on closing disk file*
1103. Error on reading from disk file*
1104. Error on writing to disk file*

See also: NMR Spectroscopy User Guide

Related: react Recover from error conditions during werr processing (M)
werr Specify action when error occurs (C)
werr When error (P)

acquire Acquire data (M)
Description: Macro to acquire data. It uses execpars to select the prep and prescan method, executes them, and then begins acquisition.

See also: NMR Spectroscopy User Guide
Related: execpars Set up the exec parameters (M)
execprescan Execute prescan macro (P)
xmnnext Find next prescan or next experiment in study queue (M)
xmwexp Processing macro for end of acquisition in study queue (M)

actionid Current study queue node id (P)
Applicability: Liquids, Imaging
Description: Specifies the currently selected study queue node id.
See also: VnmrJ Imaging, User Guide, NMR Spectroscopy User Guide

Related:
- **xmaction**: Perform study queue action (M)
- **xmnext**: Find next prescan or next experiment in study queue (M)
- **xmselect**: Action when study queue node is selected (M)

activestudy

Active study name (P)

Applicability: Liquids, Imaging

Description: A global parameter that specifies the currently active study name. In the Walkup interface, it specifies the currently active automation run.

Values:
- `'_s_20050601'` active study name
- `'_auto_2005.06.01'` active automation run name
- `'_null'` no active study or automation run

See also: VnmrJ Imaging, User Guide and NMR Spectroscopy User Guide

add

Add current FID to add/subtract experiment (C)

Syntax:
1. `add<(multiplier<,'new'>)>`
2. `add('new')`
3. `add('trace',index)`

Description: Adds the last displayed or selected FID to the current contents of the add/subtract experiment (exp5). The parameters `lsfid` and `phfid` can be used to shift or phase rotate the selected FID before it is combined with the data in the add/subtract experiment. A multi-FID add/subtract experiment can be created by using the `'_new'` keyword. Individual FIDs in a multi-FID add/subtract experiment can subsequently be added to using the `'_trace'` keyword followed by the index number of the FID.

Arguments:
- `multiplier` is a value that the FID is to be multiplied by before being added to the add/subtract experiment (exp5). The default is 1.0.
- `'_new'` is a keyword to create a new FID element in a add/subtract experiment.
- `'_trace'` is a keyword to use the next argument (index) as the number of the FID to add to in an add/subtract experiment. The default is to add to the first FID in a multi-FID add/subtract experiment.
- `index` is the index number of the FID to be used as a target in a multi-FID add/subtract experiment.

Examples:
- `add 0.75`
- `add('new')`
- `add('trace',2)`

See also: *NMR Spectroscopy User Guide*

Related:
- **clradd**: Clear add/subtract experiment (C)
- **lsfid**: Number of complex points to left-shift ni interferogram (P)
- **phfid**: Zero-order phasing constant for np FID (P)
- **select**: Select a spectrum without displaying it (C)
addi
Start interactive add/subtract mode (C)

Syntax:
addi

Description:
Starts the interactive add/subtract mode. Before entering `addi`, start the process with `clradd` and `spadd`, then display a second spectrum on the screen. This may involve changing experiments, selecting a second member of an array of spectra, a different trace of a 2D spectrum, or displaying a spin simulated spectrum. The Fourier numbers (`fn`) must be the same in the two spectra to be manipulated. The width (`sw`) of the two spectra need not be identical, although adding spectra of different widths will probably not be meaningful. Having selected the second spectrum and ensuring it is in `nm` mode, enter `addi` to begin the interactive process.

After `addi` is invoked, spectrum 1, the spectrum selected by the `spadd` command, appears in the center of the display. Spectrum 2, the spectrum that was active when `addi` was entered, appears on the bottom. The sum or difference of these spectra appears on top of the screen. When `addi` is first entered, this spectrum will be the sum `(1 + 2)` by default. The spectra is manipulated using the mouse.

The select button toggles between different modes of control:

- When the label at the screen bottom reads “active: current”, all of the parameters (except `wp`) control spectrum 2, and spectrum 2 can be phased, scaled, or shifted relative to spectrum 1.
- After clicking on select, the label at the screen bottom reads “active: addsub”, and now all of the parameters except `wp` control spectrum 1.
- Clicking select again toggles the label to read “active: result”, and now parameter changes affect only the sum or difference spectrum.

Note that `wp` always controls all spectra, because differential expansions of the two spectra are not supported. Note also that the colors of the labels change to match the colors of the different spectra.

The sum/difference spectrum displayed on the screen while `addi` is active is strictly a temporary display. Once all manipulations have been performed, and assuming the sum/difference is something you wish to perform further operations with (such as plotting), it must be saved into the add/subtract experiment (`exp5`) by clicking on save. At this point, spectrum 1, which was in the add/subtract experiment, is overwritten by the sum or difference spectrum, and `addi` ceases operation. In most cases, you will next want to enter `jexp5` to display the difference spectrum on the screen, ready for further manipulation (expansion, line listing, etc.) and plotting. If you wish to continue with the add/subtract process by adding in a third spectrum, display that spectrum in the usual way and enter `addi` again.

See also: *NMR Spectroscopy User Guide*

Related:
- `clradd` Clear add/subtract experiment (C)
- `jexp` Join existing experiment (C)
- `nm` Select normalized intensity mode (C)
- `spadd` Add current spectrum to add/subtract experiment (C)
- `spmin` Take minimum of two spectra in add/subtract experiment (C)
- `spsub` Subtract current spectrum from add/subtract experiment (C)
- `wp` Width of plot in directly detected dimension (P)
addnucleus Add new nucleus to existing probe file (M)

Applicability: ALL

Description: Entries for nuclei not in the default probe file are appended to the end of the file. The argument should correspond to a nucleus in the nuctable.

Syntax: addnucleus('nucleus')

Arguments: nucleus — name followed by atomic number, e.g. C13 not 13C.

Examples: addnucleus('Si29')

See also: NMR Spectroscopy User Guide

addpar Add selected parameters to current experiment (M)

Syntax: addpar<('2d'|'3d'|'3rf'|'4d'|'downsamp'|'fid'| 'image'|'ll2d'|'lp'::<dim>|'oversamp'|'ss')>

Applicability: The '3d', '3rf', '4d', 'fid', and 'image' arguments work on all systems but are only useful if system has the proper hardware.

Description: Creates selected parameters in the current experiment.

Arguments: If no argument is entered, addpar displays instructions for its use.

'2d', '3d', '3rf', '4d', 'downsamp', 'fid', 'image', 'll2d', 'lp', 'oversamp', and 'ss' are keywords (only one keyword is used at a time) specifying the parameters to be created:

- '2d' specifies creating ni, phase, and sw1, which can be used to acquire a 2D data set (functions the same as macro par2d).
- '3d' specifies creating d3, ni2, phase2, and sw2, which can be used to acquire a 3D data set (functions the same as macro par3d).
- '3rf' specifies retrieving the ap and dg2 display templates for third rf channel and 3D parameters (functions the same as macro par3rf).
- '4d' specifies creating the acquisition parameters d4, ni3, phase3, and sw3, which can be used to acquire a 4D data set (functions the same as macro par4d).
- 'downsamp' specifies creating the parameters downsamp, dscoef, dslsfrq, dsfb, and filtfile for digital filtering and downsampling (functions the same as macro pards).
- 'fid' specifies creating FID display parameters axisf, crf, deltag, dotflag, vpfi, and vpf if the parameter set is older and lacks these parameters (functions the same as macro fidpar).
- 'll2d' specifies creating th2d and xdiag for the ll2d 2D peak picking program (functions the same as macro parll2d).
- 'lp' specifies creating lpalg, lpopt, lpfilt, lpnupts, strtlp, lpext, sttext, lptrace, and lpprint for linear prediction in the acquisition dimension (functions the same as macro parlp). The display template for the dglp macro is also created if necessary.
- 'oversamp' specifies creating parameters def_osfilt, filtfile, oscoef, osfb, osfilt, oslsfrq, and oversamp for oversampling and digital filtering (functions the same as macro paros).
• 'ss' specifies adding parameters ssorder, ssfilter, ssntaps, and sslsfrq for time-domain solvent subtraction (functions the same as macro parfidss).

dim specifies the dimension when adding linear prediction parameters: 1 for the first implicit dimension or 2 for the second implicit dimension. Default is the acquisition dimension. Therefore, addpar('lp') creates the parameters listed above; addpar('lp',1) creates lpalg1, lpopt1, lpfilt1, lpnupts1, strtlp1, lpext1, strtext1, lptrace1, and lpprint1; and addpar('lp',2) creates lpalg2, lpopt2, lpfilt2, lpnupts2, strtlp2, lpext2, strtext2, lptrace2, and lpprint2. Each separate dimension of a multidimensional data set can have its own unique parameters.

Examples:
addpar
addpar('3d')
addpar('lp',1)

See also:
NMR Spectroscopy User Guide; VnmrJ Imaging NMR

Related:
def_osfilt Default value of osfilt (P)
fidpar Add parameters for FID display in current experiment (M)
osfilt Oversampling filter for real-time DSP (P)
par2d Create 2D acquisition parameters (M)
par3d Create 3D acquisition parameters (M)
par3rf Get display templates for 3rd rf channel parameters (M)
par4d Create 4D acquisition parameters (M)
pard Create digital filtering and downsampling parameters (M)
parfidss Set up parameters for time-domain solvent subtraction (M)
paros Create oversampling and digital filtering parameters (M)
parl2d Create parameters for 2D peak picking (M)
parlp Create parameters for linear prediction (M)

addparams Add parameter to current probe file (M)

Syntax:
addparams(param,value,nucleus<,'tmplt'>,<,'system'>)

Description: Adds a new parameter and its value for a specified nucleus to the probe file or to the probe template.

Arguments:
param is the name of the parameter to be added.
value is a string with the value to be written for the parameter.
nucleus is the nucleus to add in the probe file.
'tmplt' is a keyword to add the parameter to the local template. The default is the probe file.
'system' is a keyword to add the parameter to the system-level template or probe file, provided that you have write permission to that file. The default is to add the parameter to the local template or probe file.

Examples:
addparams('ref_pwr','53',tn)
addparams('ref_pwx','00',dn,'tmplt')
addparams('ref_pwx2','00',dn2,'tmplt','system')

See also:
NMR Spectroscopy User Guide

Related:
getparam Receive parameter from probe file (M)
setparams Write parameter to current probe file (M)
updateprobe Update probe file (M)
addprobe Create new probe directory and probe file (M)

Syntax: addprobe(probe_name<,'stdpar'|'system'>,<,'stdpar'>)

Description: Creates a new probe directory and a probe file. Default nuclei included in this file are 1H, 19F, 13C, and 15N. The information is saved in the user’s directory vnmrsys/probes.

Arguments: probe_name is the name to be given to the probe directory and probe file.

- 'stdpar' and 'system' are keywords for the second and third arguments:
 - If the second argument is 'stdpar', calibration values from the standard parameter sets (stdpar/H1.par, stdpar/C13.par, etc.) will be read and written into the probe file.
 - If the second argument is 'system' and the user has write permission into the VnmrJ system probes directory (typically /vnmr/probes), then a system-level probe directory will be made.
 - If the second argument is 'system' and the third argument is 'stdpar', then both actions in the preceding bullets will occur.
 - The default is the probe file is created with all parameters initialized to zero.

Examples:
addprobe('idpfg')
addprobe('idpfg','stdpar')
addprobe('idpfg','system','stdpar')

See also: NMR Spectroscopy User Guide; VnmrJ Walkup

Related:
addnucleus Add new nucleus to existing probe file (M)
deletenucleus Removes nucleus entry to probe file (M)
getparam Receive parameter from probe file (M)
probe Probe type (P)
setparams Write parameter to current probe file (M)

adept Automatic DEPT analysis and spectrum editing (C)

Syntax: adept<(<'noll'>,<,'coef'>,<,'theory'>)>

Description: Automatically analyzes a set of four DEPT spectra and edits the spectra so that the spectra is arrayed as follows:

- #4 is CH$_3$ carbons only
- #3 is CH$_2$ carbons only
- #2 is CH carbons only
- #1 is all protonated carbons

Because adept modifies the transformed data, it should not be repeated without retransforming the data between calls. adept produces a text file dept.out in the current experiment directory, which contains the result of the analysis.

Arguments: The following keyword arguments can be supplied in any order:

- 'noll' causes the line listing to be skipped. If 'noll' is not supplied as an argument, adept first performs a line listing. In that case, the threshold parameter th must be set properly before starting adept.
- 'coef' causes the combination coefficients to be printed.
- 'theory' causes theoretical coefficients to be used. The default is optimized coefficients.
Examples:
- adept
 - adept('coef')
 - adept('theory','noll')

See also: *NMR Spectroscopy User Guide*

Related:
- autodept
 Automated complete analysis of DEPT data (M)
- Dept
 Set up parameters for DEPT experiment
- deptproc
 Process DEPT data (M)
- padept
 Perform adept analysis and plot resulting spectra (C)
- pldept
 Plot DEPT data, edited or unedited (M)
- th
 Threshold (P)

aexppl

Automatic plot of spectral expansion (M)

Syntax:
```
aexppl<expansion_factor>
```

Description:
Plots automatically expansions of given regions. Regions have to be defined first by using the `region` command or by using the cursors in `ds`.

Arguments:
- `expansion_factor` is a spectral expansion factor in units of Hz/mm. The default is 2 Hz/mm.

Examples:
- aexppl
- aexppl(20)

See also: *NMR Spectroscopy User Guide*

Related:
- `ds`
 Display a spectrum (C)
- `region`
 Divide spectrum into regions (C)

ai

Select absolute-intensity mode (C)

Syntax:
```
ai
```

Description:
Selects the absolute-intensity display mode in which the scale is kept constant from spectrum to spectrum to allow comparison of peak heights from one spectrum to another. The alternative is the normalized-intensity display mode (`nm`) in which spectra are scaled so that the largest peak in the spectrum is vs mm high. The modes are mutually exclusive—the system is always in either nm or ai mode. Enter `aig?` to determine which mode is currently active.

See also: *NMR Spectroscopy User Guide*

Related:
- `aig`
 Absolute intensity group (P)
- `nm`
 Select normalized-intensity mode (C)
- `vs`
 Vertical scale (P)

aig

Absolute-intensity group (P)

Description:
Contains the result of the ai or nm command. aig is not set in the usual way but can be queried (aig?) to determine which display mode is active.

Values:
- ‘ai’ indicates the absolute-intensity display mode is active.
- ‘nm’ indicates the normalized-intensity display mode is active.

See also: *NMR Spectroscopy User Guide*

Related:
- `ai`
 Select absolute intensity mode (C)
- `dmg`
 Display mode in directly detected dimension (P)
- `nm`
 Select normalized-intensity mode (C)
- `?`
 Display individual parameter value (C)
alfa

Set alfa delay before acquisition (P)

Description: After the final event in the pulse sequence, including any receiver gate times occurring following the final pulse, acquisition occurs after a delay. This delay includes a fixed part, alfa, and a variable part, $1/(\beta*fb)$.

- On systems with 4-pole Butterworth filters, β is 2.
- On systems with 8-pole Butterworth (200-kHz) filters, β is 3.8.
- On systems with 8-pole elliptical filters, β is 1.29.
- On Systems with 4-pole Bessel filters, β is 2.3 (only systems with 2-MHz and 5-MHz Analog-to-Digital Converter boards use this filter).

Because the total delay before acquisition is the sum of alfa and $1/(\beta*fb)$, it is possible to shorten the delay beyond “normal” values by setting alfa negative (to a maximum of $1/(\beta*fb)$). The macros hoult and calfa frequently result in such negative values of alfa.

To set alfa to a negative number, use either the **setvalue** command to enter a specific value of alfa, or use the **setlimit** command to allow entry of negative values of alfa directly from the keyboard.

Values: 0 to 100,000,000; in μs.

See also: *NMR Spectroscopy User Guide*

Related:
- **calfa** Recalculate alfa so that first-order phase is zero (M)
- **fb** Filter bandwidth (P)
- **hoult** Set parameters alfa and rof2 according to Hoult (M)
- **rof2** Receiver gating time following pulse (P)
- **setlimit** Set limits of a parameter in a tree (C)
- **setlp0** Set parameters for zero linear phase (M)
- **setvalue** Set value of any parameter in a tree (C)

alock

Automatic lock control (P)

Description: Governs Autolock control following the insertion of a sample with **change** or **sample**, and following initiation of an acquisition with the **go**, **ga**, or **au**.

Manual adjustment of lock power, gain, and phase is possible using the **acqi** command.

Values: Possible values are 'a', 'auto', 'n', 's', 'samp', 'u', or 'y', where:
- 'a' or 'auto' selects the optimizing Autolock function, which performs a lock capture and an automatic lock power and gain adjustment before data acquisition begins (lock phase is not optimized).
- 'n' leaves the lock in its current state.
- 's' or 'samp' selects the optimizing Autolock function, which performs a lock capture and an automatic lock power and gain adjustment before data acquisition begins (lock phase is not optimized) but only if the sample has just been changed.
- 'u' turns lock off so that the experiment runs unlocked.
- 'y' turns on the software Autolock function, which searches for the correct Z0 value only.

See also: *NMR Spectroscopy User Guide*

Related:
- **acqi** Interactive acquisition display process (C)
- **au** Submit experiment to acquisition and process data (C)
- **change** Submit a change sample experiment to acquisition (M)
- **ga** Submit experiment to acquisition and FT the result (C)
- **gf** Prepare parameters for FID/spectrum display in acqi (M)
- **go** Submit experiment to acquisition (C)
ampmode

Independent control of amplifier mode (P)

Description:
Gives override capability over the default selection of amplifier modes. Unless overridden, the usage of rf channels determines whether the amplifier for a channel is in pulse, CW (continuous wave), or idle mode:

- Observe channel is set to the pulse mode.
- Other used channels are set to the CW mode.
- Any unused channels are set to the idle mode.

The `ampmode` parameter can be used to override this selection.

`ampmode` does not normally exist but can be created by the user with the command `create('ampmode', 'flag')`.

Values:
List of characters in which the mode of the first amplifier is determined by the first character, the mode of the second amplifier by the second character, and so on. For each amplifier, one of the following characters is used:

- `'c'` selects CW mode.
- `'i'` selects idle mode.
- `'p'` selects pulse mode.
- `'d'` selects default behavior.

For example, `ampmode='ddp'` selects default behavior for the first two amplifiers and forces the third channel amplifier into pulse mode. Additional filtering is usually required when an amplifier in the same band as the observe amplifier is placed in the CW mode.

See also: [VnmrJ User Programming](#)

Related:
- `create`: Create new parameter in a parameter tree (C)
- `dn`: Nucleus for the first decoupler (P)
- `tn`: Nucleus for observe transmitter (P)

amptype

Amplifier type (P)

Description:
Specifies the type of amplifier on each rf channel of the spectrometer. The value is set in the Spectrometer Configuration window (opened from `config`) using the label Type of Amplifier.

For each channel, the types are Class C, Linear Full Band, Linear Low Band, Linear Broadband, or, for the fourth channel only, Shared. Selecting Shared means that the amplifier is fully configured for the third channel, and that the fourth channel shares this amplifier with the third channel.

When a type is selected for a channel, a letter (one of the values described below) is added to the value of `amptype`. For example, a system already set to Linear Full Band on the observe transmitter channel and the first decoupler channel would have `amptype='a'`. Selecting the third channel as Linear Low Band would set `amptype='aal'`. Finally, selecting Shared for the fourth channel would set `amptype='aaln'`.

Values:

- `'a'` indicates the channel uses a linear full-band amplifier. A full-band amplifier has two outputs: 12 MHz to 31P, and 19F/1H.
- `'b'` indicates the system uses a linear broadband amplifier.
- `'c'` indicates the system uses a class C amplifier.
- `'l'` indicates the channel uses a linear low-band amplifier. A low-band amplifier has one output from 12 MHz to 31P only.
'n' indicates the fourth channel shares a linear amplifier with the third.

See also: NMR Spectroscopy User Guide, VnmrJ User Programming

Related: config Display current configuration and possibly change it (M)

analyz

Calculate standard peak height (M)

Syntax: `analyz(option,title)`

Description: Macro to calculate average peak height and standard deviation and/or average phase and standard deviation.

Arguments: `option` = 'n' for amplitude and phase, 'a' for amplitude only, and 'p' for phase only. The `title` option puts a title on the plot.

Examples:
- `analyz` – Does analysis for both amplitude and phase
- `analyz('p')` – Does analysis for phase only
- `analyz('n','Stability')` – Does analysis for amplitude and phase and puts title “Stability” on the plot.

analyze

Generalized curve fitting (C)

Syntax:
- (curve fitting) `analyze('expfit',xarray,options)`
- (regression) `analyze('expfit','regression',options)`

Description: Provides interface to curve fitting program `expfit` (using the curve fitting syntax), supplying `expfit` with input data in the form of the text file `analyze.inp` in the current experiment. `expfit` can be called from UNIX with the syntax:

```
expfit options <analyze.inp >analyze.list
```

expfit does a least-squares curve fitting to the data supplied in `analyze.inp`. Macros are available for the specialized uses of `analyze`, such as the 'T1' and 'kinetics' options. These macros avoid the need to select options and get the correct file format.

In the regression mode (using the regression syntax above), the type of curve fitting, ('poly1', ...) must be selected. The regression section in the manual NMR Spectroscopy User Guide gives the input file format and describes the menus that permit choices indirectly through menu buttons.

The text file `analyze.inp` for the options 'T1', 'T2', 'kinetics', 'contact_time', and 'regression' contains the following lines (note that (1), (2), (3), etc. do not appear in the file but are used to identify lines in the explanation):

1. (text line)
2. (text line)
3. npeaks npairs xscale yscale
4. <NEXT npairs1>
5. peaks
6. x y
 ...
4. <NEXT npairs2>
5. peaks
6. x y
 ...

Line-by-line explanation:
(1) Optional descriptive text line, for regression only. Omit line otherwise.
(2) Optional y-axis title, for regression only. Omit line otherwise.
(3) Line containing an integer for the number of peaks (npeaks) followed by another integer for the number of \((x, y)\) pairs per peak (npairs). If regression, the x-scale type and y-scale type are also listed.

(4) In the regression mode, a line beginning with the keyword NEXT is inserted at the start of each data set when the number of pairs per peak is variable. In this case, the number of \((x, y)\) pairs for the peak (npair1, npair2, etc.) is also given on the line.

(5) Peak index.

(6) Data pairs, one to a line, are listed by peak in the following order:
\[
\begin{align*}
 x &\quad y \quad \text{(first peak, first pair)} \\
 x &\quad y \quad \text{(first peak, second pair)} \\
 \ldots \\
 x &\quad y \quad \text{(second peak, first pair)} \\
 x &\quad y \quad \text{(second peak, second pair)} \\
 \ldots
\end{align*}
\]
In the regression mode, the line beginning with NEXT is inserted at the start of the data for each peak when the number of pairs per peak is variable. In this case, the header contains the maximum number of pairs for any peak.

For 'T1', 'T2', 'kinetics', and 'contact_time', information from the file fp.out and values of the arrayed parameter xarray are used to construct the file; thus, it is necessary to run fp prior to analyze.

For regression, analyze.inp is made by running expl('regression'). If the regression mode is not selected, analyze.inp may be slightly different.

In addition to output to the standard output, which is usually directed to analyze.list, expfit makes a file analyze.out, which is used by expl to display the results of the analysis.

User-supplied analysis programs can be called by analyze in place of expfit. Such programs should read their input from stdin and write the output listing to stdout. No analyze.out file needs to be generated unless display by expl is desired. Use the program expfit as a model.

Arguments: 'expfit' is a required first argument.

xarray is the name of the parameter array holding x-values in 'T1', 'T2', 'kinetics', and 'contact_time', and is used only with these options.

'regression' sets regression mode and signifies generalized curve fitting with choices 'poly1', 'poly2', 'poly3', and 'exp'.

options are any of the following keywords:
- 'T1' sets \(T_1\) analysis (the default).
- 'T2' sets \(T_2\) analysis.
- 'kinetics' sets kinetics analysis, with decreasing peak height.
- 'increment' sets kinetics analysis, with increasing peak height.
- 'list' makes an extended listing for each peak.
- 'diffusion' sets a special analysis for diffusion experiments.
- 'contact_time' sets a special analysis for solids cross-polarization spin-lock experiments.
- 'poly1' sets a linear fitting. It is used in regression mode only.
- 'poly2' sets a quadratic fitting. It is used in regression mode only.
- 'poly3' sets a cubic fitting. It is used in regression mode only.
- 'exp' sets exponential curve fitting. It is used in regression mode only.
Examples:
- `analyze('expfit','d2','T1','list')`
- `analyze('expfit','pad','kinetics','list')`
- `analyze('expfit','p2','contact_time','list')`
- `analyze('expfit','regression','polyl','list')`

See also: *NMR Spectroscopy User Guide*

Related:
- `contact_time`
 MAS cross-polarization spin-lock contact time (M)
- `expfit`
 Least squares fit to polynomial or exponential curve (U)
- `expl`
 Display exponential or polynomial curves (C)
- `pexpl`
 Plot exponential or polynomial curves (C)
- `kini`
 Kinetics analysis, increasing intensity (M)
- `t1`
 T_1 exponential analysis (M)
- `t2`
 T_2 exponential analysis (M)

ap

Print out “all” parameters (C)

Applicability: VnmrJ

Syntax: `ap('template_name',<’filename’>)`

Description: Print a parameter list. The *User Programming* Manual describes the rules for building a template for the `ap` commands. The string parameter `ap` normally controls how the command, `ap`, displays the parameters. Use command `paramvi('ap')` to modify the `ap` parameter. The `ap` command writes the parameter list to a file if `filename` is provided as the second argument.

Arguments:
- `template_name`
 template name must be the first argument.
- `filename`
 optional, name of file to which the parameters are written.

Examples:
- `ap('ap','apout')` — writes the parameter list using defined by the `ap` parameter to the file `apout`.
- `ap('newap')`

See also: *NMR Spectroscopy User Guide; VnmrJ User Programming*

Related:
- `addpar`
 Add selected parameters to the current experiment (M)
- `ap`
 “All” parameters display control (P)
- `dg`
 Display group of acquisition/processing parameters (C)
- `hpa`
 Plot parameters on special preprinted chart paper (C)
- `pap`
 Plot out “all” parameters (C)
- `paramvi`
 Edit a variable and its attributes with vi text editor (C)
- `ppa`
 Plot a parameter list in “English” (M)

ap

“All” parameters display control (P)

Description: Controls the display of the `ap` and `pap` commands to print and plot a parameter list. Use `paramvi('ap')` to modify the string value of `ap`.

See also: *NMR Spectroscopy User Guide; VnmrJ User Programming*

Related:
- `ap`
 Print out “all” parameters (C)
- `dg`
 Display group of acquisition/processing parameters (C)
- `pap`
 Plot out “all” parameters (C)
- `paramvi`
 Edit a variable and its attributes with vi text editor (C)

apa

Plot parameters automatically (M)

Syntax: `apa`

Description: Selects automatically the appropriate command on different plotter devices to plot the parameter list.
See also:
VnmrJ User Programming

Related:

- **hpa**
 Plot parameters on special preprinted chart paper (C)
- **ppa**
 Plot a parameter list in “English” (M)

aph

Automatic phase adjustment of spectra (C)

Syntax: `aph <: $ok, $rp, $lp>

Description: Automatically calculates the phase parameters lp and rp required to produce an absorption mode spectrum and applies these parameters to the current spectrum. Values calculated do not depend on the initial values of lp and rp.

Arguments:

- ok is 1 if the phase adjustment succeeds, or 0 if the adjustment fails.
- rp is the calculated value of rp. If rp is requested as a return value, rp is returned but not applied to the current spectrum.
- lp is the calculated value of lp. If lp is requested as a return value, lp is returned but not applied to the current spectrum.

See also:
NMR Spectroscopy User Guide

Related:

- **aph0**
 Automatic phase of zero-order term (C)
- **aphx**
 Perform optimized automatic phasing (M)
- **lp**
 First-order phase in directly detected dimension (P)
- **rp**
 Zero-order phase in directly detected dimension (P)

aph0

Automatic phase of zero-order term (C)

Syntax: `aph0 <: $ok, $rp, $lp>

Description: Automatically adjusts only the zero-order frequency-independent term rp and does not rely on the frequency-dependent term lp being previously adjusted. In favorable circumstances, spectra may be obtained in such a way that only rp is expected to change. In these cases, if lp has been determined for one spectrum, then rp only can be computer-adjusted for subsequent spectra by `aph0` (“aph-zero”). Note that `aph0` does not correctly phase an exactly on-resonance peak.

Arguments:

- ok is 1 if the phase adjustment succeeds, or 0 if the adjustment fails.
- rp is the calculated value of rp.
- lp is the current value of lp.

See also:
NMR Spectroscopy User Guide

Related:

- **aph**
 Automatic phase adjustment of spectra (C)
- **aphx**
 Perform optimized automatic phasing (M)
- **lp**
 First-order phase in directly detected dimension (P)
- **rp**
 Zero-order phase in directly detected dimension (P)

aphb

Auto phasing for Bruker data (C)

Syntax: `aphb < (threshold) >

Description: Phases Bruker data using the autophasing program.

Arguments:

- `threshold` determines if a data point is large enough to qualify it as part of a peak. If no argument is given, or if the value is equal to or less than 0, the threshold is calculated from the spectrum.

Examples:

- `aphb`
- `aphb(2)`
aphx Perform optimized automatic phasing (M)

Syntax: aphx

Description: Optimizes parameters and arguments for the aph command. aphx first
performs an aph then calculates a theoretical value for lp. If lp set by the aph
is different from the calculated value by 10 per cent, the calculated value is used
and an aph0 is performed.

See also: NMR Spectroscopy User Guide

Related: aph Automatic phase adjustment of spectra (C)
aph0 Automatic phase of zero-order term only (C)

appdirs Starts Applications Directory Editor (M)

Applicability: ALL

Syntax: appdirs

Description: The appdirs macro brings up an editor to set the applications directories. The
top section of the editor has rows consisting of a menu and two entry boxes.

Values: Menu selections:

Enabled — enable an application directory.
Disabled — disable an application directory.
Remove(d) — initial setting for other row and the and empty entry boxes.
Set an application directory menu to Remove(d) to completely remove it.

Fields in each row:

Applications directory path.
A comment can be added to the second entry box.

Radio-button choices:

Save as private applications directories — sets the applications directories for
the current operator only.

Reset to system default applications directories — removes any private
applications directories and return to the standard default set.

Save the applications directories for global use — available only to users with
write permission for VnmrJ system files. A name must be provided for this
choice. This will affect all users the administrator has set that name as their
appdirs setting. The Varian default names are Experimental, Walkup, Imaging,
and LcNmrMs.

Buttons:

OK — exit the editor and apply the selections made in the editor.

Cancel — exit the editor and abort the editor session, making no changes to the
applications directories.

See also: VnmrJ Installation and Administration

Related: exists Checks if parameter, file, or macro exists and file type (C)
appmode **Application mode (P)**

Description: A global parameter that allows selection of specialized system applications modes, such as imaging, by setting the global parameters sysmaclibpath, sysmenulibpath, and syshelppath.

For example, in /vnmr/maclib is a subdirectory maclib.imaging that contains macros used primarily with imaging applications. Similarly, in /vnmr/menulib is a subdirectory menulib.imaging for imaging-related menus. By separating the imaging macros and menus into subdirectories, access to imaging-specific macros and menus is more convenient. This separation also allows minor modifications to some macros and menus while retaining the names that are in common use or required by other VnmrJ commands.

The value of appmode are set from either the System settings dialog in the Utilities menu or the VnmrJ Admin interface.

Values: 'standard' sets standard application mode.
 'imaging' sets imaging application mode.
 'autotest' sets autotest application mode

apptype **Application type (P)**

Description: Specifies the application type, the group of pulse sequences to which a pulse sequence belongs. It is used by the execpars macros to specify the actions executed by the protocol for a pulse sequence. The actions are common to the group of pulse sequences specified by the apptype.

Values: See the execpars directory in /vnmr.

See also: *VnmrJ Imaging, User Guide* and *NMR Spectroscopy User Guide*

Related:
- *cqexp* Load experiment from protocol (M)
- *execpars* Set up the exec parameters (M)
- *execsetup* Execute setup macro (P)
- *execprep* Execute prepare macro (P)
- *execprescan* Execute prescan macro (P)
- *execpreocess* Execute processing macro (P)
- *execplot* Execute plotting macro (P)
- *sqexp* Load experiment from protocol (M)

Apt **Set up parameters for APT experiment (M)**

Description: Converts a parameter set to the APT (attached proton test) experiment.

See also: *NMR Spectroscopy User Guide*

Related:
- *aptaph* Automatic processing for APT spectra (M)
- *capt* Automated carbon and APT acquisition (M)
- *hcapt* Automated proton, carbon, and APT acquisition (M)

aptaph **Automatic processing for APT spectra (M)**

Syntax: aptaph

Description: Automatically phases APT spectra.

See also: *NMR Spectroscopy User Guide*

Related: *Apt* Set up parameters for APT pulse sequence (M)

array **Easy entry of linearly spaced array values (M)**

Syntax: array<(parameter<,number_steps,start,step_size)>
Description: Arrays a parameter to the number of steps, starting value and step size given by the user. All values of the array will satisfy the limits of the parameter.

If `array` is typed with none or only some of its arguments, you enter an interactive mode in which you are asked for the missing values.

Arguments: `parameter` is the name of the parameter to be arrayed. The default is an interactive mode in which you are prompted for the parameter. Only numeric parameters can be arrayed.

`number_steps` is the number of values of the parameter. The default is an interactive mode in which you are prompted for the number of steps.

`start` is the starting value of the parameter array. The default is an interactive mode in which you are prompted for the starting value.

`step_size` is the magnitude of the difference between elements in the array. The default is an interactive mode in which you are prompted for the step size.

Examples: `array`
`array('pw')`
`array('tof', 40, 1400, -50)`

See also: `NMR Spectroscopy User Guide`

array
Parameter order and precedence (P)

Description: Whenever an array of one or more parameters is set up, the string parameter `array` tells the system the name of the parameter or parameters that are arrayed and the order and precedence in which the arraying is to take place. The parameter `array` is automatically updated when acquisition parameters are set. “Diagonal arrays” (those corresponding to using parentheses in the parameter `array`) must be entered by hand.

Values: `' ' (two single quotes with no space between) indicates no parameter is arrayed.

`'x'` indicates the parameter `x` is arrayed.

`'x,y'` indicates the parameters `x` and `y` are arrayed, with `y` taking precedence. That is, the order of the experiments is `x_1 y_1, x_1 y_2, ..., x_2 y_2, ..., x_m y_n`, with a total of `m x n` experiments being performed.

`'y,x'` indicates the parameters `x` and `y` are arrayed, with `x` taking precedence. That is, the order of the experiments is `x_1 y_1, x_2 y_1, ..., x_n y_1, x_1 y_2, x_2 y_2, ..., x_m y_2, ..., x_m y_n`, with a total of `m x n` experiments being performed.

`'(x,y)'` indicates the parameters `x` and `y` are jointly arrayed. The number of elements of the parameters `x` and `y` must be identical, and the order of experiments is `x_1 y_1, x_2 y_2, ..., x_n y_n`, with `n` experiments being performed.

Joint arrays can have up to 10 parameters. Regular multiple arrays can have up to 20 parameters, with each parameter being either a simple parameter or a diagonal array. The total number of elements in all arrays can be `2^{32} - 1`.

See also: `NMR Spectroscopy User Guide`

Related: `array` Easy entry of linearly spaced array values (M)

arraydim
Dimension of experiment (P)

Description: After `calcdim` calculates the dimension of an experiment, the result is put into the parameter `arraydim`. If an experiment is arrayed, `arraydim` is the product of the size of the arrays.

See also: `NMR Spectroscopy User Guide`

Related: `calcdim` Calculate dimension of experiment (C)

`celem` Completed FID elements (P)
asin
Find arc sine of number (C)

Syntax: asin(value)<n>
Description: Finds the arc sine (also called the inverse sine) of a number.
Arguments: value is a number in the range of ±1.0.
n is a return argument giving the arc sine, in radians, of value. The default is to display the arc sine value in the status window.
Examples: asin(.5)
 asin(val):asin_val
See also: VnmrJ User Programming
Related: sin Find sine value of an angle (C)

asize
Make plot resolution along f1 and f2 the same (M)

Syntax: asize
Description: Adjusts the 2D display parameters (sc, wc, sc2, and wc2) so that the displayed resolution along both f1 and f2 is the same. It is not suggested for heteronuclear experiments where the chemical shift spread of one nucleus is much greater than that of the other.
See also: NMR Spectroscopy User Guide
Related: sc Start of chart (P)
 sc2 Start of chart in second direction (P)
 wc Width of chart (P)
 wc2 Width of chart in second direction (P)

assign
Assign transitions to experimental lines (M)

Syntax: (1) assign<('mark')>
(2) assign(transistion_number,line_number)
Description: Assigns the nearest calculated transition to the lines from a dll or nll listing after spinll has placed them in alfreq. All lines may not be assigned and transitions must be greater than sth. The next spins('iterate') determines new parameters to minimize the differences in position of the assigned pairs.
Arguments: 'mark' makes assign use the lines selected with the mark button in place of dll. The results of the mark operation are stored in the file mark1d.out, which is cleared by the command mark('reset').
transition_number is a single calculated transition number that is assigned to a line from the dll listing.
line_number is the index of the line from the dll listing. Setting line_number=0 removes an assignment from a calculated transition.
Examples: assign
 assign('mark')
 assign(4,0)
See also: NMR Spectroscopy User Guide
Related: dll Display listed line frequencies and intensities (C)
 mark Determine intensity of the spectrum at a point (C)
 nll Find line frequencies and intensities (C)
 alfreq Measured line frequencies (P)
 spinll Set up alfreq array (M)
Acquisition time (P)

Description: Length of time during which each FID is acquired. Since the sampling rate is determined by the spectral width \(sw \), the total number of data points to be acquired \((2 \times sw \times at)\) is automatically determined and displayed as the parameter \(np \). \(at \) can be entered indirectly by using the parameter \(np \).

Values: Number, in seconds. A value that gives a number of data points that is not a multiple of 2 is readjusted automatically to be a multiple of 2.

See also: NMR Spectroscopy User Guide; VnmrJ User Programming

Related: \(np \) Number of data points (P)
\(sw \) Spectral width in directly detected dimension (P)

atan

Find arc tangent of a number (C)

Syntax: \(\text{atan}(\text{value})::<n> \)

Description: Finds the arc tangent (also called the inverse tangent) of a number.

Arguments:
\(\text{value} \) is a number between \(\pi/2 \) and \(-\pi/2 \).
\(n \) is a return argument giving the arc tangent, in radians, of \(\text{value} \). The default is to display the arc tangent value in the status window.

Examples:
\(\text{atan}(0.5) \)
\(\text{atan}(\text{val}):\text{atan_val} \)

See also: VnmrJ User Programming

Related: \(\text{sin} \) Find sine value of an angle (C)

atan2

Find arc tangent of two numbers (C)

Syntax: \(\text{atan2}(y,x)<:n> \)

Description: Finds the arc tangent (also called the inverse tangent) of the quotient of two numbers.

Arguments:
\(y \) and \(x \) are two numbers, where the quotient \(y/x \) is between \(\pi/2 \) and \(-\pi/2 \) and \(x \) is not equal to zero.
\(n \) is a return argument giving the arc tangent, in radians, of \(y/x \). The default is to display the arc tangent value in the status window.

Examples:
\(\text{atan2}(1,2) \)
\(\text{atan2}(\text{val}):\text{atan2_val} \)

See also: VnmrJ User Programming

Related: \(\text{sin} \) Find sine value of an angle (C)

atcmd

Call a macro at a specified time (M)

Description: \(\text{atcmd}(<\text{'macro'}>,<\text{'timespec'}>,<\text{'day'}>,<\text{'cancel'}>)> \)

Syntax: Calls a macro at the specified time. It only functions on a spectrometer. A background VnmrJ is started to execute the command. This background VnmrJ is not started in an experiment; therefore, the macro executes a jexp or runs commands or macros that do not need experiment parameters. It will have access to global and system global parameters.
Arguments: When called with arguments, `atcmd` updates the database with the supplied information. It does not start the process that calls the macros at the specified times. `atcmd` with no arguments starts the program that calls the macros at the specified times.

timespec -- has the format `hh:mm <mon tue wed thu fri sat sun>` A 24 hour clock is used -- midnight is 0:0, noon is 12:00.

day -- If the optional `day` field is used, the command will be repeated on that day at the appointed time. The day fields are case insensitive. For `monday`, `wednesday`, and `friday` only a single character is needed. More can be used. For `tuesday`, `thursday`, `saturday`, and `sunday`, at least two characters must be given.

cancel -- If the `cancel` argument is given, it will cancel all the commands that match the supplied macro. For example, if you specify `cmda` to be run at 8:00 on `mon` and 9:00 on `tue`, then `atcmd('cancel', 'cmda')` will cancel both of them. If the macro is `''`, the cancel option will cancel all `atcmd` macros.

list -- The list argument lists the timespec for all the `atcmds` that match the supplied macro. If the macro is `''`, the list option lists all of the `atcmd` macros and their timespecs. Optional arguments can be returned. The first is the number of `atcmd`s. The macro and timespec for each `atcmd` can be returned.

When the command specified by `atcmd` is executed in background, it will be executed using the environment of the user who requested the `atcmd`. Also, the background VnmrJ will initially not be joined to a specific experiment.

Examples: `atcmd('echo(`good morning`)','8:00 mon tue wed thu fri')`
Displays a welcome message every weekday at 8:00 am.

`atcmd('echo(`What are you doing here on a weekend?`)','8:00 Sat Sun')`
Questions your intentions on the weekend.

`atcmd('startNightQueue','22:00')`
Runs the macro `startNightQueue` at 22 hr. (10:00pm).

`atcmd('startNightQueue','cancel')`
Cancels the scheduled `startNightQueue` cmd

`atcmd('','cancel')`
Cancels all scheduled commands

`atcmd('','list')`
Lists all scheduled commands

atext

Append string to current experiment text file (M)

Syntax: `atext(string)`

Description: Adds a line of text to the current experiment text file.

Arguments: `string` is a single line of text.

Examples: `atext('T1 Experiment')`

See also: `NMR Spectroscopy User Guide`

Related: ctext Clear the text of the current experiment (C)

attval

Calculate pulse width (M)

Syntax: `attval (pw,tpwr)`
Description: Calculates the pulse width and B₁ field at every transmitter power. A low transmitter power should be used where the amplifier is not in compression. Calculation is not valid where amplifier is in compression.

Arguments: pw is the pulse width.
$tpwr$ is the transmitter power.

Examples: attval(7.0,59)

atune

ProTune Present (P)

Description: Hardware configuration parameter specifying if ProTune is or is not present. Parameter is set in the System Configuration window.

Arguments: 'y' ProTune is present
'n' ProTune not is present

See also: VnmrJ Installation and Administration

Related:
wtune Specify when to tune (P)
tupwr Transmitter power used in tuning (P)

au

Submit experiment to acquisition and process data (M)

Syntax: $au(<'nocheck'>,<,'next'><,'wait'>)$

Description: Performs the experiment described by the current acquisition parameters, checking the parameters loc, spin, gain, wshim, load, and method to determine the necessity to perform various actions in addition to simple data acquisition. This may involve a single FID or multiple FIDs, as in the case of arrays or 2D experiments. au causes the data to automatically be processed according to the following parameters:

- wbs specifies what happens after each block.
- wnt specifies what happens after each FID is collected.
- $wexp$ specifies what happens when the entire acquisition is complete (which may involve several complete FIDs in the case of 1D arrays or 2D experiments).

Before starting the experiment, au executes the two user-created macros if they exist. The first is usergo, a macro that allows the user to set up general conditions for the experiment. The second is a macro whose name is formed by go_, followed by the name of the pulse sequence (from seqfil) to be used (e.g., go_s2pul, go_dept). This macro allows a user to set up experiment conditions suited to a particular sequence.

Arguments: 'nocheck' is a keyword to override checking if there is insufficient free disk space for the complete 1D or 2D FID data set to be acquired.

'next' is a keyword to put the experiment started with au('next') at the head of the queue of experiments to be submitted to acquisition.

'wait' is a keyword to stop submission of experiments to acquisition until wexp processing of the experiment, started with au('wait'), is finished.

Examples: au
au('wait')

See also: NMR Spectroscopy User Guide

Related:
auto_au Controlling macro for automation (M)
change Submit a change sample experiment to acquisition (M)
ga Submit experiment to acquisition and FT the result (M)
gain Receiver gain (P)
go Submit experiment to acquisition (M)
AuCALch3i Set up autocalibration with CH3I sample (M)
Syntax: AuCALch3i
Description: Retrieves standard proton parameter set and setup for automatic calibration of proton (observe and decouple), carbon (observe and decouple), gcal, and C/H gradient ratio. The AuCALch3i macro is the same as the AuCALch3i1 macro.

AuCALch3i1 Get autocalibration with CH3I sample (M)
Syntax: AuCALch3i1
Description: Retrieves standard proton parameter set and setup for automatic calibration of proton (observe and decouple), carbon (observe and decouple), gcal, and C/H gradient ratio. The AuCALch3i1 macro is the same as the AuCALch3i macro.

AuCALch3oh Set up autocalibration with Autotest sample (M)
Syntax: AuCALch3oh
Description: Retrieves standard proton parameter set and setup for automatic calibration of proton (observe), carbon (decouple), gcal and C/H gradient ratio. The AuCALch3oh macro is the same as the AuCALch3oh1 macro.

AuCALch3oh1 Get autocalibration with Autotest sample (M)
Syntax: AuCALch3oh1
Description: Retrieves standard proton parameter set and setup for automatic calibration of proton (observe), carbon (decouple), gcal and C/H gradient ratio. The AuCALch3oh1 macro is the same as the AuCALch3oh macro.

Aucalibz0 Automatic Hz to DAC calibration for Z0 (M)
Applicability: Autocalibration routine
Syntax: Called by Augmapz0 calibration routine.
Description: Called by Augmapz0 calibration routine. Automatically calibrates lock frequency change per Z0 DAC unit change. The calibrated value is written out in the probe file as lkhzdac parameter

See also: System Administration.

Related: Augmapz0 Automatic lock gradient map generation and Z0 calibration (M) Aufindz0 Automatic adjustment of Z0 (M)

AuCdec Carbon decoupler calibration macro (M)

Syntax: AuCdec

Description: Used by AuCALch3i and AuCALch3oh autocalibration routines to do carbon decoupler calibrations. Calibrates high-power pulse widths and dmf.

See also: System Administration

Related: AuCALch3i Get autocalibration with CH3I sample (M) AuCALch3oh Get autocalibration with Autotest sample (M) dmf Decoupler modulation frequency for first decoupler (P)

AuCgrad Carbon/proton gradient ratio calibration macro (M)

Syntax: AuCgrad

Description: Used by AuCALch3i1 and AuCALch3oh1 autocalibration routines for C/H gradient ratio calibrations.

See also: System Administration

Related: AuCALch3i1 Get autocalibration with CH3I sample (M) AuCALch3oh1 Get autocalibration with Autotest sample (M)

AuCobs Carbon observe calibration macro (M)

Syntax: AuCobs

Description: Used by AuCALch3i1 autocalibration routines for carbon observe calibrations.

See also: System Administration

Related: AuCALch3i1 Get autocalibration with CH3I sample (M)

audiofilter Audio filter board type (P)

Description: Sets the type of audio filter board used where the spectral width (sw) is less than 100 kHz. The filter type is set in the Spectrometer Configuration window (opened from config) using the label Audio Filter Type.

Values: 'b' indicates the system has a 100-kHz Butterworth filter board (100 kHz Butterworth choice in the Spectrometer Configuration window.).

'e' indicates the system has a 100-kHz elliptical filter board (100 kHz Elliptical choice in the Spectrometer Configuration window).

'2' indicates the system has a 200-kHz Butterworth filter board (200 kHz Butterworth choice in the Spectrometer Configuration window).

's' indicates the system has a 500-kHz elliptical filter board (500 kHz Elliptical choice in the Spectrometer Configuration window).

See also: System Administration

Related: config Display current configuration and possibly change it (M) sw Spectral width in directly detected dimension (P)
Aufindz0
Automatic adjustment of Z0 (M)

Syntax:
Aufindz0

Description: Finds z0 by doing lock 1D spectrum. The frequency is then used along with the \(l_{khzdac} \) value in the probe file to calculate the z0 value for a given solvent and autolocking is done. This requires previous calibration of the \(hzdac \) value done using the Aucalibz0 macro.

See also: System Administration
Related:
Aucalibz0 Automatic Hz to DAC calibration for Z0 (M)

Augcal
Probe gcal calibration macro (M)

Syntax:
Augcal

Description: Used by AuCALch3i1 and AuCALch3oh1 autocalibration routines for probe gcal calibrations.

See also: System Administration
Related:
AuCALch3i1 Get autocalibration with CH3I sample (M)
AuCALch3oh1 Get autocalibration with Autotest sample (M)
gcal Gradient calibration constant (P)

Augmap
Automated gradient map generation (M)

Syntax:
Augmap

Description: Automatically adjusts gradient level, offset, window, and pulse width to generate a z1–z4 gradient map using a 2-Hz D2O sample. This macro is used by the Aumakegmap auto gradient map generation macro and is applicable only for a lock gradient map.

See also: System Administration
Related:
Aumakegmap Auto lock gradient map generation (M)
gsize Number of z-axis shims used by gradient shimming (P)

Augmapz0
Automatic lock gradient map generation and z0 calibration (M)

Syntax:
Augmapz0

Description: Using the 2-Hz D2O sample, the augmapz0 macro automatically creates a lock gradient map, followed by Hz to DAC calibration of Z0 for the autolocking procedure.

See also: System Administration
Related:
Aucalibz0 Automatic Hz to DAC calibration for Z0 (M)
Aufindz0 Automatic adjustment of Z0 (M)

AuHdec
Proton decoupler calibration (M)

Syntax:
AuHdec

Description: Used by AuCALch3i autocalibration routine to do proton decoupler calibrations. Calibrates high-power pulse widths and \(dmf \).

See also: System Administration
Related:
AuCALch3i Get autocalibration with CH3I sample (M)
dmf Decoupler modulation frequency for first decoupler (P)
AuHobs Proton observe calibration macro (M)

Syntax: AuHobs

Description: Used by AuCALch3i and AuCALch3oh autocalibration routines for proton observe calibrations.

Aumakegmap Auto lock gradient map generation (M)

Syntax: Aumakegmap (<lk or hs or H1>)

Description: Generates z1–z4 lock gradient (‘lk’ argument), lock homospoil (‘hs’ argument), or 1H gradient map (‘H1’ argument). If no argument is given, the defaults is ‘lk’, if gradtype='nnh' to 'hs'. The doped 2-Hz D2O should be used for hs and lk maps. H1 map is typically done on the sample. Automatically adjusts gradient level, offset, window, and pulse width. The map name is automatically stored in the probe file.

AuNuc Get parameters for a given nucleus (M)

Syntax: AuNuc(nucleus,solvent)

Description: Retrieves standard parameter set for a given nucleus and adds all required parameters for Tcl/dg driven parameters. If no parameter set exists in stdpar, then carbon parameters are retrieved and tn changed.

auto Prepare for an automation run (C)

Applicability: Systems with an automatic sample changer.

Syntax: auto<(automation_directory)>

Description: Prepares the automation directory for an automation run. auto aborts if the spectrometer is already in automation mode.

Arguments: automation_directory is the name of the automation directory, either an absolute UNIX path (i.e. the first character is a “/”) or a relative path (the first character is not a “/”). The default is the value of the parameter autodir. If for some reason autodir is not defined, you are prompted to provide the location of the automation directory. If not given as an argument, you are prompted for the path. If the automation directory is not present, it is created with full access for all users. auto aborts if it fails to create this directory.

Examples: auto auto('/home/vnmr1/autorun_620')

See also: NMR Spectroscopy User Guide, VnmrJ User Programming, VnmrJ Walkup

Related: auto_au Controlling macro for automation (M) autodir Automation directory absolute pathname (P) autogo Start an automation run (C) autoname Prefix for automation data file (P)

auto Automation mode active (P)

Applicability: Systems with an automatic sample changer.

Description: A global variable that shows whether or not an automation run is in progress. Macros typically test this parameter because actions can differ between the automation and non-automation modes. The value of auto is not enterable by the user. An automation experiment is initiated with the autogo command. The auto parameter is only set to ‘y’ for those macros and commands that are run as part of an automation experiment.
Values: 'y' indicates automation mode is active.
'n' indicates automation mode is inactive.

Related:
- auto_au: Controlling macro for automation (M)
- autogo: Start an automation run (C)
- autora: Resume suspended automation run (C)
- autosa: Suspend current automation run (C)

auto_au
Controlling macro for automation (M)

Applicability: Systems with an automatic sample changer.

Syntax: `auto_au`

Description: Reads `sampleinfo` file (defines an automation experiment) using the `lookup` facility, sets the `solvent` and `loc` parameters based on the `SOLVENT` and `SAMPLE#` fields of `sampleinfo`, runs `exec` on the entry in the `MACRO` field, and writes the experiment text based on the `TEXT` field. After that, `auto_au` examines the value of the `wexp` parameter:

- If `wexp` is set to 'procplot', then `auto_au` calls `au`.
- If `wexp` is set to 'autolist', then `auto_au` inserts 'auto' as the first argument to `autolist` and calls `au('wait')`.
- If `wexp` is set to anything else, `auto_au` does not call `au`.

If no data is generated from the requested `MACRO` field, due to an error or some other reason, `auto_au` sets the `STATUS` field to “No Data Requested.” `auto_au` is used only during automation and should not be called directly. It provides a starting point for all automation experiments. As such, it is a convenient point for user customization of automation.

See also: *NMR Spectroscopy User Guide, VnmrJ User Programming, VnmrJ Walkup*

Related:
- `au`: Submit experiment to acquisition and process data (M)
- `auto`: Prepare for an automation run (C)
- `autolist`: Set up and start chained acquisition (M)
- `exec`: Execute a VnmrJ command (C)
- `loc`: Location of sample in tray (P)
- `lookup`: Look up words and lines from a text file (C)
- `solvent`: Lock solvent (P)
- `wexp`: When experiment completes (P)

Autobackup
Back up current probe file (M)

Syntax: `Autobackup`

Description: Makes a copy of the probe file before starting the calibrations and prints the current calibration file. `Autobackup` is called by the autocalibration routines `AuCALch3i1` and `AuCALch3oh1`.

autodept
Automated complete analysis of DEPT data (M)

Syntax: `autodept`

Description: Processes DEPT spectra, plots the unedited spectra, edits the spectra, plots the edited spectra, and prints outs editing information.
autodir
Automation directory absolute path (P)

Applicability: Systems with an automatic sample changer or LC-NMR accessory.

Description: When using a sample changer, `autodir` is a global variable that holds the absolute path of the currently active automation directory. When VnmrJ is started, `autodir` is set to the absolute path of the last automation run. When using the LC-NMR accessory, `autodir` specifies a directory in which experiments using a stored queue are saved.

See also: *NMR Spectroscopy User Guide*

Related:
- `auto`
 Set up an automation directory (C)
- `autoname`
 Prefix for automation data file (P)
- `globalauto`
 Automation directory name (P)
- `walkup`
 Walkup automation (M)

autogo
Start automation run (C)

Applicability: Systems with an automatic sample changer.

Syntax: `autogo<(file<,automation_directory>)>`

Description: Starts an automation run. The `autogo` parameter cannot be entered while the spectrometer is in automation mode. You must have an `enter` queue prepared to start an automation run. The queue is checked to verify that it was prepared using the `enter` command (`autogo` aborts if an error in the format is found.) Your automation directory is also checked for the presence of a non-empty `enter` queue (`autogo` aborts if the current queue in the automation directory is present and not empty). Finally, `autogo` checks the automation directory and runs the `auto` command if this directory is not present or another problem is found. When `autogo` completes, the system is in automation mode and your automation run starts.

Arguments:
- `file` is the file name of your `enter` queue. The default is that the system prompts you for the location of the `enter` queue.
- `automation_directory` is the pathname of the automation directory. The default is the current value of the parameter `autodir`.

Examples:
- `autogo`
- `autogo('MySamples')`
- `autogo('MySamples','/home/vnmr1/AutoRun_621')`

See also: *NMR Spectroscopy User Guide*

Related:
- `auto`
 Set up an automation directory (C)
- `autodir`
 Automation directory absolute path (P)
- `autoname`
 Prefix for automation data file (P)
- `enter`
 Enter sample information for automation run (C)

autolist
Set up and start chained acquisition (M)

Syntax: `autolist(<options,>experiment1<,experiment2<,...>)`
Description: Sets up parameters for chained experiments by executing the experiments given as arguments and then starting a chained acquisition. Note that the macro `au` is executed as part of `autolist` and should not be included in the arguments to `autolist`.

Arguments: `options` is one or more of the following keywords:

- 'auto' is a keyword to add 'wait' to the `au` call (e.g., `au('wait','next')`).
- 'start' is a keyword to make the first experiment in the list as one that needs to be acquired rather than processed.

`experiment1,experiment2,...` are experiments written as strings (e.g., 'dept' or 'c13'). `experiment1` is the current experiment and, when it finishes, the macro `procplot` is called to process the data. If `experiment2` is listed, that experiment is executed and then the macro `au('next')` is performed. For subsequent experiments, the text, `solvent` and `temp` are used from the preceding experiment. Also, the `wexp` parameter is reset to 'autolist' with the first experiment removed.

Examples:

```
autolist('h1','c13','dept')
autolist('h1','hcosy')
```

See also: *NMR Spectroscopy User Guide*

Related:

- `auto_au` Controlling macro for automation (M)
- `au` Submit experiment to acquisition and process data (M)
- `hc` Automated proton and carbon acquisition (M)
- `hcapt` Automated proton, carbon, and APT acquisition (M)
- `hccorr` Automated proton, carbon, and HETCOR acquisition (M)
- `hcosy` Automated proton and COSY acquisition (M)
- `procplot` Automatically process FIDs (M)
- `solvent` Lock solvent (P)
- `temp` Sample temperature (P)
- `wexp` When experiment completes (P)

`autoname` Create path for data storage (C)

Applicability: Automation

Syntax: `autoname:$path`

```
autoname(name_template):$path
autoname(name_template,sample_info_file):$path
autoname(name_template,sample_info_file,<'keepspaces'|'replacespaces'>):$path
autoname(name_template,sample_info_file,<'excluded_suffixes'<,'keepspaces'|'replacespaces'>):$path
```

Description: The `autoname` command determines the path for data storage during an automation run and uses the value of a naming template (the `autoname` parameter by default) and the contents of a sample info file (default is `sampleinfo` in the current experiment) to determine this path. The path name is stored in the return argument or displayed on line 3 if no return argument is present.

The name is prefaced with using the value of the parameter `autodir` or `userdir` if `autodir` is equal to "."

The default excluded_suffix is .fid.

Arguments: No argument provided. The command uses the default `autoname` parameter and `sampleinfo` in the current experiment directory for the path to the
sample info file. If the autoname parameter does not exist or is set to ", the default template is %SAMPLE#: %PEAK#: %.

name_template (no quotes) is string that contains keywords separated by substitution specifiers to represent the data storage path. Substitution specifiers in this template are either a percent sign (%) or a dollar sign ($). The keywords are obtained from the sample_info_file file, if it exists, using % substitution specifiers or VNMR parameters using $ substitution specifiers.

A template is passed directly using:

autoname('$owner$/$sample$'):%path.

Percent sign (%) substitution specifier is used with the autoname command to scan the sample_info_file for the text specific by keyword between the first percent sign in the template string and the next percent sign. The text specified by the keyword between the % substitution specifiers is passed to $path.

The following percent substitutions (% keywords) for time and date are obtained from the system clock, not from the sample info file:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%DATE%</td>
<td>YYYYMMDD</td>
<td>4 digit year 2 digit month 2 digit day</td>
</tr>
<tr>
<td>%TIME%</td>
<td>HHMMSS</td>
<td>2 digit each for hours, minutes, and seconds</td>
</tr>
<tr>
<td>%YR%</td>
<td>YYYY</td>
<td>4-digit year</td>
</tr>
<tr>
<td>%YR2%</td>
<td>YY</td>
<td>2-digit year</td>
</tr>
<tr>
<td>%MO%</td>
<td>MM</td>
<td>2-digit month</td>
</tr>
<tr>
<td>%DAY%</td>
<td>DD</td>
<td>2-digit day</td>
</tr>
<tr>
<td>%HR%</td>
<td>HH</td>
<td>2-digit hour</td>
</tr>
<tr>
<td>%MIN%</td>
<td>MM</td>
<td>2-digit month</td>
</tr>
<tr>
<td>%SEC%</td>
<td>SS</td>
<td>2-digit second</td>
</tr>
</tbody>
</table>

The following are some of the percent substitutions (% keywords) are obtained from the second argument, sample_info_file.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%USER%</td>
<td>user name</td>
</tr>
<tr>
<td>%MACRO%</td>
<td>macro name</td>
</tr>
<tr>
<td>%SAMPLE%</td>
<td>sample name</td>
</tr>
<tr>
<td>%SOLVENT%</td>
<td>solvent name</td>
</tr>
</tbody>
</table>

String parameters cannot not contain any of the following characters: ' ', '!', '"', '$', '&', '\', '', '(', ')', '*', ';', '<', '>', '?', '\', '{', '}', '|', ',', '\0'

Version number is specified by %Rn% where n is an integer from 0 to 9 (default 2), as follows:

<table>
<thead>
<tr>
<th>n=</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>no revision digits are appended (all names must be uniquely constructed without these revision digits).</td>
</tr>
<tr>
<td>1 to 9</td>
<td>revision number is padded with leading zeroes to form an n-digit number. If more places are needed than specified, more zeroes are used.</td>
</tr>
</tbody>
</table>
Specify the starting number to be used when constructing the version number by appending a colon : and start number after Rn.

The default starting value is 1. A zero is not allowed.

Dollar sign ($) substitution specifiers works in manner analogous to the percent substitution specifier, except that the text between the dollar signs is interpreted as the name of a VNMR parameter. The value of this parameter is substituted for the substitution specifier.

Numeric parameters are represented as a string and truncated to an integer value. The template, pw=pwusec, with vnmr parameter pw having a value of 12.3 produces pw=12usec01 which is appended to .fid and passed to $path. The 01 following usec is added by the %R2% default setting.

sample_info_file (no quotes) is the name of a text file to read for the % substitutions passed to autoname. The file must exist.

Using the keyword 'replacespaces' uses underscores (_) in place of spaces ' ' in the resulting path name or the keyword 'keepspaces' retains spaces in the resulting path name.

The keyword 'keepspaces' or 'replacespaces' is an optional argument (includes quotes). The argument is accepted as the third or fourth argument.

Solaris and Linux operating systems default to replacespaces.

A comma separated list of excluded suffixes the new path name will not use or match is specified if the third keyword is not 'keepspaces' or 'replacespaces'.

Examples: Using a $ substitution specifier:

autoname(pw=pwusec):$path

A $ substitution specifier, pw=pwusec, is the name_template and a relative path. The vnmr parameter, pw, has a value of 12.3 and the resulting filename is: pw=12usec01.fid. The path name is prefaced with the value of the parameter autodir if the name template generates a relative pathname.

Examples: Using $ substitution specifiers and a comma separated list of suffixes:

autoname('$seqfil$_tn_','/vnmr/conpar','.img'):$path

The $ substitution specifier is; $seqfil$_tn_ the dummy info filename is; '/vnmr/conpar', and the comma separated list of excluded suffixes is .img. The path name is prefaced with seqfil tn_index. Each time a file is written to the directory the command changes the index by one (see %Rn% above). The suffix is both .fid and .img. The file is named gems_H1_03.img if target directory contains gems_H1_01.fid and gems_H1_02.img.

See also: NMR Spectroscopy User Guide, VnmrJ User Programming, VnmrJ Walkup

Related: autoname Temple determining the path where is data stored (P)
Svfname Determines the name used to store data (C)
svfname Specifies the filename template (P)

autoname Prefix for automation data file (P)

Applicability: Automation
autoname

Description: The autoname temple determines the resulting path where the data is stored for an entry in the automation run and uses the contents of a sample info file (the name by default is "sampleinfo" in the current experiment) to determine this path. The path name is stored in the return argument and displayed on line 3 if no return argument is present.

See also: NMR Spectroscopy User Guide, VnmrJ User Programming, VnmrJ Walkup

Related: autoname Determines path for data storage during an automation run (C).

autora

Resume suspended automation run (C)

Applicability: Systems with an automatic sample changer.

Syntax: autora

Description: Resumes a previously suspended automation run. No matter what caused the interruption (including autosa, power failure, or system boot-up), the system examines the condition of the automation file and resumes acquisition for all experiments that have not finished. If autora is executed while an automation run is in progress, it has no effect.

See also: NMR Spectroscopy User Guide

Related: autosa Suspend current automation run (C)

autosa

Suspend current automation run (C)

Applicability: Systems with an automatic sample changer.

Syntax: autosa

Description: Suspends the automation mode at the conclusion of the current experiment and changes the system to the manual mode. The currently running experiment is not interrupted.

See also: NMR Spectroscopy User Guide

Related: autora Resume suspended automation run (C)

autoscale

Resume autoscaling after limits set by scalelimits macro (M)

Syntax: autoscale

Description: Returns to autoscaling in which the scale limits are determined by the expl command such that all the data in the expl input file is displayed.

See also: NMR Spectroscopy User Guide

Related: expl Display exponential or polynomial curves (C) scalelimits Set limits for scales in regression (M)

autostack

Automatic stacking for processing and plotting arrays (M)

Syntax: autostack

Description: When processing and plotting arrayed 1D spectra, VnmrJ automatically determines whether the stacking mode is horizontal, vertical or diagonal from the number of traces and the number of lines in the spectrum. If this automatic function is not desirable (or makes an undesirable decision), it can be overridden by placing the stack macro in the experiment startup macro or by calling stack before processing (or reprocessing) a spectrum. autostack switches back to automatic determination of the stack mode by destroying the stackmode parameter.
autotest
Open Auto Test Window (C)
Syntax: autotest
Description: Opens the Auto Test window.
See also: AutoTest Software manual.

autotime
Displays approximate time for automation (M)
Syntax: autotime(<automation directory>)
Description: Displays approximate time for each experiment and for each location in an automation run. If no argument is given, time is calculated for the current automation run (enterQ).
See also: NMR Spectroscopy User Guide
Related: explist Display approximate time for current experiment chain (M)

av
Set abs. value mode in directly detected dimension (C)
Syntax: av
Description: Selects the absolute-value spectra display mode by setting the parameter dmg to the string value 'av'. In the absolute-value display mode, each real point in the displayed spectrum is calculated as the square root of the sum of the squares of the real and imaginary points comprising each respective complex data point. All information, including noise, is always positive, and the relationship between signal and noise is linear.
For multidimensional data, av has no effect on data prior to the second Fourier transform. If pmode= 'full', av acts in concert with commands ph1, av1, or pwr1 to yield the resultant contour display for the 2D data.
See also: NMR Spectroscopy User Guide
Related: av1 Set abs. value mode in 1st indirectly detected dimension (C)
av2 Set abs. value mode in 2nd indirectly detected dimension (C)
dmg Display mode in directly detected dimension (C)
dmgf Absolute-value display of FID data or spectrum in acq1 (P)
ft Fourier transform 1D data (C)
ft1d Fourier transform along f2 dimension (C)
ft2d Fourier transform 2D data (C)
pa Set phase angle mode in directly detected dimension (C)
pal Set phase angle mode in 1st indirectly detected dimension (C)
ph Set phased mode in directly detected dimension (C)
ph1 Set phased mode in 1st indirectly detected dimension (C)
pmode Processing mode for 2D data (P)
pwr1 Set power mode in 1st indirectly detected dimension (C)
wft Weigh and Fourier transform 1D data (C)
wft1d Weigh and Fourier transform of 2D data (C)
wft2d Weigh and Fourier transform 2D data (C)
av1

Set abs. value mode in 1st indirectly detected dimension (C)

Syntax: av1

Description: Selects the absolute-value spectra display mode along the first indirectly detected dimension by setting the parameter dmg1 to the value 'av1'. If the parameter dmg1 does not exist, av1 creates it and set it to 'av1'.

In the absolute-value display mode, each real point in the displayed trace is calculated as the square root of the sum of the squares of the real and imaginary points comprising each respective complex data point. For hypercomplex data, the real-real and imaginary-real points from each respective hypercomplex data point are used in the summation. In this mode, all information, including noise, is always positive; and the relationship between signal and noise is linear.

The av1 command is only needed if mixed-mode display is desired. If the parameter dmg1 does not exist or is set to the null string, the display mode along the first indirectly detected dimension defaults to the display mode of the directly detected dimension (characterized by the parameter dmg). For the contour display of multidimensional data, the result of av1 is the same as for traces provided that pmode='partial' or pmode=' ' (two single quotes with no space between).

See also: NMR Spectroscopy User Guide

Related:
- av Set abs. value mode in directly detected dimension (C)
- dmg1 Data display mode in 1st indirectly detected dimension (P)

av2

Set abs. value mode in 2nd indirectly detected dimension (C)

Syntax: av2

Description: Selects absolute-value spectra display mode for the second indirectly detected dimension by setting the parameter dmg2 to the value 'av2'. If dmg2 does not exist or is set to the null string, av2 creates dmg2 and set it equal to 'av2'.

In the absolute-value display mode, all information, including noise, is positive; and the relationship between signal and noise is linear. Each real point in the displayed trace is calculated as the square root of the sum of the squares of the real and imaginary points comprising each respective complex data point. For hypercomplex data, the real-real and imaginary-real points from each respective hypercomplex data point are used in the summation.

The av2 command is only needed if mixed-mode display is desired. If the parameter dmg2 does not exist or is set to the null string, the display mode along the second indirectly detected dimension defaults to the display mode of the directly detected dimension (characterized by the parameter dmg). For the contour display of multidimensional data, the result of av2 is the same as for traces provided that pmode='partial' or pmode=' ' (two single quotes with no space between).

See also: NMR Spectroscopy User Guide

Related:
- av Set abs. value mode in directly detected dimension (C)
- dmg2 Data display mode in 2nd indirectly detected dimension (P)

averag

Calculate average and standard deviation of input (C)

Syntax: averag(number1, number2, ...):average, sd, number_arguments, sum_numbers, sum_squares

Description: Finds average, standard deviation, and other characteristics of a set of numbers.

Arguments:
- number1, number2, ... is a finite set of numbers.
- average is the average of the numbers.
- sd is the standard deviation of the numbers.
number_arguments is the number of number1, number2,... arguments.

sum_numbers is the sum of the numbers

sum_squares is the sum of squares of the numbers.

Examples: averag(3.4, 4.3, 3.5, 5.4) : r1, r2

See also: VnmrJ User Programming

awc

Additive weighting const. in directly detected dimension (P)

Description: Adds the current value of awc to each value of the weighting function along the directly detected dimension. This dimension is often referred to as the f2 dimension in 2D data sets, the f3 dimension in 3D data sets, and so forth. awc is applied after the sinebell and exponential function, but before the Gaussian function. This allows using gf as a Gaussian apodization even when awc is non-zero. Typical value of awc is 'n'.

See also: NMR Spectroscopy User Guide

Related: awc1 Additive weighting const. in 1st indirectly detected dimension (P)

Related: awc2 Additive weighting const. in 2nd indirectly detected dimension (P)

Related: gf Gaussian function in directly detected dimension (P)

awc1

Additive weighting const. in 1st indirectly detected dimension (P)

Description: Adds the current value of awc1 to each value of the weighting function along the first indirectly detected dimension. This dimension is often referred to as the f1 dimension of a multidimensional data set. awc1 is analogous to the parameter awc. The “conventional” parameters (lb, gf, etc.) operate on the detected FIDs, while this “2D” parameter is used during processing of the interferograms.

See also: NMR Spectroscopy User Guide

Related: awc Additive weighting const. in directly detected dimension (P)

awc2

Additive weighting const. in 2nd indirectly detected dimension (P)

Description: Adds the current value of awc2 to each value of the weighting function along the second indirectly detected dimension. This dimension is often referred to as the f2 dimension of a multidimensional data set. awc2 is analogous to the parameter awc. The value of awc2 can be set with wt1 on the 2D interferogram data.

See also: NMR Spectroscopy User Guide

Related: awc Additive weighting const. in directly detected dimension (P)

Related: wt1 Interactive weighting (C)

axis

Provide axis labels and scaling factors (C)

Syntax: axis('fn' | 'fn1' | 'fn2')

<: $axis_label, $freq_scaling, $scaling_factor>

Description: Displays or returns values of the axis labels and scaling factors to the calling macro. See the macro rl for an example of using this command.

Arguments: 'fn' | 'fn1' | 'fn2' is the Fourier number parameter for the axis of interest.

$axis_label is the axis label (e.g., ppm, kHz, cm, or ppm (sc)).

$freq_scaling is the divisor needed to convert from units of Hz to the units defined by the axis parameter with any scaling. axis uses the current value
of the \texttt{axis} parameter for that dimension and also checks for axis scaling using
the corresponding \texttt{scalesw}, \texttt{scalesw1}, or \texttt{scalesw2} parameter.

\texttt{scaling_factor} is a second scaling factor, determined solely by the
\texttt{scalesw} type of parameter. This last scaling factor is independent of the value
of the \texttt{axis} parameter.

Examples: \begin{verbatim}
axis('fn')
axis('fn1'):$lab,$fr,$scl
\end{verbatim}

See also: \textit{VnmrJ User Programming}

\begin{verbatim}
Related: axis \hspace{1cm} \textit{Axis label for displays and plots (P)}
 r1 \hspace{1cm} \textit{Set reference line (M)}
 scalesw \hspace{1cm} \textit{Scale spectral width in directly detected dimension (P)}
 scalesw1 \hspace{1cm} \textit{Scale spectral width in 1st indirectly detected dimension (P)}
 scalesw2 \hspace{1cm} \textit{Scale spectral width in 2nd indirectly detected dimension (P)}
\end{verbatim}

\texttt{axis} \hspace{1cm} \textit{Axis label for displays and plots (P)}

Applicability: Certain arguments work only if system has the proper hardware.

Description: Specifies the units for the axis display and plot.

For 1D experiments, \texttt{axis} uses a single letter that includes \texttt{'h'} for Hz, \texttt{'p'}
for ppm, and \texttt{'k'} for kHz (e.g., \texttt{axis='h'}).

For 2D experiments, \texttt{axis} uses two letters, with the first letter describing the
detected spectral axis (f_2), and the second letter describing the indirectly
detected axis (f_1). Thus \texttt{axis='ph'} is appropriate for a homonuclear 2D-J
experiment, with a referenced ppm scale along the spectral axis and an axis in
Hz (\texttt{'h'}) along the J-axis. \texttt{axis='pp'} is appropriate for COSY or NOESY
experiments.

For 3D experiments, \texttt{axis} uses three letters with the first letter describing the
detected spectral axis (f_3), the second letter describing the first indirectly
detected axis (f_1), and the third letter specifying the second indirectly detected
axis (f_2).

The special letter \texttt{d} is used to reference the indirectly detected axis to the parts
per million of the decoupler channel, as appropriate for heteronuclear chemical
shift correlation experiments, which would typically have \texttt{axis='pd'}. The
letter \texttt{n} is used to suppress the axis display on one or both axes (e.g.,
\texttt{axis='nn'}, \texttt{axis='pn'}).

For systems with multiple decouplers, the characters \texttt{'1'}, \texttt{'2'}, and \texttt{'3'} can
be used to reference an axis relative to the frequency of that decoupler. Setting
\texttt{axis='p1'} is effectively the same as \texttt{axis='pd'}.

Values: \begin{verbatim}
'1' sets the axis label for units of ppm relative to the first decoupler.
'2' sets the axis label for units of ppm relative to the second decoupler.
'3' sets the axis label for units of ppm relative to the third decoupler.
'c' sets the axis label for units of centimeters.
'd' sets the axis label for units of ppm relative to the first decoupler.
'h' sets the axis label for units of hertz.
'k' sets the axis label for units of kilohertz.
'm' sets the axis label for units of millimeters.
'n' sets no axis label display.
'p' sets the axis label for units of ppm relative to the observe transmitter.
'u' sets the axis label for units of micrometers.
\end{verbatim}

See also: \textit{NMR Spectroscopy User Guide}

\begin{verbatim}
Related: axis \hspace{1cm} \textit{Provide axis labels and scaling factors (C)}
 axisf \hspace{1cm} \textit{Axis label for FID displays and plots (P)}
\end{verbatim}
axisf

Axis label for FID displays and plots (P)

Description: Specifies the units for the FID axis display and plot. To create the FID display parameters `axisf`, `dotflag`, `vpf`, `vpfi`, `crf`, and `deltaf` (if the parameter set is older and lacks these parameters), enter `addpar('fid')`.

Values: 's' sets the axis label for units of seconds.

'm' sets the axis label for units of ms.

'u' sets the axis label for units of μs.

'n' sets no axis label display.

See also: *NMR Spectroscopy User Guide*

Related:
- `addpar` Add selected parameters to the current experiment (M)
- `axis` Axis label for displays and plots (P)
- `dscale` Display scale below spectrum or FID (C)
- `pscale` Plot scale below spectrum or FID (C)
bandinfo
Shaped pulse information for calibration (M)

Syntax:
`bandinfo<(shape,width<,ref_power>)>:duration,power`

Description: Displays a table containing the duration and the predicted 90° pulse power setting for the pulse shape and bandwidth given by the arguments. No parameter settings are changed. The necessary data is contained in the `shapeinfo` file in the `shapelib` subdirectory.

Arguments:
- `shape` is the name of the shape. The default is system prompts for a name.
- `width` is the bandwidth, in Hz, desired for the pulse.
- `ref_power` is value of `tpwr` to which `pw90` is set. The default is 55 dB.
- `duration` is the duration, in μs, of the pulse.
- `power` is the predicted 90° pulse power setting.

Examples:
```
bandinfo
bandinfo('sinc',10):pw,tpwr
```

See also: `User Programming`

Related:
- `pulseinfo`
 Shaped pulse information for calibration (M)
- `pw90`
 90° pulse width (P)
- `tpwr`
 Observe transmitter power level with linear amplifiers (P)

banner
Display message with large characters (C)

Syntax:
`banner(message<,color>)`

Description: Displays text as large-size characters on the graphics windows.
Arguments: message is the text to be displayed. If the text includes a single quotation mark ('), it must be preceded by a backslash (\'). Multiline displays are available by inserting two backslashes (\\') between lines. Any undefined characters are displayed as a “bug” shape.

color is the color of text on a color display: 'red', 'yellow', 'green', 'cyan', 'blue', 'magenta', and 'white'. The default is 'yellow'.

Examples:

\texttt{banner('banner sample')} \quad banner('Don't Touch', 'blue')

See also: User Programming

\textbf{bc}

\textbf{1D and 2D baseline correction (C)}

\textbf{Description:} Makes 1D or 2D baseline correction using a spline or a second to twentieth order polynomial fitting of predefined baseline regions. bc defines every other integral (those integrals that disappear when intmod='partial') as baseline and attempts to correct these points to zero.

\textbf{1D baseline correction}

\textbf{Syntax:} bc<(n|'unbc'<,nsubregion<,minpoints<,minregion>>>)>

\textbf{Description:} Performs a 1D baseline correction. The nonintegrated parts of the spectrum (i.e., every odd region between integral reset points, or the integral gaps with intmod='partial') are divided into baseline subregions. The number of baseline subregions in each area are adjusted as possible, so that the subregions are more or less equal in size. Finally, the “center of gravity” (midpoint in \textit{x} and average of the \textit{y} values in the region) for each of the subregions is calculated.

\textbf{Arguments:} \textit{n} is an integer from 1 to 20 for the baseline correction step. A polynomial of the (n-1)th order is calculated “through” the “baseline points” using the Chebychev least-squares fitting algorithm, and that polynomial function is subtracted from the spectrum. The coefficients of the polynomial are written into the file \texttt{curexp+/bc.out}. The default is \texttt{i(a spline fit)}. \texttt{'unbc'} is a keyword to make \texttt{bc} read in the coefficients from the file written by the previous \texttt{bc} operation and reverse that operation. This option is only functional for polynomials with two or more coefficients performing baseline correction operations on 1D spectra or individual 2D traces (i.e., baseline corrections cannot be undone with the default spline correction).

\texttt{nsubregion} defines the number of subregions (minimum 3, maximum 400). By default, the total number of subregions is 20 (if \texttt{fn<2048}), 40 (if \texttt{fn=2048} or \texttt{fn=4096}), or 80 (if \texttt{fn>4096}).

\texttt{minpoints} sets the minimum number of data points required in an integral gap for \texttt{bc} to regard it as baseline. Use this to exclude small, nonintegrated areas between close signals. The default is \texttt{fn/1000} (but at least 3).

\texttt{minregion} defines the minimum number of subregions assigned to each baseline area. The default is 1.

\textbf{Examples:} bc

\texttt{bc(3)}

\texttt{bc('unbc')} \quad \texttt{bc(1,200,8,2)} gives a spline correction using 200 baseline subregions, a gap of 8 data points between two (even) integral regions is regarded as baseline, and each baseline area is split into at least two subregions.

\textbf{2D baseline correction}

\textbf{Syntax:} \texttt{bc(trace_direction<,num_coeff><,trace_start> \quad <,trace_end>)}

\textbf{Description:} 2D baseline correction can be performed on three types of 2D data:
• f2 spectra (trace_direction='f2') after the first half of a 2D FT (wft1da).

• f2 traces (trace_direction='f2') after a full 2D FT (wft2da).

• f1 traces (trace_direction='f1') after a full 2D FT (wft2da).

Arguments: trace_direction specifies the direction, 'f1' or 'f2', along which the 2D baseline correction is to take place.

num_coeff is the number of coefficients, from 1 to 20, used in the fitting procedure. The default value is 1, which gives a spline fit. A value of 2 gives a linear baseline fit \((a + bx)\), a value of 3 gives a quadratic fit \((a + bx + cx^2)\), etc. The maximum value (20) gives a 19th-order polynomial fit with 20 coefficients.

trace_start is the trace number for the spectrum on which the 2D baseline correction is to start. It must lie within the appropriate range or an error results.

trace_end is the trace number for the spectrum on which the 2D baseline correction is to end. It must lie within the appropriate range or an error results.

Examples:

bc('f1')
bcc('f2',3)
bcc('f2',3,10,60)

See also: NMR Spectroscopy User Guide

Related:

dc Calculate spectral drift correction (C)
fn Fourier number in directly detected dimension (P)
intmod Integral display mode (P)
trace Mode for 2D data display (P)
wft1da Weight and Fourier transform phase-sensitive data (M)
wft2da Weight and Fourier transform phase-sensitive data (M)

beepoff Turn beeper off (C)

Description: Turns off the beeper sound so that the system does not use sound to warn the user when errors occur. The default is the beeper is turned on.

See also: User Programming

Related: beepon Turn beeper on (C)

beepon Turn beeper on (C)

Syntax: beepon

Description: Turns on the beeper sound so that the user hears a sound when errors occur. The default is the beeper is turned on.

See also: User Programming

Related: beepoff Turn beeper off (C)

bigendian Determine system byte order (C)

Syntax: bigendian:$type

Description: The bigendian command determines the system byte order for storing numbers. One architecture is Big Endian, used by Sun computers with the “Sparc” CPU’S. The other architecture is Little Endian, used by most PCs.

Return values to argument $type:

1 if it is a “Big Endian” system.
0 if it is a “Little Endian” system.
This command should rarely be used. Its only current use is when imaging .fdf files are created. The .fdf file headers can specify whether the data is stored as big or little endian.

binom
Set up parameters for BINOM pulse sequence (M)
Description: Sets up a binomial water suppression pulse sequence.
See also: *NMR Spectroscopy User Guide*

bioref
Bio-NMR Referencing (P)
Applicability: All
Syntax: bioref='<y or n>'
Description: Flag, global or local, for Bio-NMR Referencing. Setting the flag (bioref='y') sets the system to bio-NMR referencing (based on nuctables/nuctabrefBio) rather than standard IUPAC/organic chemistry referencing (based on nuctables/nuctabref). Bio-NMR referencing uses DSS for nuclei such as 13C and liquid NH$_3$ for 15N.

Creating bioref as a local parameter (create('bioref','flag') creates a local flag) permits its use for a specific case. The parameter can be created as a local parameter and saved with a standard parameter set (stdpar/N15) to enable bio-NMR referencing for a specific nucleus. The local value of the parameter takes precedence over the global parameter.

create('bioref','flag','global') — creates a global flag.
setenumeral('bioref',2,'y','n','global') — sets the possible values of a string parameter in a parameter tree.

Examples: bioref='y' sets referencing to use nuctables/nuctabrefBio

bootup
Macro executed automatically (M)
Syntax: bootup<(foreground)>
Description: Executed automatically when VnmrJ is started up. The bootup macro displays a message, looks for a macro login in the user's local maclib directory and executes it (if found), starts Acqstat and acqi (acqi is not run if system is configured as a workstation), and then starts the menu system. This set of actions can be modified on a per user basis by constructing custom bootup or login macros in the user's maclib directory. A custom login macro is preferred because all custom bootup macros are overridden whenever a new VnmrJ release is installed.

Arguments: foreground is 0 if VnmrJ is being run in the foreground or nonzero if being run in the background. This argument is passed to the login macro.

See also: *User Programming*

Related:
acqi Interactive acquisition display process (C)
Acqstat Bring up the acquisition status display (U)

box
Draw a box on a plotter or graphics display (C)
Syntax: box(<'keywords',>x1mm,x2mm,y1mm,y2mm
<,'nolimit'>)<:r1,r2>
Description: Draws a box on a plotter or a graphics display.
Arguments: 'keywords' identifies the output device ('graphics' | 'plotter'), drawing mode ('xor' | 'normal'), and drawing capability ('newovly' | 'ovly' | 'ovlyC').

- 'graphics' | 'plotter' is a keyword for the output device. The default is 'plotter'. The output selected is passed to subsequent pen, move, or draw commands and remains active until a different output is specified.

- 'xor', 'normal' is a keyword for the drawing mode when using the 'graphics' output device. The default is 'normal'. In the 'xor' mode, if a line is drawn such that one or more points of the line are in common with a previous 'xor' line, the common points are erased. In the normal mode, the common points remain. The mode selected is passed to subsequent pen, move, and draw commands and remains active until a different mode is specified.

- 'newovly', 'ovly' and 'ovlyC' are keywords that specify an interactive drawing capability that is slightly slower than the 'xor' mode but more consistent in color. 'newovly' clears any previous draws, boxes, and writes made with the 'ovly' modes and draws the figure. 'ovly' draws without clearing so that multi-segment figures can be created. 'ovlyC' clears without drawing.

x1mm is the left edge of the box, x2mm is the right edge, y1mm is the bottom, and y2mm is the top. The location of the edges are given in plotter units (mm on most plots) and are scaled in mm for the graphics display. (If units are in Hz or ppm, you can use the hztomm command to convert units.)

'nolimit' allows the box to extend outside the limits determined by the parameters sc, wc, sc2, and wc2.

r1, r2 return the location of the upper left corner of the box.

Examples:

```plaintext
box('plotter', 20, 100, 40, 150)
box(25, 105, 45, 155, 'nolimit'): r1, r2
```

See also: NMR Spectroscopy User Guide

Related:

- gin Return current mouse position and button values (C)
- hztomm Convert positions from Hz or ppm to plotter units (C)
- sc Start of chart (P)
- sc2 Start of chart in second direction (P)
- wc Width of chart (P)
- wc2 Width of chart in second direction (P)
- wcmax Maximum width of chart (P)

boxes

Draw boxes selected by the mark command (M)

Syntax: boxes<('graphics' | 'plotter')>

Description: Draws boxes on a plotter or a graphics display with the location of the edges given in Hz. The data to make the boxes is stored in the mark2d.out file produced by the mark command. If there is no data in mark2d.out, a box is drawn from the current cursor positions. The boxes command also numbers the boxes above the upper left corner.

Arguments: 'graphics' | 'plotter' is a keyword to send output to the graphics display or to the plotter, respectively. The default is 'graphics'.

Examples:

```plaintext
boxes
boxes('plotter')
```
bpa

Plot boxed parameters (M)

Syntax: `bpa: $sc2_minimum`

Description: Plots a box around the entire chart (assuming blank paper) and then plots "chemist-style" parameters in boxes along the lower edge of the chart. `bpa` is the same as `ppa`, but with a different layout. Both `ppa` and `bpa` behave somewhat naively if the pulse sequence is more complex, but they were designed primarily for chemists, not for spectroscopists.

Arguments: `sc2_minimum` returns the minimum value for `sc2` to plot a scale properly. To use the command `pir, vp` has to be set to a non-zero value.

See also: NMR Spectroscopy User Guide

Related:
- `apa` Plot parameters automatically (M)
- `pap` Plot out "all" parameters (C)
- `pir` Plot integral amplitudes below spectrum (C)
- `ppa` Plot a parameter list in "English" (M)
- `sc2` Start of chart in second direction (P)
- `vp` Vertical position of spectrum (P)

br24

Set up parameters for BR24 pulse sequence (M)

Applicability: Systems with solids hardware.

Description: Converts a FLIPFLOP, MREV8, or S2PUL parameter set into a BR24 solids line-narrowing multiple-pulse sequence.

See also: User Guide: Solid-State NMR

Related:
- `cylbr24` Set up parameters for cycled BR24 pulse sequence (M)
- `flipflop` Set up parameters for FLIPFLOP pulse sequence (M)
- `mrev8` Set up parameters for MREV8 pulse sequence (M)
- `s2pul` Set up standard two-pulse sequence (M)

bs

Block size (P)

Description: Directs the acquisition computer, as data are acquired, to periodically store a block of data on the disk, from where it can be read by the host computer.

CAUTION: If `bs='n'`, block size storage is disabled and data are stored on disk only at the end of the experiment. If the experiment is aborted prior to termination, data will be lost.

Values: 1 to 32767 transients, 'n'

See also: NMR Spectroscopy User Guide

Related:
- `wbs` Specify action when `bs` transients accumulate (C)
- `wbs` When block size (P)

btune

Tune broadband channel on MERCURYplus/-Vx (M)

Applicability: MERCURYplus/-Vx systems

Description: Turns on the broadband transmitter, directing to the probe about 0.5 watts of rf at frequency `sfrq`, enabling the user to tune the probe coil. Before entering `btune`, be sure to move the proper cable on the back of the left-hand magnet leg to the BNC connector labeled TUNE, and also to move the proper cable.
leading to the probe to the BNC connector labeled TUNE. Enter `tuneoff` to turn off the transmitter. `btune` cannot be executed while the console is acquiring. For the full tuning procedure, see the probe installation manual.

See also: *VnmrJ Liquids NMR; Autoswitchable NMR Probes Installation*

Related:
- `acqi` Interactive acquisition display process (C)
- `sethw` Set values for hardware in acquisition system (C)
- `sfrq` Transmitter frequency of observe nucleus (P)
- `su` Submit a setup experiment to acquisition (M)
- `tuneoff` Turn off probe tuning mode, *MERCURY plus/-Vx* (M)
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c13</td>
<td>Automated carbon acquisition (M)</td>
</tr>
<tr>
<td>ci3p</td>
<td>Process 1D carbon spectra (M)</td>
</tr>
<tr>
<td>calcdim</td>
<td>Calculate dimension of experiment (C)</td>
</tr>
<tr>
<td>calalpha</td>
<td>Recalculate alfa so that first-order phase is zero (M)</td>
</tr>
<tr>
<td>calibflag</td>
<td>Correct systematic errors in DOSY experiments (P)</td>
</tr>
<tr>
<td>calibrate</td>
<td>Start a dialog for autocalibration routines (M)</td>
</tr>
<tr>
<td>callacq</td>
<td>Utility macro to call Acq command (M)</td>
</tr>
<tr>
<td>capt</td>
<td>Automated carbon and APT acquisition (M)</td>
</tr>
<tr>
<td>Carbon</td>
<td>Set up parameters for 13C experiment (M)</td>
</tr>
<tr>
<td>cat</td>
<td>Display one or more text files in text window (C)</td>
</tr>
<tr>
<td>capttn</td>
<td>Coarse attenuator type (P)</td>
</tr>
<tr>
<td>cd</td>
<td>Change working directory (C)</td>
</tr>
<tr>
<td>cdc</td>
<td>Cancel drift correction (C)</td>
</tr>
<tr>
<td>cdept</td>
<td>Automated carbon and DEPT acquisition (M)</td>
</tr>
<tr>
<td>cdump</td>
<td>Prints the current graphics screen (M)</td>
</tr>
<tr>
<td>celem</td>
<td>Completed FID elements (P)</td>
</tr>
<tr>
<td>center</td>
<td>Set display limits for center of screen (C)</td>
</tr>
<tr>
<td>centersw</td>
<td>Move cursor to center of spectrum (M)</td>
</tr>
<tr>
<td>centerswl</td>
<td>Move cursor to center of spectrum in 1st indirect dimension (M)</td>
</tr>
<tr>
<td>centersw2</td>
<td>Move cursor to center of spectrum in 2nd indirect dimension (M)</td>
</tr>
<tr>
<td>cexp</td>
<td>Create an experiment (M)</td>
</tr>
<tr>
<td>cf</td>
<td>Current FID (P)</td>
</tr>
<tr>
<td>cfpmult</td>
<td>Calculate first-point multiplier for 2D experiments (M)</td>
</tr>
<tr>
<td>change</td>
<td>Submit a change sample experiment to acquisition (M)</td>
</tr>
<tr>
<td>checkstring</td>
<td>Find and replace unwanted characters (C)</td>
</tr>
<tr>
<td>chiliConf</td>
<td>Control flag set by ecc_on and ecc_off (P)</td>
</tr>
<tr>
<td>Cigar2j3j</td>
<td>Convert the parameter to a CIGAR2j3j experiment (M)</td>
</tr>
<tr>
<td>cla</td>
<td>Clear all line assignments (M)</td>
</tr>
<tr>
<td>clm</td>
<td>Calculated transition number (P)</td>
</tr>
<tr>
<td>clamp</td>
<td>Calculated transition amplitude (P)</td>
</tr>
<tr>
<td>cleanexp</td>
<td>Remove old files and directories from an experiment (M)</td>
</tr>
<tr>
<td>clear</td>
<td>Clear a window (C)</td>
</tr>
<tr>
<td>clearedosy</td>
<td>Delete temporarily saved data in current sub experiment (M)</td>
</tr>
<tr>
<td>clfreq</td>
<td>Calculated transition frequency (P)</td>
</tr>
<tr>
<td>clindex</td>
<td>Index of experimental frequency of a transition (P)</td>
</tr>
<tr>
<td>clradd</td>
<td>Clear add/subtract experiment (C)</td>
</tr>
<tr>
<td>color</td>
<td>Select plotting colors from a graphical interface (M)</td>
</tr>
<tr>
<td>combiplate</td>
<td>View a color map for visual analysis of VAST microtiter plate (U)</td>
</tr>
<tr>
<td>combishow</td>
<td>Display regions (red, green, and blue) in CombiPlate window (M)</td>
</tr>
<tr>
<td>compressfid</td>
<td>Compress double-precision FID data (M,U)</td>
</tr>
<tr>
<td>config</td>
<td>Display current configuration and possibly change it (M)</td>
</tr>
<tr>
<td>confirm</td>
<td>Confirm message using the mouse (C)</td>
</tr>
<tr>
<td>Console</td>
<td>System console type (P)</td>
</tr>
</tbody>
</table>
contact_time MAS cross-polarization spin-lock contact time (M)
continueMovie Continue movie in either forward or backward direction (C)
convert Convert data set from a VXR-style system (M,U)
convertbru Convert Bruker data (M,U)
copy Copy a file (C)
cos Find cosine value of an angle (C)
Cosy Convert the parameter to a COSY experiment (M)
cosyps Set up parameters for phase-sensitive COSY pulse sequence (M)
cp Copy a file (C)
cycle Cycle phase (P)
cpmgt2 Set up parameters for CPMGT2 pulse sequence (M)
cpos_cvt Convert data set from a VXR-style system (M,U)
cptmp Copy experiment data into experiment subfile (M)
cpx Create pbox shape file (M)
cqexp Load experiment from protocol (M)
cqfindz0 Run an experiment to find the value of z0 (M)
cqgmap Perform gradient shimming utility functions (M)
cqinit Initialize liquids study queue (M)
cqpars Create study queue parameters for liquids (M)
cqplot Macro to perform generic 2D plot (M)
cqprotocol Macro to create protocols (M)
cqreset Reset study queue parameters (M)
cqsavestudy Macro to save study queue parameters (M)
cqwtmenu Macro to set weighting functions from a panel (M)
ct Completed transients (P)
cr Cursor position in directly detected dimension (P)
crl Clear reference line in directly detected dimension (P)
crl1 Clear reference line in 1st indirectly detected dimension (P)
crl2 Clear reference line in 2nd indirectly detected dimension (P)
crcom Create user macro without using text editor (M)
create Create new parameter in a parameter tree (C)
createqcomp Create qcomp parameter (M)
crf Current time-domain cursor position (P)
crl Clear reference line in directly detected dimension (M)
crl1 Clear reference line in 1st indirectly detected dimension (M)
crl2 Clear reference line in 2nd indirectly detected dimension (M)
crmode Current state of the cursors in df, ds, or dconi programs (P)
crof2 Recalculate rof2 so that \(\ell_p = 0 \) (M)
cryo_noisetest Run Cold Probe conditioning experiments (M)
cryo_client Start the CryoBay Monitor program (M, U)
cutext Clear the text of the current experiment (C)
curexp Current experiment directory (P)
curscan Scan currently in progress (P)
curwin Current window (P)
cutoff Data truncation limit (P)
cyclenoe Set up parameters for CYCLENOE pulse sequence (M)
cylbr24 Set up parameters for cycled BR24 pulse sequence (M)
c13

Automated carbon acquisition (M)

Syntax: `c13<(solvent)>`

Description: Prepares parameters for automatically acquiring a standard 13C spectrum. The parameter `wexp` is set to 'procplot' for standard processing. If `c13` is used as the command for automation via the `enter` command, the `au` is supplied automatically and should not be entered on the MACRO line of the `enter` program. However, it is possible to customize the standard c13 macro on the MACRO line by following it with additional commands and parameters. For example, `c13 nt=1` uses the standard c13 macro but with only one transient.

Arguments: `solvent` is the name of the solvent. In automation mode the solvent is supplied by the `enter` program. The default is 'CDCl3'.

Examples: `c13`
`c13 ('DMSO')`

See also: *NMR Spectroscopy User Guide*

Related:
- `au` Submit experiment to acquisition and process data (M)
- `c13p` Process of 1D carbon spectra (M)
- `enter` Enter sample information for automation run (C)
- `proc1d` Processing macro for simple (non-arrayed) 1D spectra (M)
- `procplot` Automatically process FIDs (M)
- `wexp` When experiment completes (P)

See also: *NMR Spectroscopy User Guide*

Related:
- `aphx` Perform optimized automatic phasing (M)
- `c13` Automated carbon acquisition (M)
- `integrate` Automatically integrate 1D spectrum (M)
- `noislm` Limit noise in spectrum (M)
- `proc1d` Processing macro for simple (non-arrayed) 1D spectra (M)
- `setref` Set frequency referencing for proton spectra (M)
- `thadj` Adjust threshold (M)
- `tmsref` Reference spectrum to TMS line (M)
- `vsadjc` Adjust vertical scale for carbon spectra (M)

c13p

Process 1D carbon spectra (M)

Syntax: `c13p`

Description: Processes non-arrayed 1D carbon spectra using a set of standard macros. `c13p` is called by the `proc1d` macro, but can also be used directly. Fully automatic processing (up to a point where a spectrum could be plotted) is provided: Fourier transformation (using pre-set weighting functions), automatic phasing (`aphx` macro), automatic integration (`integrate` macro if required only), vertical scale adjustment (`vsadjc` macro), avoiding excessive noise (`noislm` macro), threshold adjustment (`thadj` macro), and referencing to the TMS signal if present (`setref` macro then `tmsref` macro).

See also: *NMR Spectroscopy User Guide*

Related:
- `aphx` Perform optimized automatic phasing (M)
- `c13` Automated carbon acquisition (M)
- `integrate` Automatically integrate 1D spectrum (M)
- `noislm` Limit noise in spectrum (M)
- `proc1d` Processing macro for simple (non-arrayed) 1D spectra (M)
- `setref` Set frequency referencing for proton spectra (M)
- `thadj` Adjust threshold (M)
- `tmsref` Reference spectrum to TMS line (M)
- `vsadjc` Adjust vertical scale for carbon spectra (M)

calcdim

Calculate dimension of experiment (C)

Syntax: `calcdim`
Description: Calculates the dimension of an experiment and puts the result into the parameter `arraydim`. If an experiment is arrayed, `arraydim` is the product of the size of the arrays.

See also: *NMR Spectroscopy User Guide*

Related: `arraydim` Dimension of experiment (P)

calfa

Recalculate alfa so that first-order phase is zero (M)

Syntax: `calfa`

Description: Based upon the current `alfa` and `lp` values, `calfa` calculates a new value for `alfa` so that the first-order phase parameter `lp` is rendered approximately 0. When digital filtering is active (`dsp='r'` or `dsp='i'`), `calfa` also adjusts `rof2` as well as `alfa`. For `calfa` to work properly, a trial spectrum must be obtained and phased to pure absorption. This spectrum provides `calfa` with the current `alfa` and `lp` values. `calfa` pertains to processing 2D data. Unless `lp` is approximately 0, `fpmult` will affect both the `dc` offset and the curvature of the spectrum.

See also: *NMR Spectroscopy User Guide*

Related: `alfa` Set `alfa` delay before acquisition (P)

`cfpmult` Calculate first-point multiplier for 2D experiments (M)

`crof2` Recalculate `rof2` so that `lp = 0` (M)

`dc` Calculate spectral drift correction (C)

`dsp` Type of DSP for data acquisition (P)

`fpmult` First-point multiplier for np FID data (P)

`hoult` Set parameters `alfa` and `rof2` according to Hoult (M)

`lp` First-order phase in directly detected dimension (P)

`rof2` Receiver gating time following pulse (P)

calibflag

Correct systematic errors in DOSY experiments (P)

Syntax: `calibflag`

Description: Corrects systematic errors in DOSY experiments.

Values: 'y' corrects systematic deviations in DOSY analysis.

'n' omits gradient correction in DOSY analysis.

See also: *NMR Spectroscopy User Guide*

Related: `dosy` Process DOSY experiments (M)

calibrate

Start a dialog for autocalibration routines (M)

Syntax: `calibrate`

Description: Starts a dialog for autocalibration routines.

callacq

Utility macro to call Acq command (M)

Syntax: `callacq(arg_string)`

Description: Utility macro to construct a string to pass to psg via the `Acq()` command. This macro should be used only by users with advanced knowledge. A well-constructed argument string is required. The motivation for this macro is to make the ‘go’ macro re-entrant, while still synchronizing with VnmrJ.

Arguments: `arg_string` is a character string constructed from a macro.

Examples: `callacq($callback)`
Capt

Automated carbon and APT acquisition (M)

Syntax: `capt<(solvent)>`

Description: Prepares parameters for automatically acquiring a standard 13C spectrum, followed by an APT experiment. In non-automation mode, the carbon and APT spectra are acquired in the experiment in which capt is entered. Following acquisition completes, the commands `rttpm('C13')` and `rttpm('apt')` can be used for further processing of the carbon and APT spectra, respectively.

Arguments: `solvent` is name of the solvent used. In automation mode, the enter program supplies name. In non-automation mode, the default is 'cdcl3'.

Syntax: `capt au`
 `capt('dmso')`

See also: NMR Spectroscopy User Guide

Related:
- Apt Prepare parameters for APT experiment (M)
- c13 Automated carbon acquisition (M)
- enter Enter sample information for automation run (C)
- rttpm Retrieve experiment subfile (M)

Carbon

Set up parameters for 13C experiment (M)

Description: Set up parameters for 13C experiment

Cat

Display one or more text files in text window (C)

Syntax: `cat(file1<,file2,...)>`

Description: Displays the contents of one or more text files on the text window. It pauses after the window has filled and waits for the user to indicate whether it should display more or should terminate.

Arguments: `file1, file2,...` are the names of the files to be displayed.

Examples:
- `cat('/vnmr/manual/cat')`
- `cat('/vnmr/manual/cat','/vnmr/manual/cattn')`

See also: NMR Spectroscopy User Guide

cattn

Coarse attenuator type (P)

Applicability: Systems with a coarse attenuator.

Description: Identifies the type of coarse attenuator if this attenuator is present on the current rf channel. The value of cattn is set in the Spectrometer Configuration window (opened by entering config) using the label Coarse Attenuator.

Values:
- 0 for no coarse attenuator, as in the case with class C amplifiers (Not Present choice in Spectrometer Configuration window).
- 79 for standard systems (79 dB choice in Spectrometer Configuration window).
127 for imaging attenuator (63.5 dB SIS choice in Spectrometer Configuration window).
63 for deuterium decoupler channel.

See also: *VnmrJ Installation and Administration*

Related:
- `config` Display current configuration and possibly change it (M)
- `fattn` Fine attenuator (P)
- `tpwr` Observe transmitter power level with linear amplifiers (P)

cd
Change working directory (C)

Syntax: `cd<(directory)>`

Description: Changes current working directory to another directory.

Arguments: `directory` is the name of the directory that becomes the new current working directory. The change is made only if the directory name already exists and the user has permission to be in the directory. If no argument is included, `cd` changes the current working directory to the user’s home directory.

Examples:
```
cd
```
```
cd(userdir+'/exp1')
cd('/home/george/vnmrsys')
```

See also: *NMR Spectroscopy User Guide*

Related: `pwd` Display current working directory (C)

cdc
Cancel drift correction (C)

Syntax: `cdc`

Description: Turns off the drift correction started by the `dc` command and resets the spectral drift correction parameters `lvl` (level) and `tlt` (tilt) to zero.

See also: *NMR Spectroscopy User Guide*

Related:
- `dc` Calculate spectral drift correction (C)
- `dcg` Drift correction group (P)
- `lvl` Zero-order baseline correction (P)
- `tlt` First-order baseline correction (P)

cdept
Automated carbon and DEPT acquisition (M)

Syntax: `cdept<(solvent)>`

Description: Prepares parameters for automatically acquiring a standard 13C spectrum, followed by a DEPT experiment. In non-automation mode, the carbon and DEPT spectra are acquired in the experiment in which `cdept` was entered. Following the completion of the acquisition, the `rttmp('C13')` and `rttmp('dept')` commands can be used for further processing of the carbon and DEPT spectra, respectively.

Arguments: `solvent` is name of the solvent used. In automation mode, the `enter` program supplies name. In non-automation mode, the default is `‘cdcl3’`.

Examples:
```
cdept
```
```
cdept('DMSO')
```

See also: *NMR Spectroscopy User Guide*

Related:
- `adept` Automatic DEPT analysis and spectrum editing (C)
- `c13` Automated carbon acquisition (M)
- `dept` Prepare parameters for DEPT experiment (M)
cdump

Prints the current graphics screen (M)

Syntax: `cdump('filename')`

Description: `cdump` takes the current display and sends it to the current printer. If an optional `filename` is passed as an argument, the current display will be saved in the print subdirectory of the user's `vnmrsys` directory. This directory will be created if it does not already exist. If the `filename` passed to the `cdump` macro is an absolute pathname, i.e., it starts with a `'/` character, that pathname will be used.

If the current display is saved as a file, the format of the file is specified by the `printformat` parameter. It can be set to the following values. as for PostScript formatted output.

- `japed` for Joint Photographic Experts Group JFIF formatted output.
- `nag` for Portable Network Graphics formatted output.

celem

Completed FID elements (P)

Description: Indicates the current number of completed FIDs in an experiment. When `go` or `au` is entered, `celem` is set to 0. As each FID acquisition is completed, `celem` is updated to reflect this. This parameter is most useful in conjunction with `wbs`, `wnt`, `wexp`, and `werr` processing commands.

See also: *NMR Spectroscopy User Guide*

Related: `arraydim` Dimension of experiment (P)
- `au` Submit experiment to acquisition and process data (C)
- `go` Submit experiment to acquisition (C)
- `ni` Number of increments in 1st indirectly detected dimension (P)
- `wbs` Specify action when bs transients accumulate (C)
- `werr` Specify action when error occurs (C)
- `wexp` Specify action when experiment completes (C)
- `wnt` Specify action when nt transients accumulate (C)

center

Set display limits for center of screen (C)

Description: Sets parameters `sc` and `wc` (horizontal control) and parameters `sc2` and `wc2` (vertical control) to produce a display (and subsequent plot) in the center portion of the screen (and page). For 2D data, space is left for the scales.

See also: *NMR Spectroscopy User Guide*

Related: `full` Set display limits for a full screen (C)
- `fullt` Set display limits for full screen with room for traces (C)
- `left` Set display limits for left half of screen (C)
- `right` Set display limits for right half of screen (C)
- `sc` Start of chart (P)
- `sc2` Start of chart in second direction (P)
- `wc` Width of chart (P)
- `wc2` Width of chart in second direction (P)

centersw

Move cursor to center of spectrum (M)

Description: Sets cursor position parameter `cr` in the directly detected dimension for the center of the spectrum.
See also: *NMR Spectroscopy User Guide*

centersw1
Move cursor to center of spectrum in 1st indirect dimension (M)

Description: Sets cursor position parameter `cr1` in the first indirectly detected dimension to the center of the spectrum.

See also: *NMR Spectroscopy User Guide*

Related:
`centersw`
Move cursor to center of spectrum (M)
`cr`
Cursor position in directly detected dimension (P)

centersw2
Move cursor to center of spectrum in 2nd indirect dimension (M)

Description: Sets cursor position parameter `cr2` in the second indirectly detected dimension to the center of the spectrum.

See also: *NMR Spectroscopy User Guide*

Related:
`centersw`
Move cursor to center of spectrum (M)
`cr2`
Cursor position in 2nd indirectly detected dimension (P)

celexp
Create an experiment (M)

Syntax: `celexp(<experiment_dir>,<experiment_number>)`

Description: Creates an experiment as a temporary workspace that can hold a complete 1D, 2D, or 3D data set. Up to 9999 experiments can be created. Experiment 5 is special because it is the add-subtract experiment. `celexp` creates the appropriate `jexp`xxx macro so that the newly created experiment can be joined.

Arguments:
`experiment_dir` specifies the path of the directory in which the particular experiment is to be created. If `experiment_dir` is not entered, the default is the user directory specified by `userdir`.
`experiment_number` specifies the number, from 1 to 9999, of the experiment to be created.

Examples:
`celexp(3)`
`celexp('/data',2)`

See also: *NMR Spectroscopy User Guide*

Related:
`delexp`
Delete an experiment (C)
`jexp`
Join existing experiment (C)
`userdir`
User directory (P)

cf
Current FID (P)

Description: Specifies which FID to operate on when working with multi-FID data. All subsequent operations such as Fourier transformation are applied to the selected data block.

When an experiment acquires `nf` number of data segments through explicit acquisition, `cf` indicates the `cf`th FID to use. For example, in the COSY-NOESY experiment with `nf=2`, `cf=1` would select the COSY part of the experiment, and `cf=2` would select the NOESY part.

Values: 1 through the value of parameter `nf`.
See also: *NMR Spectroscopy User Guide*

Related: nf Number of FIDs (P)

cfpmult
Calculate first-point multiplier for 2D experiments (M)

Description: Calculates an `fpmult` value for the dataset, which is then used by `wft2da`. For 2D experiments, such as NOESY, run `cfpmult` on the transformed first increment, prior to entering `wft2da`, to minimize “f2 ridges” in the final 2D spectrum. To do this manually for a 2D dataset, enter `fpmult=1.0 wft(1)` in the command line and note whether the spectrum (essentially the baseline) moves up or down when `dc` is typed. Vary the value of `fpmult` until the dc correction (jump in the baseline) is as small as possible. With care, `fpmult` can be set to two decimal places. Typical values for `fpmult` range from 1.00 to 2.00. The default value is 1.0.

This calculation only needs to be performed for cosine-type experiments, such as NOESY, where both the t2 FID and the t1 interferogram decay. `cfpmult` might give incorrect values for first increments of experiments having baseline distortions (e.g., water suppression with 11-echo or 1331); in such cases, manual optimization of `fpmult` is more suitable.

When processing 2D data, unless the parameter `lp` is approximately 0, `fpmult` affects both the dc offset and the curvature of the spectrum. See the entries for `alfa` and `calfa` for more information.

See also: *NMR Spectroscopy User Guide*

Related: alfa Set alfa delay before acquisition (P)
calfa Recalculate alfa so that first-order phase is zero (M)
crof2 Recalculate rof2 so that lp = 0 (M)
dc Calculate spectral drift correction (C)
fpmult First point multiplier for np FID data (P)
lp First-order phase in directly detected dimension (P)
wft2da Weight and Fourier transform phase-sensitive data (M)

change
Submit a change sample experiment to acquisition (M)

Applicability: Systems with automatic sample changer.

Description: Removes the sample currently in the probe and loads the sample currently in sample location `loc`. `change` runs in the acquisition computer and is inoperative if `loc` is 0 and/or `traymax` is ‘n’ or 0. `change` also sets all hardware according to the current parameters.

See also: *NMR Spectroscopy User Guide*

Related: au Submit experiment to acquisition and process data (C)
ga Submit experiment to acquisition and FT the result (C)
go Submit experiment to acquisition (C)
loc Location of sample in tray (P)
lock Submit an autolock experiment to acquisition (C)
sample Submit change sample, Autoshim experiment to acquisition (M)
shim Submit an Autoshim experiment to acquisition (C)
spin Submit a spin setup experiment to acquisition (C)
su Submit a setup experiment to acquisition (M)
traymax Sample changer tray size (P)

checkstring
Find and replace unwanted characters (C)

Syntax: `checkstring('VALUE',variable):variable`
Description: `checkstring` is used panel to check and replace user-entered strings like `samplename`, `notebook`, or `page` for Unix-unfriendly characters:
" " (blank space), , : * ! ? (") ["] { " } " > # $ & /
Data may be saved to unexpected directories (or not at all) with Save Data Setup (used for automatic saving of NMR data) if operating system special characters are used within a filename.
An error/warning message is issued and the respective character(s) is/are replaced with an underscore, _. Multiple consecutive characters are replaced by one single underscore. Example: `samplename = 'special type of (new) sample'` becomes 'special_type_of_new_sample'.

chiliConf
Control flag set by ecc_on and ecc_off (P)

Applicability: Systems with Varian, Inc. Cold Probes

Description: Control flag set by ecc_on and ecc_off macros

Values: E — enable PSG control of ECC
n — disable PSG control of ECC

Related:
- `ecc_on` Turns on eddy current compensation for Cold Probes (M)
- `ecc_off` Turns off eddy current compensation for Cold Probes (M)

Cigar2j3j
Convert the parameter to a CIGAR2j3j experiment (M)

Syntax: Convert the parameter to a CIGAR2j3j experiment.

cla
Clear all line assignments (M)

Syntax: `cla`

Description: Clears the line assignment parameters `clindex` and `slfreq` for spin simulation iteration, which matches simulated spectra to actual data.

See also:
- *NMR Spectroscopy User Guide*

Related:
- `assign` Assign transitions to experimental lines (M)
- `dla` Display line assignments (M)
- `clindex` Index of experimental frequency of a transition (P)
- `slfreq` Measured line frequencies (P)

cla
Calculated transition number (P)

Description: A global arrayed parameter that stores the transition number of calculated transitions of the spin simulation program when they are above a threshold set by `sth`. In the iterative mode, the `cla` value of an assigned transition is associated with an experimental frequency whose index is the `clindex` value.

See also:
- *NMR Spectroscopy User Guide*

Related:
- `clamp` Calculated transition amplitude (P)
- `clifreq` Calculated transition frequency (P)
- `clindex` Index of experimental frequency of a transition (P)
- `sth` Minimum intensity threshold (P)
clamp Calculated transition amplitude (P)
Description: A global arrayed parameter that stores the transition amplitude of calculated transitions of the spin simulation program when they are above a threshold set by the parameter sth. Enter dla('long') to display clamp.
See also: NMR Spectroscopy User Guide
Related: cla Calculated transition number (P)
clfreq Calculated transition frequency (P)
cliindex Index of experimental frequency of a transition (P)
dla Display line assignments (C)
sth Minimum intensity threshold (P)

cleanexp Remove old files and directories from an experiment (M)
Syntax: cleanexp<file1, file2,…>
Description: Removes experiment subfiles from chained experiments that exist in an experiment directory. cleanexp only cleans the currently active experiment.
Arguments: file1, file2, … are specific experiment subfiles to be removed. If no argument is given, all files in curexp/subexp are removed.
Examples: cleanexp

cleanexp('H1','relayh')
See also: NMR Spectroscopy User Guide
Related: curexp Current experiment directory (P)
hccorr Automated proton, carbon, and HETCOR acquisition (M)
hcsey Automated proton and COSY acquisition (M)

clear Clear a window (C)
Syntax: clear<window_number>
Description: Clears one of the four windows on the GraphOn terminal (status, input, graphics, text) or one of the two windows on the Sun (text and graphics).
Arguments: window_number is the number (1 to 4) of the window to be cleared:
• 1 clears the status window (GraphOn only)
• 2 clears the graphics window
• 3 clears the input window (GraphOn only)
• 4 clears the text window (the default value).
Examples: clear
clear(2)
See also: User Programming

cleardosy Delete temporarily saved data in current sub experiment (M)
Syntax: cleardosy
Description: Deletes any copies of DOSY data temporarily saved in the current sub experiment.
See also: NMR Spectroscopy User Guide
Related: dosy Process DOSY experiments (M)
clfreq | **Calculated transition frequency (P)**
Description: A global arrayed parameter that stores the transition frequency of calculated transitions of the spin simulation program when they are above a threshold set by the parameter sth. Enter dla to display clfreq.
See also: NMR Spectroscopy User Guide
Related:
- cla: Calculated transition number (P)
- clamp: Calculated transition amplitude (P)
- cliindex: Index of experimental frequency of a transition (P)
- dla: Display line assignments (M)
- sth: Minimum intensity threshold (P)

clindex | **Index of experimental frequency of a transition (P)**
Description: A global arrayed parameter where each value contains the index of an experimental frequency assigned to the associated calculated transition for use in iterative spin simulation. Use assign to make the assignments. A value of zero indicates no assignment.
See also: NMR Spectroscopy User Guide
Related:
- assign: Assign transitions to experimental lines (M)
- cla: Clear line assignments (M)
- clindex: Calculated transition number (P)
- dla: Display line assignments (M)

clradd | **Clear add/subtract experiment (C)**
Description: Deletes the add/subtract experiment (exp5).
See also: NMR Spectroscopy User Guide
Related:
- add: Add current FID to add/subtract experiment (C)
- sub: Subtract current FID from add/subtract experiment (C)

color | **Select plotting colors from a graphical interface (M)**
Description: Displays a window with color palettes for selecting colors for plotting the background of the display screen, spectrum, integral, FID, etc.
See also: NMR Spectroscopy User Guide
Related:
- pl: Plot spectra (C)
- setcolor: Set colors for graphics window and for plotters (C)

combiplate | **View a color map for visual analysis of VAST microtiter plate (U)**
Syntax: (From UNIX) combiplate
Description: Opens the CombiPlate window, which provides a map of microtiter plate, allowing data to be viewed from individual sample wells. The window enables viewing integral region intensities by colors and color densities.
See also: NMR Spectroscopy User Guide
Related:
- combishow: Display regions as red, green, and blue in CombiPlate window (M)
- dlivast: Produce text file and process last wells (M)

combishow | **Display regions (red, green, and blue) in CombiPlate window (M)**
Syntax: combishow(r,g,b)
Description: Displays integral regions shown on the spectrum as red (r), green (g), and blue (b) in the CombiPlate window. CombiPlate reads the regions automatically. 1, 2, or 3 integral regions can be designated. At least one integral region must be specified. CombiShow displays spectra associated with individual wells.

See also: NMR Spectroscopy User Guide

Related: combiplate View a color map for visual analysis of VAST microtiter plate (U) dlivast Produce text file and process last wells (M)

compressfid Compress double-precision FID data (M,U)

Syntax: compressfid(<inFIDdir,>outFIDdir)
 (From UNIX) compressfid -i inFIDdir -o outFIDdir -f
 (From UNIX) compressfid -e exp_number -o outFIDdir -f

Description: Compresses double-precision FID data to single-precision and updates the parameter dp in the file procpar. compressfid can be run through a macro interface in VnmrJ or directly at the UNIX level. In entering FID directory names, leave off the .fid directory extension.

Arguments: inFIDdir is the double-precision FID directory to be compressed. If inFIDdir is not entered, the default FID directory is curexp/acqfil. outFIDdir is the FID directory to receive the output.
exp_number is the number of the experiment that contains the FID data.
-i specifies that the next argument is the input FID directory.
-o specifies that the next argument is the output FID directory.
-e specifies that the next argument is the number of the experiment that contains the FID data. The -e and the -i options are mutually exclusive.
-f specifies that any existing directory with the name outFIDdir.fid is to be overwritten. Note that the macro interface always overwrites any preexisting directory with the name specified by outFIDdir.fid.

Examples: compressfid('/vnmr/fidlib/fid1d',
 'testfid1d') compressfid('testfid1d')
 (From UNIX) compressfid -e 5 -o testfid1d -f
 (From UNIX) compressfid -i /vnmr/fidlib/fid1d -o testfid1d -f

See also: NMR Spectroscopy User Guide

Related: dp Double precision (P)

cfg config Display current configuration and possibly change it (M)

Syntax: config {'display'}

Description: Displays the current system configuration parameters in a window (called the Spectrometer Configuration window). The values of the configuration parameters can be changed if config is entered from the console without any arguments and the user has write access to the directories /vnmr and /vnmr/conpar. If so, the user can interactively make changes to the choices in the window.

If the user does not meet the conditions above, or if the VnmrJ administrator enters the command config('display'), instead of the interactive mode, the user is restricted to the display mode, where system information is listed in the Process tab -> Text page.

If config is entered without any arguments, or if Utilities->System Settings is selected, the program checks if the user is logged in as the administrator. If so,
it runs in interactive mode; if not, it runs in display mode. By entering `config('display')`, `vnmr1` can run in the display mode instead of interactively.

In the interactive mode, a separate panel displays the options with the current choice appearing to the right. Position the mouse over the choice to be modified, then use the left button to cycle through each choice or use the right button to display a menu of all possible choices.

The Use Console Data button sets parameter values in the Spectrometer Configuration window using information captured during console startup.

This button makes `config` capture from the system all values shown in the Spectrometer Configuration window except Sample Changer, Sample Changer Serial Port, Rotor Synchronization, Frequency Overrange, and Upper Limit of decoupler power. For the Gradients entry, `config` recognizes the Performa I and Performa II modules but not other gradients. For the VT Controller entry, if VT is found, `config` does not change the value set, and if VT is not found, `config` changes the value to Not Present.

The EXIT, and SAVE button writes a new `conpar` configuration file before leaving. The QUIT, no SAVE button terminates the session with no modifications to the `conpar` file, but remember that the parameters are always set. These two buttons require use of the left button on the mouse. In the display mode, the current choices are displayed in the text window.

To send output to the printer, enter the sequence of commands `printon config('display') printoff`.

Commands for working with parameters (such as `create`, `destroy`, `exists` and `setvalue`) have an option to select which parameter tree the parameter is in. The `systemglobal` tree is the internal name for `/vnmr/conpar`, and it can be used to search for, modify, or create a parameter in `conpar`. But note that any changes made, either directly (e.g., by typing `vttype=0`) or by using `create` and similar commands, only affect parameters in memory. To permanently change parameters:

- For parameters in `config`, enter the change in the Spectrometer Configuration window and then quit using the Exit & Save button.
- For other parameters, after creating or changing the parameter, enter `fsave('/vnmr/conpar','systemglobal')`.

Both methods, usually restricted to `vnmr1` only, overwrite `conpar`.

The Spectrometer Configuration labels listed below can be changed in the interactive mode. For each label, the choices available and a short description of the label is provided. Shown in parentheses is the associated parameter, which you should refer to for further information.

- **System Type**: Spectrometer or Data Station. Sets the basic type of system (`system`).
- **Console**: or Imager. Sets the type of system console (`Console`). When `go`, `au`, or `ga` is entered, the value set is copied to the current experiment as the `console` parameter (lowercase c).
- **Proton Frequency**: 085, 100, 200, 300, 400, 500, 600, 700, 750, 800, 900, 3T, and 4T. Sets the resonant frequency, in MHz or tesla, of 1H as determined by magnet field strength (`h1freq`).
- **Sample Changer**: None, Carousel, SMS 50 Sample, SMS 100 Sample, VAST, NMS, LC-NMR, 768 AS. Sets the type of sample changer. Set to none if a sample changer is not present or is to be disabled (`traymax`).
- **Sample Changer Comm Port**: Not Used, Port A, Port B, Ethernet. Sets the serial port used to connect the sample changer. Select Not Used if no sample changer is present (`smsport`).

- Audio Filter Type: 100 kHz Elliptical, 100 kHz Butterworth 200 kHz Butterworth, 500 kHz Elliptical. If the spectral width (sw) is less than 100 kHz, sets type of audio filters used (audiofilter).

- VT Controller: Not Present, Present. Sets whether a variable temperature controller is present or not on the system (vttype).

- Maximum DMF: 9900, 32700, 2.0e6. Sets maximum frequency, in Hz, for decoupler modulation (parmax[11]).

- Max. Spectral Width: 100 kHz, 200 kHz, 500 kHz, 2 MHz, 5 MHz. Sets maximum spectral width available to a system (parmax[5]).

- AP Interface Type: Type 1, Type 2, Type 3, N/A. Sets type of AP bus interface board in the system.

- Fifo Loop Size: 63, 1024, 2048. Sets size of FIFO loop, which depends on the type of controller board in the system.

- Rotor Synchronization: Not Present, Present. Sets whether system supports the solids rotor synchronization module (rotorsync).

- Lock Frequency: (frequency entered directly). Sets lock frequency of the system. **To observe NMR signals, the lock frequency value must be set correctly** (lockfreq).

- IF Frequency: 10.5 MHz, 20.0 MHz.

- Number of RF Channels: 1, 2, 3, 4, 5. Selects which rf channel is listed in the Configure panel that appears in the lower section of the Spectrometer Configuration window (numrfch).

- Gradients: Not Present, Present. Sets whether system has optional gradients for the X, Y, or Z axis. If present, the gradients are listed in the Configure panel in lower section of Spectrometer Configuration window (Gradients is not associated with any parameter).

- Configure: RF Channel 1 (Obs), RF Channel 2 (Dec), RF Channel 3 (Dec2), RF Channel 4 (Dec 3), RF Channel 5 (Dec4). Gradients. Sets which labels appear in the Configure panel in lower section of Spectrometer Configuration window (Configure is not associated with any parameter).

- Type of RF: U+ Direct Synthesis, U+ H1 Only, Direct Synthesis, Broadband, Fixed Frequency, Deuterium Decoupler, SIS Modulator. Sets type of frequency generation on the current rf channel (rftype and rfchtype).

- Synthesizer: Not Present, PTS 160, PTS 200, PTS 250, PTS, 320, PTS 500, PTS 620, PTS 1000. Sets type of PTS frequency synthesizer on the current rf channel (ptsval).

- Latching: Not Present, Present. On systems equipped with a special version of the PTS frequency synthesizer, sets how frequency values are sent on the current rf channel (latch).

- Frequency Overrange: Not Present, 10000 Hz, 100000 Hz. On systems equipped with a special version of the PTS frequency synthesizer, sets the presence of a signal phase stability option on the current rf channel (overrange).
- **Step Size**: 0.1 Hz, 0.2 Hz, 1 Hz, 100 Hz. Sets frequency step size on current rf channel. (`parstep[7]`, `parstep[8]`, `parstep[16]`, `parastep[20]`).

- **Coarse Attenuator**: Not Present, 63 dB, 79 dB, 63.5 dB (SIS). Sets range of coarse attenuator if this attenuator is present on the current rf channel (`cattn`).

- **Fine Attenuator**: Not Present, Present. Sets whether a fine attenuator is present or not on the current rf channel (`fattn`).

- **Waveform Generator**: Not Present, Present. Sets whether a waveform generator board is present or not on current rf channel (`rfwg`).

- **Type of Amplifier**: Class C, Linear Full Band, Linear Low Band, Shared, Linear Broadband. (Shared is fourth channel only.) Sets type of amplifier on the current rf channel (`amptype`).

- **X Axis, Y Axis, Z Axis**: None, WFG + GCU, Performa I, Performa II/III, Performa II/III+WFG, Performa XYZ, Performa XYZ+WFG, SIS (12 bit), Homospoil. On systems with gradients, sets type of gradient for each axis. The value is set separately for each axis (`gradtype`).

- **Gradient Coil**: Detects the gradient coil configuration file that defines the current installed gradient coil (`sysgcoil`).

Arguments:

- `'display'` is a keyword that the system administrator can use to make `config` run in the display mode rather than the interactive mode.

Examples:

```
config
config('display')
```

See also: *VnmrJ Installation and Administration*

Related:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>amptype</code></td>
<td>Amplifier type (P)</td>
</tr>
<tr>
<td><code>audiofilter</code></td>
<td>Audio filter type (P)</td>
</tr>
<tr>
<td><code>cattn</code></td>
<td>Coarse attenuator (P)</td>
</tr>
<tr>
<td><code>Console</code></td>
<td>System console type (P)</td>
</tr>
<tr>
<td><code>fattn</code></td>
<td>Fine attenuator (P)</td>
</tr>
<tr>
<td><code>fifolpsize</code></td>
<td>FIFO loop size (P)</td>
</tr>
<tr>
<td><code>gradtype</code></td>
<td>Gradients for X, Y, and Z axes (P)</td>
</tr>
<tr>
<td><code>h1freq</code></td>
<td>Proton frequency of spectrometer (P)</td>
</tr>
<tr>
<td><code>latch</code></td>
<td>Frequency synthesizer latching (P)</td>
</tr>
<tr>
<td><code>lockfreq</code></td>
<td>Lock frequency (P)</td>
</tr>
<tr>
<td><code>numrfch</code></td>
<td>Number of rf channels (P)</td>
</tr>
<tr>
<td><code>overrange</code></td>
<td>Frequency synthesizer overrange (P)</td>
</tr>
<tr>
<td><code>parmax</code></td>
<td>Parameter maximum values (P)</td>
</tr>
<tr>
<td><code>parmin</code></td>
<td>Parameter minimum values (P)</td>
</tr>
<tr>
<td><code>parstep</code></td>
<td>Parameter step size values (P)</td>
</tr>
<tr>
<td><code>ptsval</code></td>
<td>PTS frequency synthesizer value (P)</td>
</tr>
<tr>
<td><code>rfchtype</code></td>
<td>Type of rf channel (P)</td>
</tr>
<tr>
<td><code>rftype</code></td>
<td>Type of rf generation (P)</td>
</tr>
<tr>
<td><code>rfwg</code></td>
<td>RF waveform generator (P)</td>
</tr>
<tr>
<td><code>rotorsync</code></td>
<td>Rotor synchronization (P)</td>
</tr>
<tr>
<td><code>shimset</code></td>
<td>Type of shim set (P)</td>
</tr>
<tr>
<td><code>sysgcoil</code></td>
<td>System gradient coil (P)</td>
</tr>
<tr>
<td><code>system</code></td>
<td>System type (P)</td>
</tr>
<tr>
<td><code>traymax</code></td>
<td>Sample changer tray slots (P)</td>
</tr>
<tr>
<td><code>vttype</code></td>
<td>Variable temperature controller present (P)</td>
</tr>
</tbody>
</table>
confirm *Confirm message using the mouse (C)*

Syntax: `confirm(message):response`

Description: Displays a dialog box with the specified message and two buttons: Confirm and Cancel. Clicking on the buttons with the mouse produces a return value.

Arguments:
- `message` is a single-line muticharacter string to be shown in the dialog box.
- `response` is 1 if the user clicks the left button of the mouse on the Confirm button or presses the Return key; response is 0 if the user clicks the mouse on the Cancel button.

Examples:
```plaintext```
`confirm('Are you sure you want pw>100?'):response`
```plaintext```

See also: *User Programming*

Console *System console type (P)*

Description: A global parameter that sets the type of system console. The value is usually set using the Console label in the Spectrometer Configuration window (opened from `config`).

When `go`, `au`, or `ga` is entered, the value of the Console parameter is copied from the systemglobal parameter tree to the current experiment and named as the console parameter (lowercase c). If console does not exist in an old parameter set, `rt` via `fixpar` creates it and sets it to `. Both console and Console are type acquisition. Macros can use `Console` and console to take conditional action based on spectrometer type.

See also: *VnmrJ Installation and Administration*

Related:
- `au` Submit experiment to acquisition and process data (M)
- `config` Display current configuration and possibly change it (M)
- `fixpar` Correct parameter characteristics in experiment (M)
- `ga` Submit experiment to acquisition and FT the results (M)
- `rt` Retrieve FIDs (M)
- `go` Submit experiment to acquisition (M)
- `system` System type (P)

contact_time *MAS cross-polarization spin-lock contact time (M)*

Applicability: Systems with solids module.

Description: Processes data obtained using an array of values for a pulse-length parameter. It runs the UNIX program `expfit`, which does an exponential curve fitting that determines the value of `Tch` and `T1rho`. The output is matched to the equation

\[I = (S_0 - (S_0 - S_{inf})*exp(-T/Tch))*exp(-T/T1rho)) + S_{inf} \]

where `Tch` is the time constant of a spin-locked cross-polarization process, and `T1rho` is relaxation time of \(^{13}\text{C}\) polarization in the proton rotating field.

The required input is file `fp.out` from the program `fp` and the values of the arrayed parameter. The output table is file `analyze.list` in the current experiment. The file `analyze.out` is used by the `expl` to display the results.

See also: *User Guide: Solid-State NMR*

Related:
- `expfit` Least-squares fit to polynomial or exponential curve (U)
- `expl` Display polynomial/exponential curves (C)
- `fp` Find peak heights (C)

continueMovie *Continue movie in either forward or backward direction (C)*

Syntax: `continueMovie(rate)`
Description: Like startMovie, but can continueMovie can play a movie forward or back
ward, and, instead of always starting from the beginning, it starts from the
beginning if movie has not started yet, or continues from where it was stopped
(by stopMovie). Movie direction is controlled by parameter
\texttt{aipMovieSetting[3]=1 or -1}.

Arguments: \texttt{aipMovieRate}, or a number for the rate

See also: startMovie, stopMovie, resetMovie.

\textbf{convert} \quad Convert data set from a VXR-style system (M,U)

Syntax: \texttt{convert (VXR_file)}
\texttt{(From UNIX) cpos_cvt VXR_file}

Description: Converts data stored on a VXR-style system (VXR, XL, or Gemini) to the
format used in software. The macro \texttt{convert} loads the data from \texttt{VXR_file}
into the current experiment and converts it to the new format. The UNIX
command \texttt{cpos_cvt} writes the converted data in a subdirectory of the current
working directory, using the original name of the data set.

Arguments: \texttt{VXR_file} is the name of a VXR-style file to be converted to VnmrJ style

See also: \textit{NMR Spectroscopy User Guide}

Related: \texttt{cpos_cvt} \quad \texttt{convert} \quad Convert data set from a VXR-style system (C,U)
\texttt{decomp} \quad \texttt{Decompose a VXR-style directory (C)}

\textbf{convertbru} \quad Convert Bruker data (M,U)

Syntax: \texttt{(From UNIX) convertbru file <options>}
\texttt{convertbru(file<,options>)}

Description: A C-language program for converting 32-bit Bruker AMX data and 24- and 32-
bite Bruker AM data into a 32-bit format compatible with the Varian \texttt{sread}
program. After converting the Bruker data into the new format, the converted
data can be read into VnmrJ using \texttt{sread} and can then be processed normally.
The parameters \texttt{proc} and \texttt{proc1} are set appropriately by \texttt{sread}, so that \texttt{wft}
or \texttt{wft2da} correctly processes the data.

Bruker AM parameters are converted to Varian parameters as shown in the table
"AM Parameter Conversion." Bruker parameter names that do not conflict with
a Varian parameter name are converted under the original name: \texttt{td}, \texttt{fw}, \texttt{ds},
\texttt{o1}, \texttt{o2}, \texttt{ns}, \texttt{te}, \texttt{id}, \texttt{sfo1}, \texttt{sfo2}, and \texttt{ro}. Parameters \texttt{proc} and \texttt{proc1} are
set to 'rft' for all spectra (assuming TPPI data in both dimensions).

\textbf{AM Parameter Conversion}

<table>
<thead>
<tr>
<th>\texttt{Bruker}</th>
<th>\texttt{Varian}</th>
<th>\texttt{Bruker}</th>
<th>\texttt{Varian}</th>
</tr>
</thead>
<tbody>
<tr>
<td>sweeps completed</td>
<td>\texttt{ct}</td>
<td>sp</td>
<td>satdly</td>
</tr>
<tr>
<td>\texttt{td}</td>
<td>\texttt{np}</td>
<td>dp</td>
<td>dpwr</td>
</tr>
<tr>
<td>\texttt{dw}</td>
<td>\texttt{dw}</td>
<td>\texttt{te}</td>
<td>temp=te-273</td>
</tr>
<tr>
<td>\texttt{fw}</td>
<td>\texttt{fb=1.1*sw/2}</td>
<td>\texttt{id}</td>
<td>\texttt{sw1=1/id}</td>
</tr>
<tr>
<td>\texttt{ds}</td>
<td>\texttt{ss}</td>
<td>\texttt{sfo1}</td>
<td>\texttt{sfrq=sfo1+o1}</td>
</tr>
<tr>
<td>\texttt{sw}</td>
<td>\texttt{sw}</td>
<td>\texttt{sfo2}</td>
<td>\texttt{dfrq=sfo2+o2}</td>
</tr>
<tr>
<td>experiments done</td>
<td>\texttt{ni}</td>
<td>p#</td>
<td>p#</td>
</tr>
<tr>
<td>\texttt{o1}</td>
<td>\texttt{tof}</td>
<td>d#</td>
<td>d#</td>
</tr>
<tr>
<td>\texttt{o2}</td>
<td>\texttt{dof}</td>
<td>s#</td>
<td>s#</td>
</tr>
<tr>
<td>\texttt{rd (or d1 if \texttt{rd}=0)}</td>
<td>\texttt{rd}</td>
<td>\texttt{ro}</td>
<td>\texttt{spin}</td>
</tr>
<tr>
<td>\texttt{pw (or p0 if \texttt{pw}=0)}</td>
<td>\texttt{pw}</td>
<td>\texttt{rg}</td>
<td>\texttt{gain}</td>
</tr>
</tbody>
</table>
Bruker AMX parameters are converted to Varian parameters as shown in the table “AMX Parameter Conversion.” All Bruker parameters are converted under their original names if the name doesn’t conflict with the name of a Varian parameter. Arrayed Bruker parameters like P and D are converted to the names P# and D#, where # is the index into the array.

Because *sread* is limited to 8-character parameter names, the parameters `routwd1#` and `routwd2#` are converted to `rtwd1#` and `rtwd2#`.

The parameter `proc` is set to 'ft' when the Bruker parameter `aq_mod` is 1, and `proc` is set to 'rft' when `aq_mod` is 2. `proc1` is always set to `rft`, assuming TPPI in `t1`.

If there is a file named `info` in the directory with the Bruker data, it is read in and put into the text file for the converted data set.

AMX Parameter Conversion

<table>
<thead>
<tr>
<th>Bruker</th>
<th>Varian</th>
<th>Bruker</th>
<th>Varian</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>pw90</td>
<td>date</td>
<td>date</td>
</tr>
<tr>
<td>de</td>
<td>de</td>
<td>time</td>
<td>time</td>
</tr>
<tr>
<td>ns</td>
<td>nt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Arguments: *file* is the input file name. For AMX data, *file* should be the name of the directory that contains the `acqu`, `acqu2s`, and `fid` or `ser` files. For AM data, *file* should be the name of the file containing the AM data. The *file* argument is not required to have a `.bru` extension, but if it does, the `.bru` extension is removed before creating the output file. Unless the `-cfile` option is present, the output file will have the same name as the input file, but with a `.cv` extension, and will be written into the current working directory.

Options for AMX and AM data are the following, which can be entered in any order as long as *file* comes first (options are usually not necessary, but can be used to override the default actions of `convertbru`):

- `-bam` or `-bamx` specifies whether input is AM or AMX data. The default is determined from name of the input file given.
- `-cfile` specifies that the output file is given the name specified by *file* and is written with `.cv` appended to the name.
-dxxx, where xxx is the decoupler frequency (it must be a value between 10.0 and 640.0 MHz). The default is to read from data set.

-ef specifies that old output file is to be overwritten. The default is to not overwrite old files.

-olsb or -omsb specifies whether the data has the least- or most-significant byte first. For AM data, the default is determined from data set. For AMX data, the default is -olsb.

-pxxx, where xxx is the number of 24- or 32-bit words to skip before converting data. This option is for use with -t option to skip the header in AM data without converting it. Typical header sizes are 216 or 256 words. The default is 0.

-s3 or -s4 specifies if AM data is 24-bit (3-byte) or 32-bit (4-byte). All AMX data is 32-bit. The default is determined from the data set.

-tall, -thdr, or -tdata specifies whether convertbru should convert the header and the data, just the header, or just the data. The default is -tall.

Examples: Convert AM data from a UNIX shell (in all these examples, the file name is arbitrarily named br_data):

- convertbru br_data determines the file format and converts the header and data in the file br_data.
- convertbru br_data -d250.0 -cout determines the file format, converts the header and data in the br_data, sets the decoupler frequency to 250.0 MHz, and writes to an output file named out.cv in the current working directory.
- convertbru br_data -thdr determines file format and converts only the header in the file br_data.
- convertbru br_data -tdata -p256 -s3 -omsb converts only the data in br_data after skipping the 256-word header. The data is converted assuming it is 24-bit AM data words with the most-significant byte first.

Convert AM data from VnmrJ:

- convertbru('br_data', '-tdata', '-p256', '-s3', '-omsb') converts only the data in br_data after skipping the 256-word header. The data is converted assuming it is 24-bit AM data words with the most-significant byte first.

Convert AMX data from a UNIX shell:

- convertbru br_data -f converts acqus and acqu2s files to ASCII, if needed, and then converts data and overwrites the existing br_data.cv file.

Convert AMX data from VnmrJ:

- convertbru('br_data', '-f') converts acqus and acqu2s files to ASCII, if needed, and then converts data and overwrites the existing br_data.cv file.
- convertbru('br_data','-c/home/vnmr1/bdata/data1') converts acqus and acqu2s files to ASCII, if needed, and then converts the data and writes it to /home/vnmr1/bdata/data1.cv.

See also: NMR Spectroscopy User Guide

Related: readbrutape Read Bruker data files from 9-track tape (U)
copy

Copy a file (C)

Syntax:
```
copy(<'-r',>from_file,to_file)<:$res>
```

Description:
Makes a copy of a file and is identical to the `cp` command. All arguments are passed. Command will abort with no return value if an illegal file name is used.

Arguments:
- `-r` — keyword requesting a recursive copy (i.e., copy a directory).
- `from_file` — name of the file (or directory if `-r` used) to be copied.
- `to_file` — name of the copy of the file (or directory). If the `from_file` argument has an extension (e.g., `.fid`), be sure the `to_file` argument has the same extension.
- `:$res` — variable to hold the result of the copy process.
 - 1 is returned if the copy is successful.
 - 0 is returned if the copy failed.

Examples:
```
copy('-r','/home/vnmr1/vnmrsys/seqlib','/vnmr/seqlib')
copy('/home/vnmr1/vnmrsys/seqlib/d2pul',
    '/vnmr/seqlib/d2pul')
```

See also:
NMR Spectroscopy User Guide

Related:
- `cp` Copy a file (C)

cos

Find cosine value of an angle (C)

Syntax:
```
cos(angle)<:n>
```

Description:
Finds the cosine of an angle.

Arguments:
- `angle` is the angle, given in radians.
- `n` is the return value with the cosine of `angle`. The default is to display the cosine value in the status window.

Examples:
```
cos(.5)
cos(val):cos_val
```

See also:
User Programming

Related:
- `sin` Find sine value of an angle (C)

Cosy

Convert the parameter to a COSY experiment (M)

Description:
Convert the parameter to a COSY experiment.

See also:
NMR Spectroscopy User Guide

Related:
- `cosyps` Set up parameters for phase-sensitive COSY pulse sequence (M)
- `Dqcosy` Set up parameters for double-quantum filtered COSY (M)
- `relayh` Set up parameters for RELAYH pulse sequence (M)

cosyps

Set up parameters for phase-sensitive COSY pulse sequence (M)

Description:
Sets up a phase-sensitive COSY (homonuclear correlation) experiment.

See also:
NMR Spectroscopy User Guide

Related:
- `Cosy` Set up parameters for COSY pulse sequence (M)
Copy a file (C)

Syntax: `cp(<'–r',>from_file,to_file)<:$res>`

Description: Makes a copy of a file and is identical to the `copy` command. All arguments are passed. Command will abort with no return value if an illegal file name is used.

Arguments: '–r' is a keyword requesting a recursive copy (i.e., copy a directory).

- `from_file` is the name of the file (or directory if '–r' used) to be copied.
- `to_file` is the name of the copy of the file (or directory). If the `from_file` argument has an extension (e.g., .fid), be sure the `to_file` argument has the same extension.

`:res` variable to hold the result of the copy process.
- 1 is returned if the copy is successfully
- 0 is returned if the copy failed

Examples:
- `cp('/home/vnmr1/vnmrsys/seqlib/d2pul', '/vnmr/seqlib/d2pul')`
- `cp('-r','/home/vnmr1/vnmrsys/seqlib','/vnmr/seqlib')`

See also: NMR Spectroscopy User Guide

Related:
- `copy` Copy a file (C)

Cycle phase (P)

Description: Sets the values that real-time variable oph is calculated as, either 0,1,2,3 (cp='y') or 0 (cp='n'). The only circumstance where setting cp='n' may be useful is when displaying an FID with `acqi`. If there is an imbalance between the two receiver channels, the FID displayed for `acqi` may show alternating dc levels. The standard `gf` macro that prepares parameters for the FID display in `acqi` automatically handles this issue.

Values:
- 'y' makes oph calculate as 0,1,2,3; this is the typical value.
- 'n' makes oph calculate as 0.

See also: User Programming

Related:
- `acqi` Interactive acquisition display process (C)
- `go` Submit experiment to acquisition (C)
- `gf` Prepare parameters for FID/spectrum display in `acqi` (M)

Set up parameters for CPMGT2 pulse sequence (M)

Description: Macro to set up a CPMGT2 (Carr-Purcell Meiboom-Gill T_2) experiment.

See also: NMR Spectroscopy User Guide

Related:
- `t2` T_2 exponential analysis (M)

Convert data set from a VXR-style system (M,U)

Syntax: `(From UNIX) cpos_cvt VXR_file convert(VXR_file)

Description: Converts data stored on a VXR-style system (Gemini, VXR, or XL) to the format used in VnmrJ software. cpos_cvt writes the converted data in a subdirectory of the current working directory, using the original name of the
data set. The command `convert` loads the data from VXR_file into the current experiment and converts it to the new format.

Arguments: VXR_file is the file name in the VXR-style format to be converted to the VnmrJ style.

Related: `convert` Convert data set from a VXR-style system (C,U)
`decomp` Decompose a VXR-style directory (C)
`rt` Retrieve FIDs (C)

cptmp
Copy experiment data into experiment subfile (M)

Syntax: `cptmp<(file)>`

Description: Copies the data (parameters, FID, and transformed spectrum) from the current experiment into a subdirectory inside `curexp+/subexp`.

Arguments: file is the name of the subfile to receive the data. The default is to take the name from the transmitter nucleus (if `seqfil='s2pul'`) or to use the pulse sequence name.

Examples: `cptmp`
`cptmp('cosy')`

Related: `curexp` Current experiment directory (P)
`rttmp` Retrieve experiment data from experiment subfile (M)
`seqfil` Pulse sequence name (P)
`svtmp` Move experiment data into experiment subfile (M)

cpx
Create pbox shape file (M)

Syntax: `cpx<(ref_pw90,ref_pwr)>` or `cpx<('g')>`

Description: Calls UNIX command Pbox, which generates the specified pulse shape or decoupling/spin locking pattern, as defined by the `shapelib/Pbox.inp` file.

Arguments: `ref_pw90` is the reference 90° pulse width
`ref_pwr` is the reference power level.
'g' is a keyword that is required only when generating gradient shapes and if the file type is not specified otherwise.

Examples: `cpx`
`cpx('g')`
`cpx(pw90*compH,tpwr)`
See also: NMR Spectroscopy User Guide
Related: Pbox Pulse shaping software (U)

cqexp
Load experiment from protocol (M)

Applicability: Liquids
Description: Macro to load an experiment from a protocol.

Syntax: `cqexp(experiment <, apptype>)`

The first argument is the experiment name, and the second argument is the apptype. If the apptype is not specified, the previous apptype is used.

Examples: `cqexp('Proton', 'std1d')`
cqfindz0 Run an experiment to find the value of z0 (M)
Applicability: Liquids
Description: A macro to run a deuterium experiment to find the correct value of z0 for a given solvent. It requires an entry in the probe file for the number of deuterium Hz per DAC. Run the appropriate probe calibration for 1 kHz per DAC to set the value in the probe file. The macro may be accessed through the Find z0 button available on several panels.

Related: solvent Lock solvent (P)
z0 Z0 field position (P)

cqgmap Perform gradient shimming utility functions (M)
Applicability: Liquids
Description: Macro runs gradient shimming utility functions.

Related: gmapshim Run gradient autoshimming, set parameters, map shims (M)

cqinit Initialize liquids study queue (M)
Applicability: Liquids
Description: Initializes the liquids study queue.

Related: cqreset Reset study queue parameters (M)
sqfilemenu Study queue file menu commands (M)

cqpars Create study queue parameters for liquids (M)
Applicability: Liquids
Description: A macro to create study queue parameters for the Walkup interface.
See also: VnmrJ Walkup
Related: fixpar Correct parameter characteristics in experiment (M)

cqplot Macro to perform generic 2D plot (M)
Applicability: Liquids
Description: A macro to perform generic 2D plotting, including 1D experiment traces. Usually called by other macros, and not used from the command line.

Related: plot Automatically plot spectra (M)
plot2D Plot results of 2D peak picking (C)
plt2Darg Plot 2D arguments (P)

cqprotocol Macro to create protocols (M)
Applicability: Liquids
Description: A macro to create protocols for liquids applications. Called by the *Make protocols dialogs* in the Utilities menu.

cqreset
Reset study queue parameters (M)

Applicability: Liquids

Description: Reset liquids study queue parameters. Usually called by other macros when starting a new study.

Related:
- cqinit
 Initialize liquids study queue (M)
- sqfilemenu
 Study queue file menu commands (M)

cqsavestudy
Macro to save study queue parameters (M)

Applicability: Liquids

Description: A macro to save study parameters in the liquids study queue. Usually called by other macros when starting a new study.

Related:
- studypar
 Study parameters (P)
- xmsubmit
 Submit sample(s) to the study queue (M)
- xmendq
 End a chained study queue (M)

cqwtmenu
Macro to set weighting functions from a panel (M)

Applicability: Liquids, Imaging

Description: A macro to set weighting functions from a panel. It is used for both 1D and 2D weighting parameters. Called by processing parameter panels.

cr
Cursor position in directly detected dimension (P)

Description: Contains the current cursor position. The `rl` macro uses `cr` to set the reference line.

See also:
* NMR Spectroscopy User Guide

Related:
- centersw
 Move cursor to center of spectrum (M)
- crf
 Current time-domain cursor position (P)
- crl
 Clear ref. line in directly detected dimension (M)
- delta
 Difference of two frequency cursors (P)
- rl
 Set reference line in directly detected dimension (M)

crl
Cursor position in 1st indirectly detected dimension (P)

Description: Contains the current cursor position along the first indirectly detected dimension. Analogous to the `cr` parameter except that `crl` applies to the first indirectly detected dimension of a multidimensional data set. The `rl1` macro uses `crl` to set the reference line along this dimension.

See also:
* NMR Spectroscopy User Guide

Related:
- centerswl
 Move cursor to center of spectrum in 1st indirect dimension (M)
- cr
 Cursor position in directly detected dimension (P)
- cr2
 Cursor position in 2nd indirectly detected dimension (P)
- rl1
 Set ref. line in 1st indirectly detected dimension (M)
C
Cursor position in 2nd indirectly detected dimension (P)

cr2

Description: Contains the current cursor position along the second indirectly detected
dimension. Analogous to the cr parameter except that cr2 applies to the
second indirectly detected dimension of a multidimensional data set. The rl2
macro uses cr2 to set the reference line along this dimension.
See also: NMR Spectroscopy User Guide
Related:

centersw2
cr
cr1
rl2

Move cursor to center of spectrum in 2nd indirect dimension (M)
Cursor position in directly detected dimension (P)
Cursor position in 1st indirectly detected dimension (P)
Set ref. line in 2nd indirectly detected dimension (M)

Create user macro without using text editor (M)

crcom

Syntax: crcom(file,actions)
Description: Creates a macro file in the user’s macro library (maclib) with the contents
given in the actions argument.
Arguments: file is the file name of the user macro to be created. If a macro of the same
name already exists, the user is asked whether or not to overwrite it.
actions is a string containing the actions making up the user macro. The
string cannot include a carriage return. If a single quote is needed within the
string, it must be preceded by a backslash (see second example below).
Examples: crcom('plot','pl pscale pap page')
crcom('lds','load=\'y\' su load=\'n\'')
See also: User Programming
create

Create new parameter in a parameter tree (C)

Syntax: create(parameter<,type<,tree>>)
Description: Creates a parameter in one of the parameter trees. A parameter tree is a UNIX
file containing the attributes of parameters as formatted text. Refer to the
command paramvi for a description of the file contents.
Arguments: parameter is the name of the parameter to be created.
type is the type of values in the parameter to be created and can be one of the
following values (default is 'real'):

• 'real' is a value with no limits on range and can be positive or negative.
• 'string' is a value composed of characters. Entry of strings can be
limited to selected words by enumerating the possible values with the
command setenumeral. For example, the enumerated values of
intmod are 'off', 'partial', and 'full'. Therefore, intmod can
be set only to one of these three string values, such as intmod='full'.

• 'delay' is a value from 0 to 8190, in unit of seconds.
• 'frequency' is a positive real number value.
• 'flag', like 'string', is a value composed of characters. Entry of
flags can be limited to selected characters by enumerating the possible
values with the command setenumeral. For example, the enumerated
values of dmm are 'c', 'f', 'g', 'm', 'p', 'r', 'u', 'w', and 'x'.
Therefore, dmm can only be set to a combinations of these nine characters,
such as dmm='ccw'. If enumerated values are not set, the 'string' and
'flag' types are identical.

• 'pulse' is a value from 0 to 8190, in units of μs.

114

Command and Parameter Reference for VnmrJ 2.2MI

01-999380-00 A 07008


• 'integer' is a value composed of integers (0, 1, 2, 3,...).

Tree is one of the following types of parameter trees (default is 'current'):

• 'current' contains parameters that are adjusted to set up an experiment. The parameters are from the file curpar in the current experiment.

• 'global' contains user-specific parameters from the file global in the vnmrsys directory of the present UNIX user.

• 'processed' contains parameters with which the data was obtained. These parameters are from the file procpar in the current experiment.

• 'systemglobal' contains instrument-specific parameters from the text file /vnmr/conpar. Most of these parameters are defined using the config program. All users have the same systemglobal tree. Note that conpar is not written out when you exit; the only time conpar is ever modified is by the config program. Thus, any changes you make to conpar using create (or destroy, setvalue, etc.) are not permanent. To permanently create a parameter in conpar, you must use a text editor to change /vnmr/conpar.

Examples: create('a')
create('b','string')
create('c','real','global')

See also: User Programming

Related:
destroy Destroy a parameter (C)
display Display parameters and their attributes (C)
fread Read parameters from file and load them into a tree (C)
fsave Save parameters from a tree to a file (C)
paramvi Edit a parameter and its attributes using vi text editor (M)
prune Prune extra parameters from current tree (C)
setenumeral Set values of a string variable in a tree (C)
setgroup Set group of a parameter in a tree (C)
setprotect Set protection mode of a parameter (C)

createqcomp Create qcomp parameter (M)

Applicability: Systems with Varian, Inc. Cold Probes

Description: Macro to create the qcomp parameter with the appropriate attributes. qcomp is created as a flag parameter in the global tree.

crf Current time-domain cursor position (P)

Description: Contains current time-domain cursor position. To create crf and the other FID display parameters axisf, dotflag, vpf, vpfi, and deltaf (if the parameter set is older and lacks these parameters), enter addpar('fid').

Values: Number, in seconds.

See also: NMR Spectroscopy User Guide

Related:
addpar Add selected parameters to the current experiment (M)
crl1 Clear ref. line in 1st indirectly detected dimension (C)
deltaf Difference of two time cursors (P)
fidpar Add parameters for FID display in current experiment (M)
C

crl

Clear reference line in directly detected dimension (M)

Description: Clears frequency referencing along the directly detected dimension by setting
the reference parameters rfl and rfp to zero. crl also resets the referencing
parameters $refpos$ and $reffrq$.

See also: *NMR Spectroscopy User Guide*

Related:
- crl Clear ref. line in directly detected dimension (C)
- $crl2$ Clear ref. line in 2nd indirectly detected dimension (M)
- rl Set ref. line in directly detected dimension (M)
- $reffrq$ Reference frequency of reference line (P)
- $refpos$ Position of reference frequency (P)
- rfl Ref. peak position in directly detected dimension (P)
- rfp Ref. peak frequency in directly detected dimension (P)

crl1

Clear reference line in 1st indirectly detected dimension (M)

Description: Clears frequency referencing along the first indirectly detected dimension by
setting the reference parameters $rfl1$ and $rfp1$ to zero. $crl1$ also resets the
referencing parameters $refpos1$ and $reffrq1$.

See also: *NMR Spectroscopy User Guide*

Related:
- crl Clear ref. line in directly detected dimension (C)
- $rl1$ Set ref. line in 1st indirectly detected dimension (M)
- $reffrq1$ Ref. frequency of reference line in 1st indirect dimension (P)
- $refpos1$ Position of reference frequency in 1st indirect dimension (P)
- $rfl1$ Ref. peak position in 1st indirectly detected dimension (P)
- $rfp1$ Ref. peak frequency in 1st indirectly detected dimension (P)

crl2

Clear reference line in 2nd indirectly detected dimension (M)

Description: Clears frequency referencing along the second indirectly detected dimension by
setting the reference parameters $rfl2$ and $rfp2$ to zero. $crl2$ also resets the
referencing parameters $refpos2$ and $reffrq2$.

See also: *NMR Spectroscopy User Guide*

Related:
- crl Clear ref. line in directly detected dimension (C)
- $rl2$ Set ref. line in 2nd indirectly detected dimension (M)
- $reffrq2$ Ref. frequency of reference line in 2nd indirect dimension (P)
- $refpos2$ Position of reference frequency in 2nd indirect dimension (P)
- $rfl2$ Ref. peak position in 2nd indirectly detected dimension (P)
- $rfp2$ Ref. peak frequency in 2nd indirectly detected dimension (P)

crmode

Current state of the cursors in df, ds, or dconi programs (P)

Description: Stores the current state (box mode or cursor mode) of cursors in the df, ds, or
$dconi$ interactive display programs. $crmode$ is mostly used by programmable
menus to determine the status of the cursors. It is stored in the file $vnmrsys/global$.

Values: ‘b’ signifies the box mode, ‘c’ signifies the cursor mode.

See also: *User Programming*

Related:
- $dconi$ Interactive 2D data display (C)
- df Display a single FID (C)
- ds Display a spectrum (C)
crob2

Recalculate rof2 so that lp = 0 (M)

Syntax: crob2<(alfa)>

Description: Recalculates a new value for rof2 (receiver gating time following a pulse) based upon the current rof2 and lp (first-order phase) values, so that lp is rendered approximately 0. For crob2 to work properly, a trial spectrum must be obtained and phased to pure absorption. This spectrum provides the current rof2 and lp values for crob2. The value of the alfa delay is left constant, provided rof2 does not become less than 1 μs.

crob2 pertains to processing 2D data. Unless lp is approximately 0, fpmult affects both the dc offset and the curvature of the spectrum.

Arguments: alfa specifies a value for the alfa delay before acquisition.

Related: alfa Set alfa delay before acquisition (P)
 cfp mult Calculate first point multiplier for 2D experiments (P)
 fpmult First point multiplier for np FID data (P)
 lp First-order phase along directly detected dimension (P)
 rof2 Receiver gating time following a pulse (P)

cryo_noisetest Run Cold Probe conditioning experiments (M)

Applicability: Systems with Varian, Inc. Cold Probes

Description: Runs the probe conditioning experiments and analyzes the noise using the cnd macro. Measures the hydrogen-induced noise and provides an efficient remedy.

Values: NOBURN – waits the operator input period of time between tests.
 No arguments – macro will prompt for a time in minutes.

cryo_client Start the CryoBay Monitor program (M, U)

Applicability: Systems with Cold Probes and CryoBay Monitor software.

Description: Starts the CryoBay Monitor software in a separate window. This program is a CORBA client that requires an active CORBA server running on the CryoBay PC.

See also: Cryogenic Systems Installation and Operation

c t

Completed transients (P)

Description: Stores a nonuser-enterable informational parameter that changes during the course of an experiment to reflect the number of completed transients. During most experiments, an accurate transient counter is displayed in the acquisition status window, updated every five seconds.

The value of ct is displayed in the acquisition parameter group by the dg command and is only updated when data processing occurs on the FID. In an experiment that is accumulating and not processed until the acquisition is complete, ct always indicates 0 until the end of the acquisition.

See also: NMR Spectroscopy User Guide

Related: dg Display parameters of acquisition/processing group (C)

c te xt

Clear the text of the current experiment (C)

Description: Clears the text from the current experiment text file (a block of text that may be used to describe the sample and experiment).
See also: *NMR Spectroscopy User Guide*

Related:
- `atext` Append string to the current experiment text (M)
- `text` Display text or set new text for current experiment (C)

curexp: Current experiment directory (P)

Description: Contains the full UNIX path to the currently active experiment. This parameter is useful when accessing text files generated by various commands (e.g., `cat(curexp+’/fp.out’)`).

See also: *NMR Spectroscopy User Guide*

Related:
- `systemdir` VnmrJ system directory (P)
- `userdir` VnmrJ user directory (P)

curscan: Scan currently in progress (P)

Applicability: Systems with LC-NMR accessory.

Description: Keeps track of which “scan” is currently in progress. If `curscan` does not exist, the `parlc` macro can create it.

See also: *NMR Spectroscopy User Guide*

Related:
- `parlc` Create LC-NMR parameters (M)

curwin: Current window (P)

Description: An arrayed global parameter. The first value is the index of the selected window pane in the graphics window. The second value is the number of window pane rows. The third value is the number of columns.

See also: *NMR Spectroscopy User Guide*

Related:
- `fontselect` Open FontSelect window (C)
- `jwin` Activate current window (M)
- `mapwin` List of experiment numbers (P)
- `setgrid` Activate selected window (M)
- `setwin` Activate selected window (C)

cutoff: Data truncation limit (P)

Description: Defines the distance above and below the current vertical position `vp` at which spectra and integrals are truncated. By arraying `cutoff` to have two different values, the truncation limits above and below the current vertical position can be controlled independently (e.g., `cutoff=50` truncates data at `vp+50` mm and `vp–50` mm, and `cutoff=50,10` truncates data at `vp+50` mm and `vp–10` mm). `cutoff='n'` disables the action of `cutoff`.

`cutoff` is not active during interactive spectral displays (i.e., for the `ds` command), but is active during non-interactive spectral displays and plots (for the `dss` and `pl` commands).

Values: `'n'`, number in mm.

See also: *NMR Spectroscopy User Guide*

Related:
- `ds` Display a spectrum (C)
- `dss` Display stacked spectra (C)
- `pl` Plot spectra (C)
- `vp` Vertical position of spectrum (P)
cyclenoed Set up parameters for CYCLENOE pulse sequence (M)
Applicability: Systems in which the observe channel is equipped with direct synthesis rf and a linear amplifier.
Description: Sets up a difference NOE experiment.

cylbr24 Set up parameters for cycled BR24 pulse sequence (M)
Applicability: Systems with solids module.
Description: Sets up a BR24 sequence with quadrature detection and prepulse for solids multiple-pulse line narrowing.
See also: User Guide: Solid-State NMR
Related: br24 Set up parameters for BR24 pulse sequence (M)

cylmrev Set up parameters for cycled MREV8 pulse sequence (M)
Applicability: Systems with a solids module.
Description: Sets up a MREV8 sequence with quadrature detection and prepulse for solids multiple-pulse line narrowing.
See also: User Guide: Solid-State NMR
Related: mrev8 Set up parameters for MREV8 pulse sequence (M)

cz Clear integral reset points (C)
Syntax: cz<(frequency1,frequency2,...)>
Description: Removes currently defined integral reset points.
Arguments: frequency1,frequency2,... are reset points corresponding to specified frequencies to be removed. The default is remove all reset points.
Examples: cz cz(800,600,250,60)
See also: NMR Spectroscopy User Guide
Related: dli Display listed integral values (C)
dlni Display listed normalized integral values (C)
nli Find normalized integral values (C)
z Add integral reset point at the cursor position (C)
D

- **d0**: Overhead delay between FIDs (P)
- **d1**: First delay (P)
- **d2**: Incremented delay in 1st indirectly detected dimension (P)
- **d2pul**: Set up parameters for D2PUL pulse sequence (M)
- **d3**: Incremented delay for 2nd indirectly detected dimension (P)
- **d4**: Incremented delay for 3rd indirectly detected dimension (P)
- **DAC_to_G**: Store gradient calibration value in DOSY sequences (P)
- **daslp**: Increment for t1 dependent first-order phase correction (P)
- **date**: Date (P)
- **daxis**: Display horizontal LC axis (M)
- **Dbppste**: Set up parameters for Dbppste pulse sequence (M)
- **Dbppsteinept**: Set up parameters for Dbppsteinept pulse sequence (M)
- **dbsetup**: Set up VnmrJ database (U)
- **dbupdate**: Update the VnmrJ database (U)
- **dc**: Calculate spectral drift correction (C)
- **dc2d**: Apply drift correction to 2D spectra (C)
- **dcg**: Drift correction group (P)
- **dcon**: Display non interactive color intensity map (C)
- **dcn**: Interactive 2D data display (C)
- **dcn**: Control display selection for the dconi program (P)
- **dconn**: Display color intensity map without screen erase (C)
- **dcrmv**: Remove dc offsets from FIDs in special cases (P)
- **ddf**: Display data file in current experiment (C)
- **ddff**: Display FID file in current experiment (C)
- **ddf**: Display phase file in current experiment (C)
- **ddif**: Synthesize and show DOSY plot (C)
- **ddrcr**: Direct digital receiver coefficient ratio (P)
- **ddrpm**: Set ddr precession mode (P)
- **ddrtc**: Set ddr time constant (P)
- **ds**: Default display (M)
- **dds_seqfil**: Sequence-specific default display (M)
- **debug**: Trace order of macro and command execution (C)
- **decsynctype**: Select the type of decoupler asynchronous mode (P)
- **deccwarnings**: Control reporting of DECC warnings from PSG (P)
- **decomp**: Decompose a VXR-style directory (M)
- **def_osfilt**: Default value of osfilt parameter (P)
- **defaultdir**: Default directory for Files menu system (P)
- **delcom**: Delete a user macro (M)
- **delete**: Delete a file, parameter directory, or FID directory (C)
- **delexp**: Delete an experiment (M)
- **deletenucleus**: Removes nucleus entry to probe file (M)
- **dels**: Delete spectra from T_1 or T_2 analysis (C)
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>delta</td>
<td>Cursor difference in directly detected dimension (P)</td>
</tr>
<tr>
<td>delta1</td>
<td>Cursor difference in 1st indirectly detected dimension (P)</td>
</tr>
<tr>
<td>delta2</td>
<td>Cursor difference in 2nd indirectly detected dimension (P)</td>
</tr>
<tr>
<td>deltaf</td>
<td>Difference of two time-domain cursors (P)</td>
</tr>
<tr>
<td>Dept</td>
<td>Set up parameters for DEPT experiment (M)</td>
</tr>
<tr>
<td>deptgl</td>
<td>Set up parameters for DEPTGL pulse sequence (M)</td>
</tr>
<tr>
<td>deptproc</td>
<td>Process array of DEPT spectra (M)</td>
</tr>
<tr>
<td>destroy</td>
<td>Destroy a parameter (C)</td>
</tr>
<tr>
<td>destroygroup</td>
<td>Destroy parameters of a group in a tree (C)</td>
</tr>
<tr>
<td>df</td>
<td>Display a single FID (C)</td>
</tr>
<tr>
<td>df2d</td>
<td>Display FIDs of 2D experiment (C)</td>
</tr>
<tr>
<td>dfid</td>
<td>Display a single FID (C)</td>
</tr>
<tr>
<td>dfmode</td>
<td>Current state of display of imaginary part of a FID (P)</td>
</tr>
<tr>
<td>dfrq</td>
<td>Transmitter frequency of first decoupler (P)</td>
</tr>
<tr>
<td>dfrq2</td>
<td>Transmitter frequency of second decoupler (P)</td>
</tr>
<tr>
<td>dfrq3</td>
<td>Transmitter frequency of third decoupler (P)</td>
</tr>
<tr>
<td>dfrq4</td>
<td>Transmitter frequency of fourth decoupler (P)</td>
</tr>
<tr>
<td>dfs</td>
<td>Display stacked FIDs (C)</td>
</tr>
<tr>
<td>dfsa</td>
<td>Display stacked FIDs automatically (C)</td>
</tr>
<tr>
<td>dfsan</td>
<td>Display stacked FIDs automatically without screen erase (C)</td>
</tr>
<tr>
<td>dfsh</td>
<td>Display stacked FIDs horizontally (C)</td>
</tr>
<tr>
<td>dfshn</td>
<td>Display stacked FIDs horizontally without screen erase (C)</td>
</tr>
<tr>
<td>dfsn</td>
<td>Display stacked FIDs without screen erase (C)</td>
</tr>
<tr>
<td>dfww</td>
<td>Display FIDs in whitewash mode (C)</td>
</tr>
<tr>
<td>dg</td>
<td>Display group of acquisition/processing parameters (C)</td>
</tr>
<tr>
<td>dg</td>
<td>Control dg parameter group display (P)</td>
</tr>
<tr>
<td>dg1</td>
<td>Display group of display parameters (C)</td>
</tr>
<tr>
<td>dg1</td>
<td>Control dg1 parameter group display (P)</td>
</tr>
<tr>
<td>dg2</td>
<td>Display group of 3rd and 4th rf channel/3D parameters (M)</td>
</tr>
<tr>
<td>dg2</td>
<td>Control dg2 parameter group display (P)</td>
</tr>
<tr>
<td>dga</td>
<td>Display group of spin simulation parameters (M)</td>
</tr>
<tr>
<td>DgcstesL</td>
<td>Set up parameters for DgcstesL pulse sequence (M)</td>
</tr>
<tr>
<td>Dgcstecosy</td>
<td>Set up parameters for Dgcstecosy pulse sequence (M)</td>
</tr>
<tr>
<td>Dgcstehmqc</td>
<td>Set up parameters for Dgcstehmqc pulse sequence (M)</td>
</tr>
<tr>
<td>dglc</td>
<td>Display group of LC-NMR parameters (M)</td>
</tr>
<tr>
<td>dglc</td>
<td>Control dglc parameter group display (P)</td>
</tr>
<tr>
<td>dglp</td>
<td>Control dglp parameter group of linear prediction parameters (P)</td>
</tr>
<tr>
<td>dgs</td>
<td>Display group of shims and automation parameters (M)</td>
</tr>
<tr>
<td>dgs</td>
<td>Control dgs parameter group display (P)</td>
</tr>
<tr>
<td>dbp</td>
<td>Decoupler high-power control with class C amplifier (P)</td>
</tr>
<tr>
<td>dialog</td>
<td>Display a dialog box from a macro (C)</td>
</tr>
<tr>
<td>diffparams</td>
<td>Report differences between two parameter sets (U)</td>
</tr>
<tr>
<td>diffshims</td>
<td>Compare two sets of shims (M,U)</td>
</tr>
<tr>
<td>digfilt</td>
<td>Write digitally filtered FIDs to another experiment (M)</td>
</tr>
<tr>
<td>dir</td>
<td>List files in directory (C)</td>
</tr>
<tr>
<td>display</td>
<td>Display parameters and their attributes (C)</td>
</tr>
<tr>
<td>dla</td>
<td>Display spin simulation parameter arrays (M)</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>dlalong</td>
<td>Long display of spin simulation parameter arrays (C)</td>
</tr>
<tr>
<td>dli</td>
<td>Display list of integrals (C)</td>
</tr>
<tr>
<td>divast</td>
<td>Produce text file and process wells (M)</td>
</tr>
<tr>
<td>dl1</td>
<td>Display listed line frequencies and intensities (C)</td>
</tr>
<tr>
<td>dlni</td>
<td>Display list of normalized integrals (M)</td>
</tr>
<tr>
<td>dip</td>
<td>Decoupler low-power control with class C amplifier (P)</td>
</tr>
<tr>
<td>dm</td>
<td>Decoupler mode for first decoupler (P)</td>
</tr>
<tr>
<td>dm2</td>
<td>Decoupler mode for second decoupler (P)</td>
</tr>
<tr>
<td>dm3</td>
<td>Decoupler mode for third decoupler (P)</td>
</tr>
<tr>
<td>dm4</td>
<td>Decoupler mode for fourth decoupler (P)</td>
</tr>
<tr>
<td>dmf</td>
<td>Decoupler modulation frequency for first decoupler (P)</td>
</tr>
<tr>
<td>dmf2</td>
<td>Decoupler modulation frequency for second decoupler (P)</td>
</tr>
<tr>
<td>dmf3</td>
<td>Decoupler modulation frequency for third decoupler (P)</td>
</tr>
<tr>
<td>dmf4</td>
<td>Decoupler modulation frequency for fourth decoupler (P)</td>
</tr>
<tr>
<td>dmfadj</td>
<td>Adjust tip-angle resolution time for first decoupler (M)</td>
</tr>
<tr>
<td>dmf2adj</td>
<td>Adjust tip-angle resolution time for second decoupler (M)</td>
</tr>
<tr>
<td>dmf3adj</td>
<td>Adjust tip-angle resolution time for third decoupler (M)</td>
</tr>
<tr>
<td>dmf4adj</td>
<td>Adjust tip-angle resolution time for fourth decoupler (M)</td>
</tr>
<tr>
<td>dm</td>
<td>Data display mode in directly detected dimension (P)</td>
</tr>
<tr>
<td>dm1</td>
<td>Data display mode in 1st indirectly detected dimension (P)</td>
</tr>
<tr>
<td>dm2</td>
<td>Data display mode in 2nd indirectly detected dimension (P)</td>
</tr>
<tr>
<td>dm</td>
<td>Absolute-value display of FID data or spectrum in acqi (P)</td>
</tr>
<tr>
<td>dm</td>
<td>Decoupler modulation mode for first decoupler (P)</td>
</tr>
<tr>
<td>dm2</td>
<td>Decoupler modulation mode for second decoupler (P)</td>
</tr>
<tr>
<td>dm3</td>
<td>Decoupler modulation mode for third decoupler (P)</td>
</tr>
<tr>
<td>dm4</td>
<td>Decoupler modulation mode for fourth decoupler (P)</td>
</tr>
<tr>
<td>dn</td>
<td>Nucleus for first decoupler (P)</td>
</tr>
<tr>
<td>dn2</td>
<td>Nucleus for second decoupler (P)</td>
</tr>
<tr>
<td>dn3</td>
<td>Nucleus for third decoupler (P)</td>
</tr>
<tr>
<td>dn4</td>
<td>Nucleus for fourth decoupler (P)</td>
</tr>
<tr>
<td>dndfid</td>
<td>Retrieve and process fid data from the locator (M)</td>
</tr>
<tr>
<td>dndjoin</td>
<td>Join a work space from the locator (M)</td>
</tr>
<tr>
<td>dndpar</td>
<td>Retrieve a parameter set from the locator (M)</td>
</tr>
<tr>
<td>dndshims</td>
<td>Retrieve a shimset set from the locator (M)</td>
</tr>
<tr>
<td>dnode</td>
<td>Display list of valid limNET nodes (M,U)</td>
</tr>
<tr>
<td>doautodialog</td>
<td>Start a dialog window using def file (M)</td>
</tr>
<tr>
<td>dodialog</td>
<td>Start a dialog window with dialoglib file (M)</td>
</tr>
<tr>
<td>dof</td>
<td>Frequency offset for first decoupler (P)</td>
</tr>
<tr>
<td>dof2</td>
<td>Frequency offset for second decoupler (P)</td>
</tr>
<tr>
<td>dof3</td>
<td>Frequency offset for third decoupler (P)</td>
</tr>
<tr>
<td>dof4</td>
<td>Frequency offset for fourth decoupler (P)</td>
</tr>
<tr>
<td>Doneshot</td>
<td>Set up parameters for Doneshot pulse sequence (M)</td>
</tr>
<tr>
<td>dopardialog</td>
<td>Start a dialog with dialoglib/experiment def file (M)</td>
</tr>
<tr>
<td>do_pcss</td>
<td>Calculate proton chemical shifts spectrum (C)</td>
</tr>
<tr>
<td>dosy</td>
<td>Process DOSY experiments (M)</td>
</tr>
<tr>
<td>dosy2d</td>
<td>Apptype macro for dosy 2D experiments (M)</td>
</tr>
<tr>
<td>dosyfrq</td>
<td>Larmor frequency of phase encoded nucleus in DOSY (P)</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>dosygamma</td>
<td>Gyromagnetic constant of phase encoded nucleus in DOSY (P)</td>
</tr>
<tr>
<td>dosytimecubed</td>
<td>Gyromagnetic constant of phase encoded nucleus in DOSY (P)</td>
</tr>
<tr>
<td>dot1</td>
<td>Set up a T_1 experiment (M)</td>
</tr>
<tr>
<td>dotflag</td>
<td>Display FID as connected dots (P)</td>
</tr>
<tr>
<td>downsamp</td>
<td>Downsampling factor applied after digital filtering (P)</td>
</tr>
<tr>
<td>dp</td>
<td>Double precision (P)</td>
</tr>
<tr>
<td>dpcon</td>
<td>Display plotted contours (C)</td>
</tr>
<tr>
<td>dpconn</td>
<td>Display plotted contours without screen erase (C)</td>
</tr>
<tr>
<td>dpf</td>
<td>Display peak frequencies over spectrum (C)</td>
</tr>
<tr>
<td>dpir</td>
<td>Display integral amplitudes below spectrum (C)</td>
</tr>
<tr>
<td>dpirn</td>
<td>Display normalized integral amplitudes below spectrum (M)</td>
</tr>
<tr>
<td>dpiv</td>
<td>Display integral amplitudes below spectrum (M)</td>
</tr>
<tr>
<td>dpirn</td>
<td>Display normalized integral amplitudes below spectrum (C)</td>
</tr>
<tr>
<td>dpl</td>
<td>Default plot (M)</td>
</tr>
<tr>
<td>dpl_seqfil</td>
<td>Sequence-specific default plot (M)</td>
</tr>
<tr>
<td>dplane</td>
<td>Display a 3D plane (M)</td>
</tr>
<tr>
<td>dpr</td>
<td>Default process (M)</td>
</tr>
<tr>
<td>dpr_seqfil</td>
<td>Sequence-specific default process (M)</td>
</tr>
<tr>
<td>dprofile</td>
<td>Display pulse excitation profile (M)</td>
</tr>
<tr>
<td>dproj</td>
<td>Display a 3D plane projection (M)</td>
</tr>
<tr>
<td>dps</td>
<td>Display pulse sequence (C)</td>
</tr>
<tr>
<td>dpwr</td>
<td>Power level for first decoupler with linear amplifier (P)</td>
</tr>
<tr>
<td>dpwr2</td>
<td>Power level for second decoupler with linear amplifier (P)</td>
</tr>
<tr>
<td>dpwr3</td>
<td>Power level for third decoupler with linear amplifier (P)</td>
</tr>
<tr>
<td>dpwr4</td>
<td>Power level for fourth decoupler amplifier (P)</td>
</tr>
<tr>
<td>dpwrf</td>
<td>First decoupler fine power (P)</td>
</tr>
<tr>
<td>dpwrf2</td>
<td>Second decoupler fine power (P)</td>
</tr>
<tr>
<td>dpwrf3</td>
<td>Third decoupler fine power (P)</td>
</tr>
<tr>
<td>dpwrm</td>
<td>First decoupler linear modulator power (P)</td>
</tr>
<tr>
<td>dpwrm2</td>
<td>Second decoupler linear modulator power (P)</td>
</tr>
<tr>
<td>dpwrm3</td>
<td>Third decoupler linear modulator power (P)</td>
</tr>
<tr>
<td>Dqcosy</td>
<td>Convert the parameter to a DQCOSY experiment (M)</td>
</tr>
<tr>
<td>draw</td>
<td>Draw line from current location to another location (C)</td>
</tr>
<tr>
<td>dres</td>
<td>Measure linewidth and digital resolution (C)</td>
</tr>
<tr>
<td>dres</td>
<td>Tip-angle resolution for first decoupler (P)</td>
</tr>
<tr>
<td>dres2</td>
<td>Tip-angle resolution for second decoupler (P)</td>
</tr>
<tr>
<td>dres3</td>
<td>Tip-angle resolution for third decoupler (P)</td>
</tr>
<tr>
<td>dres4</td>
<td>Tip-angle resolution for fourth decoupler (P)</td>
</tr>
<tr>
<td>ds</td>
<td>Display a spectrum (C)</td>
</tr>
<tr>
<td>ds2d</td>
<td>Display 2D spectra in whitewash mode (C)</td>
</tr>
<tr>
<td>ds2dn</td>
<td>Display 2D spectra in whitewash mode without screen erase (C)</td>
</tr>
<tr>
<td>dsnarray</td>
<td>Report statistical signal-to-noise for Cold Probes (M)</td>
</tr>
<tr>
<td>dscale</td>
<td>Display scale below spectrum or FID (C)</td>
</tr>
<tr>
<td>dscoef</td>
<td>Digital filter coefficients for downsampling (P)</td>
</tr>
<tr>
<td>dseq</td>
<td>Decoupler sequence for first decoupler (P)</td>
</tr>
<tr>
<td>dseq2</td>
<td>Decoupler sequence for second decoupler (P)</td>
</tr>
<tr>
<td>dseq3</td>
<td>Decoupler sequence for third decoupler (P)</td>
</tr>
</tbody>
</table>
d0 **Overhead delay between FIDs (P)**

Description: Defines the extra overhead delay at the start of each FID or array element. Overhead times between increments and transients are deterministic, i.e., both known and constant. However, the time between increments (typically x) is longer than the time between transients (y, not including times that are actually part of the pulse sequence, such as $d1$). Some experiments may benefit if it is ensured that these two times are not only constant but equal. To ensure that the times are constant and equal, insert the time $d0$ at the start of each transient (before the pulse sequence actually starts); the actual delay is then $y+d0$.

However, the overhead time may differ with different system configurations. To keep the $d0$ delay consistent across systems, set $d0$ greater than the overhead delay. The inter-FID delay x is then padded so that $y+d0=x+(d0-(x-y))$.

Currently, $d0$ only takes into account the extra delay at the start of each array element. It does not take into account the overhead delays at the start and end of each scan. It also does not take into account delays when arraying status statements, shims, or spinner speeds.

The $d0$ parameter does not exist in any parameter set and must be created by the user. To create $d0$, enter `create('d0', 'delay')`. If $d0$ is nonexistent, do not insert a delay between transients.

Values: 'n', 'y', or 0 to the maximum delay time (in seconds).
If \(d0 = 'n' \), the software calculates the overhead time for an array element and then delays that length of time at the beginning of subsequent transients for every array element. The calculated value of \(d0 \) can be viewed by entering \(d0 = 'y' \) in the input window.

If \(d0 \) is set to a value, that value is the length of delay time at the beginning of subsequent transients for every array element. If the value is greater than the array overhead time, the array overhead time is padded to \(d0 \).

See also: User Programming

Related: create Create new parameter in parameter tree (C)

\(d1 \)

First delay (P)

Description: Length of the first delay in the standard two-pulse sequence and most other pulse sequences. This delay is used to allow recovery of magnetization back to equilibrium, if such a delay is desired.

Values: 0.1 \(\mu s \) to 8190 sec, smallest value possible is 0.1 \(\mu s \), finest increment possible is 12.5 ns.

See also: NMR Spectroscopy User Guide

Related: alfa Set alfa delay before acquisition (P)
 d2 Incremented delay in 1st indirectly detected dimension (P)
 d3 Incremented delay in 2nd indirectly detected dimension (P)
 d4 Incremented delay in 3rd indirectly detected dimension (P)
 pad Preacquisition delay (P)

\(d2 \)

Incremented delay in 1st indirectly detected dimension (P)

Description: Length of the second delay in the standard two-pulse sequence. The delay is controlled by the parameters \(ni \) and \(sw1 \) in a 2D experiment.

Values: 0.1 \(\mu s \) to 8190 sec, smallest value possible is 0.1 \(\mu s \), finest increment possible is 12.5 ns.

See also: NMR Spectroscopy User Guide

Related: d1 First delay (P)
 ni Number of increments in 1st indirectly detected dimension (P)
 sw1 Spectral width in 1st indirectly detected dimension (P)

\(d2pul \)

Set up parameters for D2PUL pulse sequence (M)

Description: Sets up a standard two-pulse sequence using the decoupler as transmitter.

See also: NMR Spectroscopy User Guide

Related: dhp Decoupler high power with class C amplifier (P)
 dn Nucleus for the first decoupler (P)
 dof Frequency offset for first decoupler (P)
 dpwr Power level for first decoupler with linear amplifiers (P)
 s2pul Set up parameters for standard two-pulse sequence (M)
 tn Nucleus for the observe transmitter (P)
 tof Frequency offset for observe transmitter (P)
 tpwr Power level of observe transmitter with linear amplifiers (P)

\(d3 \)

Incremented delay for 2nd indirectly detected dimension (P)

Description: Length of a delay controlled by the parameters \(ni2 \) and \(sw2 \) in a 3D experiment. The \(d2 \) delay, which is controlled by \(ni \) and \(sw1 \), is incremented
through its entire implicit array first before d3 is incremented. To create parameters d3, ni2, phase2, and sw2 to acquire a 3D data set in the current experiment, enter `addpar('3d')`.

Values: 0.1 μs to 8190 sec, smallest value possible is 0.1 μs, finest increment possible is 12.5 ns.

See also: *NMR Spectroscopy User Guide*

Related:
- `addpar` Add selected parameters to the current experiment (M)
- `d1` First delay (P)
- `ni2` Number of increments in 2nd indirectly detected dimension (P)
- `par3d` Create 3D acquisition, processing, display parameters (C)
- `phase2` Phase selection for 3D acquisition (P)
- `sw2` Spectral width in 2nd indirectly detected dimension (P)

d4

Incremented delay for 3rd indirectly detected dimension (P)

Description: Length of a delay controlled by the parameters ni3 and sw3 in a 4D experiment. The d3 delay, which is controlled by ni2 and sw2, is incremented through its entire implicit array first before d4 is incremented. To create parameters d4, ni3, phase3, and sw3 to acquire a 4D data set in the current experiment, enter `addpar('4d')`.

Values: 0.1 μs to 8190 sec, smallest value possible is 0.1 μs, finest increment possible is 12.5 ns.

See also: *NMR Spectroscopy User Guide*

Related:
- `addpar` Add selected parameters to the current experiment (M)
- `d1` First delay (P)
- `ni3` Number of increments in 3rd indirectly detected dimension (P)
- `par4d` Create 4D acquisition parameters (C)
- `phase3` Phase selection for 4D acquisition (P)
- `sw3` Spectral width in 3rd indirectly detected dimension (P)

DAC_to_G

Store gradient calibration value in DOSY sequences (P)

Description: DAG_to_G is automatically set by the `setup_dosy` macro by retrieving the gradient strength from the probe calibration file if probe<>'' and storing it in DAC_to_G. If probe=' ' (i.e., the probe is not defined), then DAC_to_G is set to the current value of the global parameter gcal.

See also: *NMR Spectroscopy User Guide.*

Related:
- `dosy` Process DOSY experiments (M)
- `setup_dosy` Set up gradient levels for DOSY experiments (M)
- `setgcal` Set the gradient calibration constant (M)

da

Display acquisition parameter arrays (C)

Syntax: `da((par1<,par2<,par3...>)>`

Description: Displays arrayed acquisition parameters.

Arguments: `par1,par2,par3,...` are names of parameters to be displayed. The default is to display all such parameters.

Examples: `da`
`da('d2')`

See also: *NMR Spectroscopy User Guide*

Related: `dg` Display parameters of acquisition/processing group (C)
daslp Increment for t1 dependent first-order phase correction (P)
Description: Causes “shearing” of f1 traces of a 2D dataset and is used to rotate the narrow projection of some solids correlations into the f1 dimension. Several solids experiments for Dynamic Angle Spinning (DAS) and a triple-quantum filtered 2D MAS experiment require the use of daslp. (Note that the command rotate shears two traces and is inapplicable for these experiments.)
When created, the value of lp for each increment of a 2D experiment is incremented by the value of daslp after the first Fourier transformation. The incremented phase correction is applied to the interferogram created from the coefficient table by ft1d, ft2d, wft1d and wft2d, when coefficients are present. daslp is also used with ft1da, ft2da, wft1da and wft2da.
Values: Real values, typically similar in size to the value of parameter lp.
See also: NMR Spectroscopy User Guide
Related: ft1d Fourier transform along f2 dimension (C)
 ft1da Fourier transform phase-sensitive data (M)
 ft2d Fourier transform 2D data (C)
 ft2da Fourier transform phase-sensitive data (M)
 lp First-order phase in directly detected dimension (P)
 rotate Rotate 2D data (C)
 wft1d Weight and Fourier transform f2 for 2D data (C)
 wft1da Weight and Fourier transform phase-sensitive data (M)
 wft2d Weight and Fourier transform 2D data (C)
 wft2da Weight and Fourier transform phase-sensitive data (M)

date Date (P)
Description: An informational parameter taken from the UNIX-level calendar (which is set by the UNIX system operator only and cannot be entered by the user). Whenever data are acquired, the date is copied from UNIX and written into the acquisition parameters, thus maintaining a record of the date of acquisition.
See also: NMR Spectroscopy User Guide

daxis Display horizontal LC axis (M)
Applicability: Systems with LC-NMR accessory.
Syntax: daxis(time,major_tic,minor_tic)
Description: Displays a horizontal LC axis. Horizontal axes are assumed to be used with “LC plots” of an entire LC run and are labeled accordingly.
Arguments: time is the time scale, in minutes (decimal values are fine), of the axis.
 major_tic is spacing, in minutes (decimal values are fine), of major tics.
 minor_tic is spacing, in minutes (decimal values are fine), of minor tics.
See also: NMR Spectroscopy User Guide
Related: paxis Display horizontal LC axis (M)

Dbppste Set up parameters for Dbppste pulse sequence (M)
Description: Converts a parameter set to Dbppste experiment; replaces the macro bppste.
See also: NMR Spectroscopy User Guide
Related: dosy Process DOSY experiments (M)
fiddle Perform reference deconvolution (M)
setup_dosy Set up gradient levels for DOSY experiments (M)
Dbppsteinept Set up parameters for Dbppsteinept pulse sequence (M)
Description: Converts a parameter set to Dbppsteinept experiment.
See also: NMR Spectroscopy User Guide
Related: dosy Process DOSY experiments (M)
 fiddle Perform reference deconvolution (M)
 setup_dosy Set up gradient levels for DOSY experiments (M)

dbsetup Set up VnmrJ database (U)
Syntax:
 dbsetup <vnmr_adm|remove|standard|imaging>
 dbsetup vnmr_adm <remove|standard|imaging>
As Root:
 dbsetup vnmr_adm VnmrJ_Home_dir <standard|imaging>
Arguments: vnmr_adm is the login ID of the VnmrJ system administrator.
 remove only removes the data-database; does not recreate a database.
 standard creates the database for standard use.
 imaging creates the database for imaging spectroscopy.
Description: The UNIX script dbsetup is used during the installation of VnmrJ software
and can only be run by the VnmrJ administrator (vnmr_adm) or the UNIX
administrator (root). Normally it is never used again. dbsetup creates and
deletes the data-database in /vnmr/pgsql/data and the user information in
/vnmr/adm/users.
When run as root at least two arguments must be supplied, the login ID of the
VnmrJ administrator and the VnmrJ home directory. When run as root
dbsetup will delete and recreate the data-database in /vnmr/pgsql/data for all users in
/vnmr/adm/users. If no user list exists yet, the list is created
with the VnmrJ administrator as the only user. The mode can be specified with
the third argument as 'standard' or 'imaging'; if neither is specified the
mode is taken from the global file of the VnmrJ administrator. It defaults to
standard. The VnmrJ administrator does not need to supply any of the
arguments.
Note that additional users are created using vnmr_adm.
Examples: dbsetup
 dbsetup vnmr1
See also: NMR Spectroscopy User Guide
 VnmrJ Imaging NMR
 VnmrJ Installation and Administration

dbupdate Update the VnmrJ database (U)
Applicability: Systems with the VnmrJ software.
Syntax:
 dbupdate stop|once [slow_ms]|forever [slow_ms]
Arguments: slow_ms is an optional argument used to slow down the database update so as
not to use all of the available CPU time. slow_ms=0 is full speed.
slow_ms=1000 uses about 2-5% of the CPU.
The dbupdate command is runs under nice so that any other process will be
able to take the CPU away from this update anyway. The default slow_ms for
forever is 1000. The default slow_ms for once is 0.
Description: A UNIX command to start and stop a program to update the VnmrJ database
used by the Locator. This command might be needed at a data station to view
newly acquired data. The database at the spectrometer will automatically be
updated.
dc

Calculate spectral drift correction (C)

Description: Turns on a linear baseline correction. The beginning and end of the straight line to be used for baseline correction are determined from the display parameters \(sp \) and \(wp \). \(dc \) applies this correction to the spectrum and stores the definition of the straight line in the parameters \(lvl \) (level) and \(tlt \) (tilt). The correction is turned off by the command \(cdc \).

Care must be taken to ensure that a resonance does not appear too close to either end of the spectrum, or \(dc \) can produce the opposite effect from that intended; namely, it induces a sloping baseline where none was present!

See also: *NMR Spectroscopy User Guide*

Related:
- \(bc \) 1D and 2D baseline correction (C)
- \(cdc \) Cancel drift correction (C)
- \(dc \) Drift correction group (P)
- \(lvl \) Zero-order baseline correction (P)
- \(sp \) Start of plot (P)
- \(tlt \) First-order baseline correction (P)
- \(wp \) Width of plot (P)

dc2d

Apply drift correction to 2D spectra (C)

Syntax: \(dc2d('f1'|'f2') \)

Description: Computes a drift correction and applies it to each individual trace.

Arguments:
- \('f1' \) is a keyword to apply drift correction in the \(f_1 \) axis direction.
- \('f2' \) is a keyword to apply drift correction in the \(f_2 \) axis direction.

Examples:
- \(dc2d('f1') \)
- \(dc2d('f2') \)

See also: *NMR Spectroscopy User Guide*

Related:
- \(axis \) Axis label for displays and plots (P)
- \(bc \) 1D and 2D baseline correction (C)

dcg

Drift correction group (P)

Description: Contains the results of the \(dc \) or \(cdc \) command. This parameter cannot be set in the usual way but it can be queried by entering \(dcg? \) to determine whether drift correction is active.

Values:
- \('dc' \) indicates drift correction is active.
- \('cdc' \) indicates drift correction is inactive.

See also: *NMR Spectroscopy User Guide*

Related:
- \(cdc \) Cancel drift correction (C)
- \(dc \) Calculate spectral drift correction (C)

dcon

Display noninteractive color intensity map (C)

Syntax: \(dcon<\text{options}> \)

Description: Produces a “contour plot,” actually a color intensity map, in the graphics window. The parameters \(sp \) and \(wp \), \(sp1 \) and \(wp1 \), and \(sp2 \) and \(wp2 \) control which portion of the spectrum is displayed. The parameters \(sf \) and \(wf \), \(sf1 \) and \(wf1 \), and \(sf2 \) and \(wf2 \) control which portion of time-domain data (FIDs and interferograms) is displayed. The parameter \(trace \) selects which dimension is displayed along the horizontal axis. The parameters \(sc, wc, sc2, \) and \(wc2 \) control where on the screen the display occurs. The parameter \(th \) is
active as a threshold to black out all contours whose intensity is below \(\text{th} \). That is, if \(\text{th}=7 \), the colors 1 to 6 are not used for the display. The parameter \(\text{vs} \) controls the vertical scale of the spectrum.

\(\text{dcon} \) displays either absolute-value mode or phase-sensitive 2D data. In \(\text{av} \) mode, data are shown in 15 different colors (starting with black), with each color representing a factor of two in intensity (a single color is used on monochrome screens). In the \(\text{ph} \) mode, the normal display of colors ranges from –6 to +6, each representing a factor of two in intensity, with the color black representing intensity 0 in the center.

Arguments: \(\text{options} \) can be any of the following:

- 'linear' is a keyword to use linear instead of logarithmic increments.
- 'phcolor' is a keyword to use a phased color set with positive and negative peaks.
- 'avcolor' is a keyword to use an absolute-value color set with positive peaks. Negative contours only cannot be displayed, but if the data can be rephased, 180° added to \(\text{rpl} \), and \(\text{dcon}('avcolor') \) entered again, the same thing is accomplished by inverting the phase of all peaks. Alternatively, \(\text{dpcon} \) can display negative peaks only.
- 'gray' is a keyword to use a gray scale color set.
- 'noaxis' is a keyword to omit the display outline and any horizontal or vertical axis.
- 'plot' causes the \(\text{dcon} \) display to be sent to the plotter instead of being drawn on the graphics window.

Examples:

\[
\begin{align*}
\text{dcon} \\
\text{dcon('gray')} \\
\text{dcon('linear','phcolor','plot')}
\end{align*}
\]

See also: \textit{NMR Spectroscopy User Guide}

Related:
- \textit{dconi} Interactive 2D data display (C)
- \textit{dcon} Control display selection for the \textit{dconi} program (P)
- \textit{dconn} Display color intensity map without screen erase (C)
- \textit{dpcon} Display plotted contours (C)
- \textit{imageprint} Plot noninteractive gray scale image (M)
- \textit{sc} Start of chart (P)
- \textit{sc2} Start of chart in second direction (P)
- \textit{sf} Start of FID (P)
- \textit{sp} Start of plot (P)
- \textit{sp1} Start of plot in 1st indirectly detected dimension (P)
- \textit{sp2} Start of plot in 2nd indirectly detected dimension (P)
- \textit{th} Threshold (P)
- \textit{trace} Mode for \(n \)-dimensional data display (P)
- \textit{wc} Width of chart (P)
- \textit{wc2} Width of chart in second direction (P)
- \textit{wf} Width of FID (P)
- \textit{wp} Width of plot (P)
- \textit{wp1} Width of plot in 1st indirectly detected dimension (P)
- \textit{wp2} Width of plot in 2nd indirectly detected dimension (P)

\textit{dconi} Interactive 2D data display (C)

Syntax: \textit{dconi\{}(options)\}\textit{>}

Description: Opens a 2D data display that can be interactively adjusted. The \textit{dconi} program can accommodate any data set that can be displayed by \textit{dcon}, \textit{dpcon}, and
ds2d, including 2D FIDs, interferograms, 2D spectra, planes from 3D data sets, and images. These data sets are generated by the commands df2d, ft1d, ft2d, and ft3d.

Arguments: options can be any of the following (note that the dconi parameter is also available to control the dconi program display):

- `dcon` is a keyword to display a color intensity map; this is the default mode, but `dcon` is provided for compatibility with certain macros. If `dcon` is the first argument, it can be followed by any of the keywords `linear`, `phcolor`, `avcolor`, `gray`, and `noaxis`; all of these keywords have the same meaning as when used with dcon.
- `dpcon` is a keyword to display a true contour plot. If `dpcon` is the first argument, it can be followed by any of the keywords `pos`, `neg`, and `noaxis`, and then followed by values for levels and spacing. All of these options have the same meaning as when used with dpcon.
- `ds2d` is a keyword to display a stacked plot in whitewash mode (after the first spectra, each spectra is blanked out in regions in which it is behind an earlier spectra). If `ds2d` is the first argument, it can be followed by any of the keywords `nobase`, `fill`, `fillnb`, and `noaxis`. All of these keywords have the same meaning as used with ds2d.
- `again` is a keyword to make dconi identify which display mode is currently being used and redraw the screen in that mode.
- `restart` is a keyword to activate dconi without redrawing the 2D data set. This action causes dconi to make sure that 2D data is already displayed.
- `toggle` is a keyword to toggle between the cursor and box modes.
- `trace` is a keyword to draw a trace above the spectrum.
- `expand` is a keyword to toggle between the expand and full views of the spectrum.
- `plot` is a keyword to plot a projection or a trace.
- `hproj_max` is a keyword to do a horizontal projection of the maximum trace.
- `hproj_sum` is a keyword to do a horizontal projection of the sum of all traces.
- `vproj_max` is a keyword to do a vertical projection of the maximum trace.
- `vproj_sum` is a keyword to do a vertical projection of the sum of all traces.

Examples: dconi
dconi('dcon','gray','linear')
dconi('dpcon')

See also: NMR Spectroscopy User Guide

Related: boxes Draw boxes selected by the mark command (C)
crmode Current state of cursors in dfid, ds, or dconi (P)
dcon Display noninteractive color intensity map (C)
dconi Control display selection for the dconi program (P)
dconn Display color intensity map without screen erase (C)
deltal Cursor difference in 1st indirectly detected dimension (P)
df2d Display FIDs of 2D experiment (C)
dpcon Display plotted contours (C)
da2d Display 2D spectra in whitewash mode (C)
dconi

Control display selection for the dconi program (P)

Description: Controls the selection of the 2D display that follows entering the `dconi` command. Because `dconi` is implicitly executed by `ft2d`, the `dconi` parameter also controls the display that follows the `ft2d` or `wft2d` command.

`dconi` can be a string parameter in the “current” parameter set. Its syntax is similar to an argument string passed to the `dconi` program. For example, if `dconi = 'dpcon,pos,12,1.2'`, the `dconi` command displays twelve positive contours with `dpcon`, using a spacing of 1.2. The first component of the `dconi` string must be the name of the display program, such as `dcon`, `dcon`, `dpcon`, `dpcon`, `ds2d`, or `ds2dn`. Subsequent components of the string are arguments appropriate for that display program. Because the entire `dconi` parameter is a string, single quotes around words are not necessary and mixing words and numbers is not a problem, as the example above shows.

If the `dconi` parameter does not exist or is set to the null string (`''`), the `dconi` program uses its normal default. If the `dconi` parameter is set to a string (e.g., `dconi = 'dcon,gray,linear'` for image display), and arguments are supplied to the `dconi` program (e.g., `dconi ('dpcon')`), the supplied arguments to the command take precedence. In the case of the examples above, a contour map, not an image, is displayed.

If the `dconi` parameter does not exist in the current experiment, it can be created by the commands `create('dconi','string')` and `setgroup('dconi','display')`.

Values:

- `' ' ` (two single quotes) indicates that this parameter is ignored.

 String `'display_program'` selects the named program for 2D displays.

 String `'display_program,option1,option2'` selects the named program for 2D displays with options appropriate to the program.

Examples:

- `dconi='dpcon'` selects contour drawing rather than default color map.
- `dconi='dcon,gray,linear'` selects image display mode.

See also: *NMR Spectroscopy User Guide; VnmrJ Imaging NMR*

Related:

- `dcon` Display noninteractive color intensity map (C)
- `dconi` Interactive 2D data display (C)
- `dcon` Display color intensity map without screen erase (C)
- `dpcon` Display plotted contours (C)
- `dpconn` Display plotted contours without screen erase (C)
- `ds2d` Display 2D spectra in whitewash mode (C)
- `ds2dn` Display 2D spectra in whitewash mode without screen erase (C)
dconn
Display color intensity map without screen erase (C)
Syntax: dconn<(options)>
Description: Produces a “contour plot,” actually a color intensity map, on the screen the same as the dcon command, but without erasing the screen before starting the plot. The options available are the same as the dcon command.
See also: NMR Spectroscopy User Guide
Related: dcon Display noninteractive color intensity map (C)
dconi Control display selection for the dconi program (P)

dcrmv
Remove dc offsets from FIDs in special cases (P)
Description: If dcrmv exists and is set to ‘y’, hardware information is used to remove the dc offset from the FID providing ct=1. This only works on systems with sw less than 100 kHz. If this feature is desired for a particular experiment, create dcrmv in that experiment by entering create(‘dcrmv’,’string’) setgroup(‘dcrmv’,’processing’) dcrmv=’y’
To create image parameters dcrmv, grayctr and graysl in the current experiment, enter addpar(‘image’).
See also: NMR Spectroscopy User Guide; VnmrJ Imaging NMR
Related: addpar Add selected parameters to the current experiment (M)
create Create new parameter in a parameter tree (C)
ct Completed transients (P)
dc Calculate spectral drift correction (C)
setgroup Set group of a variable in a tree (C)

ddf
Display data file in current experiment (C)
Syntax: ddf<(block_number,trace_number,first_number)>
Description: Displays the file header of the data file in the current experiment. If entered with arguments, it also displays a block header and part of the data file of that block.
Arguments: block_number is the block number. Default is 1.
trace_number is the trace number within the block. Default is 1.
first_number is the first data element number within the trace. Default is 1.
See also: User Programming
Related: dff Display FID file in current experiment (C)
ddfp Display phase file in current experiment (C)

ddff
Display FID file in current experiment (C)
Syntax: ddf<(block_number,trace_number,first_number)>
Description: Displays the file header of the FID file in the current experiment. If entered with arguments, it also displays a block header and part of the FID data of the block.
Arguments: block_number is the block number. Default is 1.
trace_number is the trace number within the block. Default is 1.
first_number is the first data element number within the trace. Default is 1.
ddfp Display phase file in current experiment (C)

Syntax: `ddfp<(block_number,trace_number,first_number)>`

Description: Displays the file header of the phase file in the current experiment. With arguments, it also displays a block header and part of the phase file data of that block.

Arguments:
- `block_number` is the block number. Default is 1.
- `trace_number` is the trace number within the block. Default is 1.
- `first_number` is the first data element number within the trace. Default is 1.

See also: User Programming

 Related:
- `ddf` Display data file in current experiment (C)
- `ddff` Display FID file in current experiment (C)

ddif Synthesize and show DOSY plot (C)

Syntax: `ddif(<option>,lowerlimit,upperlimit)`

Description: Synthesizes a 2D spectrum from 1D spectra using the information produced by the `dosy` macro. `ddif` takes the 1D spectrum and a table of diffusion data stored in the file `diffusion_display.inp` in the current experiment and synthesizes a 2D DOSY spectrum. It is normally run by `dosy`, but can be directly run, for example, to recalculate a 2D DOSY spectrum with different digitization.

Arguments:
- `option` is either `'i'` or `'c'`.
 - `'i'` is for a display in which the 2D peak volume is proportional to 1D peak height.
 - `'c'` is for a display in which the 2D peak height equals the 1D.
- `lowerlimit` is the lower diffusion limit (in units of 10^{-10} m2/s).
- `upperlimit` is the upper diffusion limit (in units of 10^{-10} m2/s).

If arguments are not supplied, `ddif` defaults to showing the full range of diffusion coefficients in the file `diffusion_display.inp` in the current experiment. Make sure that the first increment of the DOSY data set has been transformed with the desired `fn2D` before using `ddif`. Digitization of the resultant spectrum is determined by `fn2D` in the spectral (F2) domain and `fn1` in the diffusion (F1) domain. Make sure that the product `fn2D*fn1` is not too large, or memory and processing time problems might result. Typical values are `fn2D=16384` (max: 64k) and `fn1=512`. After `dosy` or `ddif`, 1D data is overwritten by the 2D (the `dosy` macro keeps a copy of the 1D data, which can be retrieved with the command `undosy`). Similarly, after a DOSY spectrum has been calculated, it can be retrieved with the command `redosy`.

See also: NMR Spectroscopy User Guide

 Related:
- `dosy` Process DOSY experiments (M)
- `fn2D` Fourier number to build up 2D DOSY display in frequency domain (P)
- `redosy` Restore the previous 2D DOSY display from the subexperiment (M)
- `undosy` Restore original 1D NMR data from the subexperiment (M)

ddrcr Direct digital receiver coefficient ratio (P)

Applicability: DirectDrive systems and 400 - MR systems
Syntax: \texttt{ddrcr=<value>}

Description: Sets the filter sharpness or filter coefficient ratio. The default value of 75 is used if the parameter does not exist.

Examples:
\begin{verbatim}
create('ddrce','integer')
setlimit('ddrcr',1000,2,1)
ddrcr=300
\end{verbatim}

Values: Integer values between 2 and 1000

See also: \textit{NMR Spectroscopy User Guide} and \textit{VnmrJ User Programming}.

\textbf{ddrpm} \hspace{1cm} \textbf{Set ddr precession mode (P)}

Applicability: DirectDrive systems

Syntax: \texttt{ddrpm='mode'}

Values: \texttt{mode} can be either of following:

\begin{center}
\begin{tabular}{ll}
\textit{Mode} & \textit{Description} \\
\hline
\texttt{p} & Pulse — default if no argument is supplied. \\
& The value is calculated as follows if \texttt{ddrpm} does not exist or \texttt{ddrpm='p'}:
& \texttt{ddrtc} = \texttt{alfa} + \texttt{rof2} + 2 * \texttt{pw[1]} / \pi \\
\texttt{e} & Echo — The value is calculated as follows: \texttt{ddrtc} = \texttt{alfa}. \\
\end{tabular}
\end{center}

See also: \textit{VnmrJ User Programming}

Related: \texttt{setrc} \hspace{0.5cm} Set frequency referencing based upon lock signal shift (M)

\texttt{ddrtc} \hspace{0.5cm} Set ddr precession mode (P)

\textbf{ddrtc} \hspace{1cm} \textbf{Set ddr time constant (P)}

Applicability: DirectDrive systems

Syntax: \texttt{ddrtc='value'}

Description: The value of \texttt{ddrtc} is set in the \texttt{setrc} macro and is determined by the \texttt{ddrpm} parameter.

A value of \texttt{ddrtc} = \texttt{alfa} is used by \texttt{psg} if the \texttt{ddrtc} parameter does not exist.

Values: value 0 to 1000 μsec.

See also: \textit{VnmrJ User Programming}

Related: \texttt{setrc} \hspace{0.5cm} Set frequency referencing based upon lock signal shift (M)

\texttt{setlp0} \hspace{0.5cm} Set parameters for zero linear phase (M)

\texttt{ddrpm} \hspace{0.5cm} Set ddr precession mode (P)

\textbf{dds} \hspace{1cm} \textbf{Default display (M)}

Description: Looks for sequence-specific default display macro (\texttt{dds_seqfil}) and executes if one is found. If not, the \texttt{dds} macro displays 1D, 2D, or array spectrum as the case may be.

Related: \texttt{dds_seqfil} \hspace{0.5cm} Sequence-specific default display (M)

\texttt{dpl} \hspace{0.5cm} Default plot (M)

\texttt{dpr} \hspace{0.5cm} Default process (M)
dds_seqfil
Sequence-specific default display (M)
Description: Sequence-specific default display. These macros are called by the `dds` macro.
Examples:

```plaintext  
dds_NOESY1D  
dds_TOCSY1D  
```

Related:
- `dds` Default display (M)
- `dpl` Default plot (M)
- `dpr` Default process (M)

debug
Trace order of macro and command execution (C)
Syntax: `debug('c'|'C')`
Description: Controls VnmrJ command and macro tracing. When turned on, `debug` displays a list of each command and macro in the shell tool from which VnmrJ was started. If VnmrJ is started when the user logs in, or if it was started from a drop-down menu or the CDE tool, the output goes to a Console window. If no Console window is present, the output goes into a file in the `/var/tmp` directory. This last option is not recommended. Nesting of the calls is indicated by indentation of the output. This feature is primarily a debugging tool for MAGICAL programming.

To associate the `debug('c')` output with a particular terminal, enter `tty`. The system responds with `/dev/pts/yyyy`, where `yyyy` is a numerical value. On the VnmrJ command line, enter `jFunc(55, '/dev/pts/yyyy')`, substituting the numerical value for the `yyyy`.

Arguments:
- `'c'` is a keyword to turn on command and macro tracing.
- `'C'` is a keyword to turn off command and macro tracing.

Examples:

```plaintext  
debug('c')  
debug('C')  
```

See also: *User Programming*

decasyntype
Select the type of decoupler asynchronous mode (P)
Applicability: VNMR systems, 400 MR
Syntax: `decasyntype=<value>`
Description: Optional parameter to select the type of decoupler asynchronous mode. The default type is `p` (progressive mode), which simulates a free running decoupler with respect to the pulse sequence timing. The other available options are `b` (bit reversed mode) and `r` (random mode). The `b` mode (bit-reversed mode) may be especially appropriate for reducing unwanted decoupling side-band intensity, when the number of transients is small. In the `r` mode (random mode) the starting decoupling stage is randomized. The `decasyntype` setting affects the decoupling on all the rf channels (`dm`, `dm2`, `dm3` etc.). This parameter is optional and if it does not exist the decoupler asynchronous mode is set to `p` (progressive mode).

Values:
- `'p'` — progressive mode, mode used by Inova systems
- `'b'` — bit-reversed mode
- `'r'` — random mode

Examples: `decasyntype='p'` for progressive mode.

Related:
- `dm` Decoupler mode for first decoupler (P)
deccwarnings Control reporting of DECC warnings from PSG (P)

Applicability: Systems with DECC (Digital Eddy Current Compensation) boards for gradient compensation.

Description: A global parameter that controls whether PSG will warn the user when the ECC corrections are large enough that they could exceed the capabilities of the DECC board. By default, this parameter does not exist, and a warning is printed whenever an experiment is started if the ECC amplitudes are possibly too large. The warning does indicate a definite be a problem, only that not enough ECC drive capability is available to compensate for an instantaneous gradient swing from minus the maximum gradient strength to the maximum positive gradient.

To disable the warnings, create this global string parameter and set it to 'n'.

Values: 'n' or 'N' to suppress warnings. If the value starts with any other character, the normal warnings are printed.

decomp Decompose a VXR-style directory (M)

Syntax: decomp<(VXR_file)>

Description: Takes a library, as loaded from a VXR-style system (VXR, XL, or Gemini), and extracts each entry into a separate UNIX file. The file can be obtained from a magnetic tape or over limNET. decomp creates a UNIX subdirectory in the current working directory and uses that to write each entry as a UNIX file. The name of the UNIX subdirectory is derived from the library name.

Arguments: VXR_file is the name of the original file. It must have an extension in the form .NNN, where NNN is the number of entries in the original library. A limit of 432 entries is imposed.

See also: NMR Spectroscopy User Guide

Related: convert Convert data set from a VXR-style system (C,U)

def_osfilt Default value of osfilt parameter (P)

Applicability: Inova systems

Description: A global parameter that establishes the default type of digital filter, AnalogPlus™ or brickwall, when DSP is configured. The actual filter used in any experiment is set by the local parameter osfilt. Usually, def_osfilt is set to the value for normal use, and then osfilt is changed within a given experiment if different filter characteristics are desired.

Values: 'a' or 'A' for the AnalogPlus digital filter. This filter is flatter in the passband and drops off somewhat more sharply than analog filters.

'b' or 'B' for the brickwall digital filter. This filter is extremely flat across the passband and drops off sharply on the edge; however, the enhanced filtering comes at the expense of somewhat reduced baseline performance.

See also: NMR Spectroscopy User Guide

Related: dsp Type of DSP for data acquisition (P)

osfilt Oversampling filter for real-time DSP (P)
defaultdir
Default directory for Files menu system (P)
Description: Stores the name to the default directory for use with the Directory Menu in the Files menu system. Initial value for `defaultdir` is the home or login directory of the user. Selecting the Default button in the Directory Menu sets the current directory to the value of `defaultdir`. The opposite action, setting the value of `defaultdir` to the current directory, occurs when the Set Default button in the Directory Menu is selected. If the entry for a directory is marked and the Set Default button is selected, the directory marked becomes the new value of `defaultdir`.
See also: *NMR Spectroscopy User Guide*

delcom
Delete a user macro (M)
Syntax: `delcom(file)`
Description: Deletes a macro file in a user’s macro library (`maclib`). Note that `delcom` will not delete a macro in the VnmrJ system macro library.
Arguments: `file` is the file name of the user’s macro to be deleted.
Examples: `delcom('lds')`
See also: *User Programming*
Related:
- `crcom` Create user macro without using a text editor (C)
- `macrorm` Remove a user macro (C)

delete
Delete a file, parameter directory, or FID directory (C)
Syntax: `delete(file1<,file2,...>)`
Description: Delete files and directories in a somewhat safer manner than the `rm` command. Using `rm` is not recommended in VnmrJ because `rm` allows wildcard characters (* and ?) in the file description and recursive file deletion with the `-r` option. The delete command does not allow wildcard characters or the `-r` option, but you can still use the `delete` command to delete a file as well as remove `.fid` and `.par` directories, normally the only directories that need to be removed (experiment directories are deleted with the `delexp` macro).
Arguments: `file1, file2, ...` are the names of one or more files or directories to be deleted. When the `delete` command is entered, it first searches for `file1`. If it finds that file and it is not a directory, `file1` is deleted. If `file1` is not found, `.fid` is appended to the file name and `delete` searches for the file in that `.fid` directory. If the file is found, it is removed; otherwise, `.par` is appended to the file name and `delete` searches for the file in that `.par` directory. If the file is found, it is removed; otherwise, the command takes no action and continues to the next file name. The process is repeated for each file name given as an argument.
Examples: `delete('/home/vnmr1/memo')`
`delete('/vnmr/fidlib/fid1d')`
See also: *NMR Spectroscopy User Guide*
Related:
- `delexp` Delete an experiment (M)
- `rm` Delete file (C)
- `rmdir` Remove directory (C)

delexp
Delete an experiment (M)
Syntax: `delexp(experiment_number)`
Description: Deletes an experiment.
Arguments: `experiment_number` is the number (from 2 through 9999) of the experiment to be deleted (experiment 1 cannot be deleted). `delexp` also deletes the corresponding `jexpXXX` macro if necessary.
Examples: `delexp(321)`
See also: *NMR Spectroscopy User Guide*
Related: `cexp` Create an experiment (M)
 `jexp` Join existing experiment (C)

deleturnucleus Removes nucleus entry from current probe file (M)
Applicability: ALL
Description: All lines for the specified nucleus are removed from the current probe file. The argument should correspond to an entry in the probe file.
Syntax: `deletenucleus('nucleus')`
Arguments: `nucleus` — name followed by atomic number, e.g. C13 not 13C.
Examples: `deletenucleus('Si29')`
Related: `addnucleus` Adds nucleus entry to probe file (M)
 `addprobe` Create new probe directory and probe file (M)

dels Delete spectra from T_1 or T_2 analysis (C)
Syntax: `dels(index1<, index2,...>)`
Description: Deletes the spectra selected from the file `fp.out` (the output file of `fp`) used by the `t1` or `t2` analysis. Spectra may be restored by rerunning `fp`.
Arguments: `index1, index2,...` are the indexes of the spectra to be deleted.
Examples: `dels(7)`
 `dels(2, 5)`
See also: *NMR Spectroscopy User Guide*
Related: `dll` Display listed line frequencies and intensities (C)
 `fp` Find peak heights or phases (C)
 `getll` Get frequency and intensity of a line (C)
 `t1` T_1 exponential analysis (M)
 `t2` T_2 exponential analysis (M)

delta Cursor difference in directly detected dimension (P)
Description: Difference between two frequency cursors along the directly detected dimension. The value is changed by moving the right cursor, relative to the left, in the `ds` or `dconi` display.
Values: Positive number, in Hz.
See also: *NMR Spectroscopy User Guide*
Related: `dconi` Interactive 2D data display (C)
 `delta1` Cursor difference in 1st indirectly detected dimension (P)
 `delta2` Cursor difference in 2nd indirectly detected dimension (P)
 `ds` Display a spectrum (C)
 `split` Split difference between two cursors (M)
delta1
Cursor difference in 1st indirectly detected dimension (P)

Description: Difference of two frequency cursors along the first indirectly detected dimension. Analogous to the `delta` parameter except that `delta1` applies to the first indirectly detected dimension of a multidimensional data set.

Values: Positive number, in Hz.

See also: *NMR Spectroscopy User Guide*

Related: `delta` Cursor difference in directly detected dimension (P)

delta2
Cursor difference in 2nd indirectly detected dimension (P)

Description: Difference of two frequency cursors along the second indirectly detected dimension. Analogous to the `delta` parameter except that `delta2` applies to the second indirectly detected dimension of a multidimensional data set.

Values: Positive number, in Hz.

See also: *NMR Spectroscopy User Guide*

Related: `delta` Cursor difference in directly detected dimension (P)

deltf
Difference of two time-domain cursors (P)

Description: Difference between the two time-domain cursors of the `df` (or `dfid`) display. To create this parameter and the other FID display parameters `axissf`, `dotflag`, `vpf`, `vpfi`, and `crf` (if the parameter set is older and lacks these parameters), enter `addpar('fid')`.

Values: Number, in seconds.

See also: *NMR Spectroscopy User Guide*

Related:
- `addpar` Add selected parameters to the current experiment (M)
- `crf` Current time-domain cursor position (P)
- `df` Display a single FID (C)
- `dfid` Display a single FID (C)

Dept
Set up parameters for DEPT experiment (M)

Description: Set up parameters for DEPT experiment

See also: *NMR Spectroscopy User Guide*

Related:
- `adept` Automatic DEPT analysis and spectrum editing (C)
- `autodept` Automated complete analysis of DEPT data (M)
- `deptgl` Set up parameters for DEPTGL pulse sequence (M)
- `deptproc` Process array of DEPT spectra (M)
- `padept` Plot automatic DEPT analysis (C)
- `ppcal` Proton decoupler pulse calibration (M)

deptgl
Set up parameters for DEPTGL pulse sequence (M)

Description: Macro for the DEPTGL pulse sequence for spectral editing and polarization transfer experiments.

See also: *NMR Spectroscopy User Guide*

Related: `Dept` Set up parameters for DEPT pulse sequence (M)
deptproc
Process array of DEPT spectra (M)

Description: Automatically processes arrays of DEPT-type spectra. The FIDs are transformed (using $lb=2.5$), phased, and scaled. In foreground operation, a stacked display is produced. By default, an automatic DEPT analysis (adept) is performed.

See also: *NMR Spectroscopy User Guide*

Related:
- adept
 Automatically edit DEPT spectra (C)
- Dept
 Set up parameters for DEPT experiment
- lb
 Line broadening along the directly detected dimension (P)
- pldept
 Plot DEPT type spectra (M)
- procplot
 Automatically process FIDs (M)

destroy
Destroy a parameter (C)

Syntax: `destroy(parameter<,tree>)`

Description: Removes a parameter from one of the parameter trees. If the destroyed parameter was an array, the array parameter is automatically updated.

If destroy is called for a non-existent parameter, the command will abort with a message. If an optional return value is given, it will indicate success (1) or failure (0) and the command will not abort.

Arguments:
- parameter is the name of the parameter to be destroyed.
- tree is a keyword for the type of parameter tree: 'global', 'current', 'processed', or 'systemglobal'. The default is 'current'. Refer to the create command for more information on types of trees.

Examples:
- `destroy('a')`
- `destroy('c','global')`

See also: *User Programming*

Related:
- array
 Parameter order and precedence (P)
- create
 Create new parameter in a parameter tree (C)
- display
 Display parameters and their attributes (C)
- paramvi
 Edit a variable and its attributes using vi text editor (C)
- prune
 Prune extra parameters from current tree (C)

destroygroup
Destroy parameters of a group in a tree (C)

Syntax: `destroygroup(group<,tree>)`

Description: Removes parameters of a group from one of the parameters trees.

Arguments:
- group is a keyword for the type of parameter group: 'all', 'sample', 'acquisition', 'processing', 'display', or 'spin'.
- tree is a keyword for the type of parameter tree: 'global', 'current', or 'processed'. The default is 'current'. Refer to the create command for more information on trees.

Examples:
- `destroygroup('sample')`
- `destroygroup('all','global')`

See also: *User Programming*

Related:
- create
 Create new parameter in a parameter tree (C)
- destroy
 Destroy a parameter (C)
- display
 Display parameters and their attributes (C)
- groupcopy
 Copy parameters of group from one tree to another (C)
- setgroup
 Set group of a variable in a tree (C)
df
Display a single FID (C)

Syntax:
1. `df<(index)>`
2. `df(options)`

Description: Displays a single FID. Parameter entry after an FID has been displayed causes the display to be updated. The FID is left-shifted by the number of complex data points specified by the parameter `lsfid`. The FID is also phase-rotated (zero-order only) by the number of degrees specified by the parameter `phfid`. Left shifting and phasing can be avoided by setting `lsfid` and `phfid` to 'n'. `df` is identical in function to the `dfid` command.

Arguments:
- `index` (used with syntax 1) is the number of a particular FID for arrayed 1D experiments or for 2D experiments. Default is 1.
- `options` (used with syntax 2) is any of the following:
 - `'toggle'` is a keyword to switch between box and cursor modes.
 - `'restart'` is a keyword to redraw the cursor if it has been turned off.
 - `'expand'` is a keyword to switch between expanded and full views of the FID.
 - `'imaginary'` is a keyword to switch on and off the display of the imaginary FID.
 - `'sfwf'` is a keyword to interactively adjust the start and width of the FID display.
 - `'phase'` is a keyword to enter an interactive phasing mode.
 - `'dscale'` is a keyword to toggle the scale below the FID on and off.

Examples:
- `df`
- `df(4)`
- `df('restart')`

See also: *NMR Spectroscopy User Guide*

Related:
- `crmode` Current state of cursors in `dfid`, `ds`, or `dconi` (P)
- `dfid` Display a single FID (C)
- `df2d` Display FIDs of 2D experiment (C)
- `dfmode` Current state of display of imaginary part of a FID (P)
- `lsfid` Number of complex points to left-shift the np FID (P)
- `phfid` Zero-order phasing constant for the np FID (P)

df2d
Display FIDs of 2D experiment (C)

Syntax:
`df2d<(<'nf',),<array_index>)>`

Description: Produces a color intensity map of the raw 2D FIDs as a function of t1 and t2. The display can be modified by subsequent display commands, for example, `df2d dconn` will display the 2D FIDs without clearing the graphics screen.

Arguments:
- `'nf'` is a keyword specifying that the data has been collected in the compressed form using `nf`. In other words, each array element is collected as one 2D FID or image comprised of `nf` FIDs or traces.
- `array_index` is the index of the array to be displayed.

Examples:
- `df2d`
- `df2d(1)`

See also: *NMR Spectroscopy User Guide*

Related:
- `dconi` Interactive 2D data display (C)
- `df` Display a single FID (C)
dfid
Display a single FID (C)

Syntax:
(1) \texttt{dfid<(index)>}
(2) \texttt{dfid<(options)>}

Description: Functions the same as the \texttt{df} command. See \texttt{df} for information.

See also: *NMR Spectroscopy User Guide*

Related: \texttt{df}
Display a single FID (C)

dfmode
Current state of display of imaginary part of a FID (P)

Description: Holds a string variable that reflects the state of display of the imaginary part of a FID. \texttt{dfmode} is primarily used by the programmable menu \texttt{dfid} to determine the status of the display of the imaginary part of a FID.

Values:
- 'r' indicates the current display is real only.
- 'i' indicates the current display is imaginary.
- 'z' indicates the display is zero imaginary.

See also: *User Programming*

dfrq
Transmitter frequency of first decoupler (P)

Description: Contains the transmitter frequency for the first decoupler. \texttt{dfrq} is automatically set when the parameter \texttt{dn} is changed and should not be necessary for the user to manually set.

Values: Frequency, in MHz. The value is limited by synthesizer used with the channel.

See also: *NMR Spectroscopy User Guide*

Related: \texttt{dfrq2}
Transmitter frequency of second decoupler (P)
\texttt{dfrq3}
Transmitter frequency of third decoupler (P)
\texttt{dfrq4}
Transmitter frequency of fourth decoupler (P)
\texttt{dn}
Nucleus for first decoupler (P)
\texttt{dof}
Frequency offset for first decoupler (P)
\texttt{sfrq}
Transmitter frequency of observe nucleus (P)
\texttt{spcfrq}
Display frequencies of rf channels (M)

dfrq2
Transmitter frequency of second decoupler (P)

Applicability: Systems with a second decoupler.

Description: Contains the transmitter frequency for the second decoupler. \texttt{dfrq2} is automatically set when parameter \texttt{dn2} is changed and should not be necessary for the user to manually set.

Values: Frequency, in MHz. Value is limited by synthesizer used with the channel. If \texttt{dn2=''} (two single quotes with no space in between) and a second decoupler is present in the console, \texttt{dfrq2} is internally set to 1 MHz.

See also: *NMR Spectroscopy User Guide*

Related: \texttt{dn2}
Nucleus for second decoupler (P)
\texttt{dof2}
Frequency offset for second decoupler (P)

dfrq3
Transmitter frequency of third decoupler (P)

Applicability: Systems with a third decoupler.
dfrq3

Description: Contains the transmitter frequency for the third decoupler. \texttt{dfrq3} is automatically set when the parameter \texttt{dn3} is changed and should not be necessary for the user to manually set.

Values: Frequency, in MHz. Value is limited by synthesizer used with the channel. If \texttt{dn3}='{' (two single quotes with no space in between) and a third decoupler is present in the console, \texttt{dfrq3} is internally set to 1 MHz.

See also: \textit{NMR Spectroscopy User Guide}

Related: \texttt{dn3} Nucleus for third decoupler (P)
\texttt{dof3} Frequency offset for third decoupler (P)

dfrq4

\textbf{Transmitter frequency of fourth decoupler (P)}

Applicability: Systems with a deuterium decoupler channel as the fourth decoupler.

Description: Contains the transmitter frequency for the fourth decoupler. \texttt{dfrq4} is automatically set when the parameter \texttt{dn4} is changed and should not be necessary for the user to manually set.

Values: Frequency, in MHz. Value is limited by a synthesizer used with the channel. If \texttt{dn4}='{' (two single quotes with no space in between) and a fourth decoupler is present in the console, \texttt{dfrq4} is internally set to 1 MHz.

See also: \textit{NMR Spectroscopy User Guide}

Related: \texttt{dn4} Nucleus for fourth decoupler (P)
\texttt{dof4} Frequency offset for fourth decoupler (P)
\texttt{spcfrq} Display frequencies of rf channels (M)
\texttt{rftype} type of rf generation

dfs

\textbf{Display stacked FIDs (C)}

Syntax: \texttt{dfs(<start>,<finish>,<step>,{'all'|'imag'},<color>)}

Description: Displays one or more FIDs. The position of the first FIDs is governed by the parameters \texttt{wc}, \texttt{sc}, and \texttt{vpf}. A subsequent FID is positioned relative to the preceding FID by the parameters \texttt{vo} and \texttt{ho}.

Arguments: \texttt{start} is the index number of the first FID for multiple FIDs. It can also be the index number of a particular FID for arrayed 1D or 2D data sets. \texttt{finish} is the index number of the last FID for multiple FIDs. To include all FIDs, set \texttt{start} to 1 and \texttt{finish} to \texttt{arraydim} (see example below). \texttt{step} is the increment for the FID index. The default is 1.

\texttt{'all'} is a keyword to display all of the FIDs. This is the default.

\texttt{'imag'} is a keyword to display only the imaginary FID channel.

\texttt{color} is the color of the display: \texttt{'red'}, \texttt{'green'}, \texttt{'blue'}, \texttt{'cyan'}, \texttt{'magenta'}, \texttt{'yellow'}, \texttt{'black'}, or \texttt{'white'}.

Examples: \texttt{dfs(1, arraydim, 3)}
\texttt{dfs('imag')}

See also: \textit{NMR Spectroscopy User Guide}

Related: \texttt{arraydim} Dimension of experiment (P)
\texttt{dfs} Display stacked FIDs automatically (C)
\texttt{dfsan} Display stacked FIDs automatically without screen erase (C)
\texttt{dfsh} Display stacked FIDs horizontally (C)
\texttt{dfshn} Display stacked FIDs horizontally without screen erase (C)
\texttt{dfsn} Display stacked FIDs without screen erase (C)
\texttt{dfww} Display FIDs in whitewash mode (C)
dfsa

Display stacked FIDs automatically (C)

Syntax:
```
dfsa(<start>,<finish>,<step>,<all>|'imag'>,<color>)
```

Description:
Displays one or more FIDs automatically by adjusting the parameters `vo` and `ho` to fill the screen in a lower left to upper right presentation (`wc` must be set to less than full screen width for this to work). The position of the first FID is governed by parameters `wc`, `sc`, and `vpf`.

Arguments:
- `start` is the index number of the first FID for multiple FIDs. It can also be the index number of a particular FID for arrayed 1D or 2D data sets.
- `finish` is the index number of the last FID for multiple FIDs.
- `step` is the increment for the FID index. The default is 1.
- `'all'` is a keyword to display all of the FIDs. This is the default.
- `'imag'` is a keyword to display only the imaginary FID channel.
- `color` is the color of the display: `'red'`, `'green'`, `'blue'`, `'cyan'`, `'magenta'`, `'yellow'`, `'black'`, or `'white'`.

See also: NMR Spectroscopy User Guide

Related:
- `dfs` Display stacked FIDs (C)
- `dfsan` Display stacked FIDs automatically without screen erase (C)

dfsan

Display stacked FIDs automatically without screen erase (C)

Syntax:
```
dfsan(<start>,<finish>,<step>,<all>|'imag'>,<color>)
```

Description:
Functions the same as the command `dfsa` except the graphics window is not erased before starting the display. This allows composite displays of many FIDs to be created. The arguments are the same as `dfsa`.

See also: NMR Spectroscopy User Guide

Related:
- `dfs` Display stacked FIDs (C)
- `dfsa` Display stacked FIDs automatically (C)

dfsh

Display stacked FIDs horizontally (C)

Syntax:
```
dfsh(<start>,<finish>,<step>,<all>|'imag'>,<color>)
```

Description:
Displays one or more FIDs horizontally by setting `vo` to zero and adjusting `ho`, `sc`, and `wc` to fill the screen from left to right with the entire array. The position of the first FID is governed by parameters `wc`, `sc`, and `vpf`.

Arguments:
- `start` is the index number of the first FID for multiple FIDs. It can also be the index number of a particular FID for arrayed 1D or 2D data sets.
- `finish` is the index number of the last FID for multiple FIDs. To display all FIDs, set `finish` to the parameter `arraydim`.
- `step` is the increment for the FID index. The default is 1.
- `'all'` is a keyword to display all of the FIDs. This is the default.
- `'imag'` is a keyword to display only the imaginary FID channel.
color is the color of the display: 'red', 'green', 'blue', 'cyan', 'magenta', 'yellow', 'black', or 'white'.

See also: NMR Spectroscopy User Guide
Related: dfs Display stacked FIDs (C)
 dfshn Display stacked FIDs horizontally without screen erase (C)

dfshn Display stacked FIDs horizontally without screen erase (C)
Syntax: dfshn(<start><,finish><,step><,'all'|'imag'><,color>)>
Description: Functions the same as the command dfsh except the graphics window is not erased before starting the display. This allows composite displays of many FIDs to be created. The arguments are the same as dfsh.
See also: NMR Spectroscopy User Guide
Related: dfsh Display stacked FIDs horizontally (C)

dfsn Display stacked FIDs without screen erase (C)
Syntax: dfsn(<start><,finish><,step><,'all'|'imag'><,color>)>
Description: Functions the same as the command dfs except the graphics window is not erased before starting the display. This allows composite displays of many FIDs to be created. The arguments are the same as dfs.
See also: NMR Spectroscopy User Guide
Related: dfs Display stacked FIDs (C)

dfww Display FIDs in whitewash mode (C)
Syntax: dfww(<start><,finish><,step><,'all'|'imag'><,color>)>
Description: Displays FIDs in whitewash mode (after the first FID, each FID is blanked out in regions in which it is behind an earlier FID). The position of the first FIDs is governed by parameters wc, sc, and vpf.
Arguments: start is the index number of the first FID for multiple FIDs. It can also be the index number of a particular FID for arrayed 1D or 2D data sets.
 finish is the index number of the last FID for multiple FIDs.
 step is the increment for the FID index. The default is 1.
 'all' is a keyword to display all of the FIDs. This is the default.
 'imag' is a keyword to display only the imaginary FID channel.
 color is the color of the display: 'red', 'green', 'blue', 'cyan', 'magenta', 'yellow', 'black', or 'white'.
See also: NMR Spectroscopy User Guide
Related: dfs Display stacked FIDs (C)
 pfww Plot FIDs in whitewash mode (C)

dg Display group of acquisition/processing parameters (C)
Syntax: dg('template',<,'file_name'>)
Description: Displays the group of acquisition and 1D/2D processing parameters. To display an individual parameter, enter the name of the parameter followed by a question mark (e.g., sw?). Parameters do not have to be displayed in order to be entered or changed. The dg display is controlled by the string parameter dg.
Arguments: \texttt{template} is the name of the template parameter. The default is \texttt{'dg'}. See the manual \textit{User Programming} for rules on constructing a template. The macros \texttt{dg}, \texttt{dg1}, \texttt{dg2}, \texttt{dglp}, and \texttt{dgs} activate \texttt{dg} with a \texttt{template} argument such as \texttt{'dg'}, \texttt{'dg1'}, \texttt{'dg2'}, \texttt{'dglp'}, \texttt{'dgs'}, etc. or a user defined template.

\texttt{file_name} is the name of the file to which the \texttt{dg} command will write the parameters specified by \texttt{template}.

Examples:
\begin{verbatim}
\texttt{dg}
\texttt{dg('dgexp')}
\texttt{dg('dg','dgout')}
\end{verbatim}

See also: \textit{NMR Spectroscopy User Guide}; \textit{User Programming}

Related:
\begin{itemize}
 \item \texttt{?} Display the value of an individual parameter (C)
 \item \texttt{da} Display acquisition parameter arrays (C)
 \item \texttt{dglp} Display group of linear prediction parameters (C)
 \item \texttt{da} Display acquisition parameter arrays (P)
 \item \texttt{dg} Control \texttt{dg} parameter group display (P)
 \item \texttt{dglp} Control \texttt{dglp} parameter group of linear prediction parameters (P)
 \item \texttt{dg1} Display group of display parameters (M)
 \item \texttt{dg2} Display group of 3rd and 4th rf channel/3D parameters (M)
 \item \texttt{dgs} Display group of special/automation parameters (M)
\end{itemize}

\textbf{dg} \hspace{1cm} \textbf{Control \texttt{dg} parameter group display (P)}

\textbf{Description:} Controls the display of the \texttt{dg} command for the group of acquisition and 1D/2D processing parameters. \texttt{dg}, a string parameter, can be modified with the command \texttt{paramvi('dg')}.

\textbf{See also:} \textit{NMR Spectroscopy User Guide}

Related:
\begin{itemize}
 \item \texttt{?} Display the value of an individual parameter (C)
 \item \texttt{da} Display acquisition parameter arrays (C)
 \item \texttt{dglp} Display group of linear prediction parameters (C)
 \item \texttt{da} Display acquisition parameter arrays (P)
 \item \texttt{dg} Control \texttt{dg} parameter group display (P)
 \item \texttt{dglp} Control \texttt{dglp} parameter group of linear prediction parameters (P)
 \item \texttt{dg1} Display group of display parameters (M)
 \item \texttt{dg2} Display group of 3rd and 4th rf channel/3D parameters (M)
 \item \texttt{dgs} Display group of special/automation parameters (M)
\end{itemize}

\textbf{dg1} \hspace{1cm} \textbf{Display group of display parameters (M)}

\textbf{Description:} Displays the group of display parameters. To display an individual parameter, enter the name of the parameter followed by a question mark (e.g., \texttt{sp?}). Parameters do not have to be displayed in order to be entered or changed. The \texttt{dg1} display is controlled by the string parameter \texttt{dg1}.

\textbf{See also:} \textit{NMR Spectroscopy User Guide}

Related:
\begin{itemize}
 \item \texttt{?} Display individual parameter value (C)
 \item \texttt{dg1} Control \texttt{dg1} parameter group display (P)
 \item \texttt{dg} Display group of acquisition/processing parameters (C)
\end{itemize}

\textbf{dg1} \hspace{1cm} \textbf{Control \texttt{dg1} parameter group display (P)}

\textbf{Description:} Controls the display of the \texttt{dg1} command for the group of display parameters. \texttt{dg1}, a string parameter, can be modified with \texttt{paramvi('dg1')}.

\textbf{See also:} \textit{NMR Spectroscopy User Guide}

Related:
\begin{itemize}
 \item \texttt{dg1} Display group of display parameters (M)
 \item \texttt{paramvi} Edit a parameter and its attributes with \texttt{vi} text editor (C)
\end{itemize}

\textbf{dg2} \hspace{1cm} \textbf{Display group of 3rd and 4th rf channel/3D parameters (M)}

\textbf{Description:} Displays the group of acquisition parameters associated with a second decoupler channel on a system with a third rf channel. It also displays the group
of parameters associated with selective 2D processing of 3D data sets. To display an individual parameter, enter the name of the parameter followed by a question mark (e.g., \texttt{sw?}). Parameters do not have to be displayed in order to be entered or changed. The \texttt{dg2} display is controlled by the string parameter \texttt{dg2}.

See also: \textit{NMR Spectroscopy User Guide}

\texttt{dg2}

Control \texttt{dg2} parameter group display (P)

Description: Controls the display of the \texttt{dg2} command for the group of 3rd and 4th rf channel/3D parameters. \texttt{dg2}, a string parameter, can be modified with the command \texttt{paramvi('dg2')}.

To retrieve the \texttt{dg2} and \texttt{ap} display templates for the current experiment, enter \texttt{addpar('3rf')}.

See also: \textit{NMR Spectroscopy User Guide}

Related:
- \texttt{addpar} Add selected parameters to the current experiment (M)
- \texttt{dg2} Display group of 3rd and 4th rf channel/3D parameters (M)
- \texttt{paramvi} Edit a parameter and its attributes with \texttt{vi} text editor (M)

\texttt{dga}

Display group of spin simulation parameters (M)

Description: Displays the file of spin simulation parameters (Group A). There is one such group of parameters in the data system, not one per experiment as with normal NMR parameters.

See also: \textit{NMR Spectroscopy User Guide}

Related:
- \texttt{dg} Display group of acquisition/processing parameters (C)
- \texttt{dla} Display spin simulation parameter arrays (C)

\texttt{DgcsteSL}

Set up parameters for \texttt{DgcsteSL} pulse sequence (M)

Description: Converts a parameter set to DgcsteSL experiment.

See also: \textit{NMR Spectroscopy User Guide}

Related:
- \texttt{dosy} Process DOSY experiments (M)
- \texttt{fiddle} Perform reference deconvolution (M)
- \texttt{setup_dosy} Set up gradient levels for DOSY experiments (M)

\texttt{Dgcstecosy}

Set up parameters for \texttt{Dgcstecosy} pulse sequence (M)

Description: Converts a parameter set to Dgcstecosy experiment

See also: \textit{NMR Spectroscopy User Guide}

Related:
- \texttt{dosy} Process DOSY experiments (M)
- \texttt{makeslice} Synthesize 2D projection of a 3D DOSY spectrum (C)
- \texttt{setup_dosy} Set up gradient levels for DOSY experiments (M)
- \texttt{showoriginal} Restore first 2D spectrum in 3D DOSY spectrum (M)

\texttt{Dgcstehmqc}

Set up parameters for \texttt{Dgcstehmqc} pulse sequence (M)

Description: Converts a parameter set to Dgcstehmqc experiment
dglc Display group of LC-NMR parameters (M)
Applicability: Systems with LC-NMR accessory.
Description: Displays parameters related to LC-NMR on a separate screen. This macro is equivalent to the command `dg('dglc')`.
See also: *NMR Spectroscopy User Guide*
Related: dglc Control LC-NMR parameter display (P)

dglc Control dglc parameter group display (P)
Applicability: Systems with LC-NMR accessory.
Description: Controls the display of the LC-NMR parameters by the macro `dglc` and the equivalent command `dg('dglc')`. If this parameter does not exist, the `parlc` macro can create it.
See also: *NMR Spectroscopy User Guide*
Related: dglc Display LC-NMR parameters (M) parlc Create LC-NMR parameters (M)

dglp Display group of linear prediction parameters (C)
Syntax: `dglp`
Description: Displays the linear prediction parameters group. Parameters do not have to be displayed in order to be entered or changed. The `dglp` display is controlled by the string parameter `dglp`.
Examples: `dglp`
See also: *NMR Spectroscopy User Guide; User Programming*
Related: `dg` Control `dg` parameter group display (P)

dgs Display group of shims and automation parameters (M)
Description: Displays the group of shims and automation parameters. To display an individual parameter, enter name of the parameter followed by a question mark (e.g., `sw?`). Parameters do not have to be displayed in order to be entered or changed. The `dgs` display is controlled by the parameter `dgs`.
See also: *NMR Spectroscopy User Guide*
Related: `dg` Display group of acquisition/processing parameters (C) `dgs` Control `dgs` parameter group display (P)

dgs Control dgs parameter group display (P)
Description: Controls display of the `dgs` command for the group of shims and automation parameters. `dgs`, a string parameter, can be modified by `paramvi('dgs')`.
dhp

Decoupler high-power control with class C amplifier (P)

Applicability: System with a class C amplifier.

Description: dhp selects a decoupler high-power level for systems with class C amplifiers on the decoupler channel. Specific values of dhp should be calibrated periodically for any particular instrument and probe combination. As a rough guide, dhp=75 corresponds to approximately 2 watts at 200 MHz.

CAUTION: Decoupler power greater than 2 watts in a switchable probe will damage the probe. Always carefully calibrate high-power decoupling to avoid exceeding 2 watts of power.

For systems equipped with a linear amplifier on the decoupler channel, dhp is nonfunctional and is replaced by the parameter dpwr.

Note that dhp runs in the opposite direction from dlp (i.e., for dhp a higher number means more power, for dlp a higher number means less power).

Values: 0 to 255 (where 255 is maximum power) in uncalibrated, non-linear units.

'n' selects low-power decoupling under the control of the parameter dlp.

See also: *NMR Spectroscopy User Guide*

dialog

Display a dialog box from a macro (C)

Syntax:
```
dialog(definition_file,output_file<,'nowait'>)
```

Description: Opens a dialog box from a macro. The output is written to a file that can be read by the macro using the lookup command.

Arguments:
- **definition_file** is the name of the file (specified by an absolute path) that defines the layout of the dialog box.
- **output_file** is the name of the file (specified by an absolute path) where the results of the dialog box are written.
- 'nowait' is a keyword to return immediately, without waiting for input into the dialog box.

Examples:
```
dialog(userdir+'/dialoglib/array','/tmp/array')
```

See also: *User Programming*

diffparams

Report differences between two parameter sets (U)

Syntax:
```
diffparams <-list> file1 file2 <macroname>
```

Description: Reports differences between parameter sets. A macro can optionally be created that will convert file1 into file2.

Arguments:
- file1 and file2 are parameter files, like `$HOME/vnmrsys/exp1/procpar` or `$HOME/vnmrsys/local`. file1 and file2 can also be directories (e.g., `$HOME/vnmrsys` or a local experiment like `~/vnmrsys/exp1`); in this case diffparams will look for a subfile procpar
in these directories. The optional -list argument will cause a list of the parameters which are different to be printed. If the -list option is used, the macro feature is turned off. If a parameter exists in file1 but not file2, it is not listed. If a parameter exists in file2 but not file1, it is listed. If the parameter exists in both files, it is listed if the values are different. It is not listed if other information associated with the parameter is different. This other information is things like protection bits, maximum values, group, type, etc.

An optional third argument specifies the pathname of a macro to output. This macro will contain the MAGICAL commands necessary to convert file1 into file2.

Examples:
- `diffparams abc.fid xyz.fid`
- `diffparams -list abc.fid xyz.fid`
- `diffparams ~/vnmrsys/exp1 ~/vnmrsys/exp3`
- `diffparams ~/vnmrsys/exp1 ~/vnmrsys/exp3 ~/vnmrsys/maclib/changelto3`

diffshims

Compare two sets of shims (M,U)

Syntax:
```
diffshims (shimfile1, shimfile2)
```

Description: Compares values for room-temperature shims stored in two separate files.

Arguments:
- `shimfile1` and `shimfile2` are names of separate files containing shim values. Both files must have been written using the `svs` command.

See also: NMR Spectroscopy User Guide

Related:
- `svs` Save shim coil settings (C)

digfilt

Write digitally filtered FIDs to another experiment (M)

Syntax:
```
digfilt (exp_number<,option>)
```

Description: Saves digitally filtered FIDs to another experiment.

Arguments:
- `exp_number` specifies the number of the experiment, from 1 to 9, for saving the FIDs.
- `option` is one of the keywords 'nodc', 'zero', 'lfs', 'zfs', or 't2dc'. Use a keyword for an option if the same option was used when processing the data with `ft`, `wft`, `ft2d`, or `wft2d`.

See also: NMR Spectroscopy User Guide

Related:
- `downsamp` Sampling factor applied after digital filtering (P)
- `ft` Fourier transform 1D data (C)
- `ft2d` Fourier transform 2D data (C)
- `wft` Weight and Fourier transform 1D data (C)
- `wft2d` Weight and Fourier transform 2D data (C)

dir

List files in directory (C)

Syntax:
```
dir <(string)>
```

Description: Displays files in a directory on the text window. The `dir` command is identical to the `ls` and `lf` commands.

Arguments:
- `string` is a string argument containing the options and/or directory names used if this were the UNIX `ls` command (e.g., `dir (-l * .fid)`) requests a long listing (-l) of all files ending with `.fid` (* .fid)). If no argument is entered, `dir` lists all files in the current working directory.
Examples: dir
dir('data')
dir('-l *.fid')

See also: *NMR Spectroscopy User Guide*

Related: lfl List files in directory (C)
ls List files in directory (C)

display

Display parameters and their attributes (C)

Syntax: display(parameter|'**'|'***'<,tree>)

Description: Displays one or more parameters and their attributes from a parameter tree.

Arguments: Three levels of display are available: parameter, '**', and '***'.

- parameter is the name of a single parameter and the display is of its attributes (e.g., display('a') displays the attributes of parameter a in the (default) current tree).
- '***' is a keyword to display the name and values of all parameters in a tree (e.g., display('***','global') displays all parameter names and values in the global tree).
- '***' is a keyword to display the attributes of all parameters in a tree (e.g., display('***','processed') displays the attributes of all parameters in the processed tree).

tree is the type of parameter tree and can be 'global', 'current', 'processed', or 'systemglobal'. The default is 'current'. Refer to the create command for more information on types of trees.

Examples: display('a')
display('***','global')
display('***','processed')

See also: *User Programming*

Related: create Create new parameter in a parameter tree (C)
destroy Destroy a parameter (C)
paramvi Edit a parameter and its attributes with the vi text editor (C)
prune Prune extra parameters from current tree (C)

dla

Display spin simulation parameter arrays (M)

Syntax: dla<('long')>

Description: Displays the parameters containing the line assignments for spin simulation iteration (matching simulated spectra to actual data). A clindex value of a calculated transition gives the index of the assigned measured line. The value is zero for unassigned transitions.

Arguments: 'long' is a keyword to display the parameters containing the line assignments for spin simulation iteration (matching simulated spectra to actual data) and put the line assignments into the file spini.la. This option is most useful when the dla display is too large to display all the calculated transitions in the text window. The dlalong command operates the same as the dla('long') command.

Examples: dla
dla('long')
See also: *NMR Spectroscopy User Guide*

Related: assign Assign transitions to experimental lines (M)
clindex Index of experimental frequency of a transition (P)
dga Display parameters of spin simulation group (C)
dalong Long display of spin simulation parameter arrays (C)

dalong **Long display of spin simulation parameter arrays (C)**

Syntax: `dalong`

Description: Puts line assignments into the file `spini.la` in a more complete form, then displays this file in the text window. It is most useful when the `dla` display is too large to display all the calculated transitions in the text window. The `dla('long')` command operates the same as `dalong`.

See also: *NMR Spectroscopy User Guide*

Related: `dla` Display spin simulation parameter arrays (M)

dli **Display list of integrals (C)**

Description: Displays a list of integrals at the integral reset points. The frequency units of the displayed list of integrals is controlled by the parameter `axis`. The reset points may be defined with the `z` command and these frequencies are stored in `lifrq`. The calculated amplitudes of the integral region are stored in `liamp`. The reset points are stored as hertz and are not referenced to `rfl` and `rfp`. The amplitudes are stored as the actual value; they are not scaled by `ins` or by `insref`. When the integral blanking mode is used (i.e., `intmod='partial'`), only the integrals corresponding to the displayed integral regions are listed.

The displayed integral value can be scaled with the `setint` macro. The integral is scaled by the parameters `ins` and `insref`.

See also: *NMR Spectroscopy User Guide*

Related: `axis` Axis label for displays and plots (P)
`cz` Clear integral reset points (C)
dini Display list of normalized integrals (M)
`ins` Integral normalization scale (P)
`insref` Fourier number scaled value of an integral (P)
`liamp` Amplitudes of integral reset points (P)
`lifrq` Frequencies of integral reset points (P)
nli Find integral values (C)
rfl Reference peak position in directly detected dimension (P)
rfp Reference peak frequency in directly detected dimension (P)
`setint` Set value of an integral (M)
`z` Add integral reset point at cursor position (C)

dlivast **Produce text file and process wells (M)**

Applicability: VAST accessory.

Syntax: `dlivast<(last)>`

Description: Produces a text file containing the integral of the partial regions and processes the wells.

Arguments: `last` is the number of the last well. The default is 96.
dll

Display listed line frequencies and intensities (C)

Syntax:
dll('<pos<'noise_mult>>)><:number_lines,scale>

Description:
Displays a list of line frequencies and amplitudes that are above a threshold defined by th. Frequency units are defined by the parameter axis. The results of this calculation are stored in llfrq and llamp. The frequencies are stored as Hz and are not referenced to rfl and rfp. Amplitudes are stored as the actual data point value; they are not scaled by vs.

Arguments: 'pos' is a keyword to list only positive lines.

noise_mult is a numerical value that determines the number of noise peaks listed for broad, noisy peaks. The default value is 3. A smaller value results in more peaks, a larger value results in fewer peaks, and a value of 0.0 results in a line listing containing all peaks above the threshold th. Negative values of noise_mult are changed to 3.

number_lines is a return argument with the number of lines above the threshold.

scale is a return argument with a scaling factor for line amplitudes. This scaling factor accounts for vs and whether the lines are listed in absolute intensity mode or normalized mode.

Examples:

dll
dll('pos')
dll(2.5)
dll:rl,sc

See also: NMR Spectroscopy User Guide

Related:
axis Axis label for displays and plots (P)
dels Delete spectra from Ti or T2 analysis (C)
fp Find peak heights (C)
getll Get frequency and intensity of a line (C)
llamp List of line amplitudes (P)
llfrq List of line frequencies (P)
nl Position the cursor at the nearest line (C)
nll Find line frequencies and intensities (C)
rfl Reference peak position in directly detected dimension (P)
rfp Reference peak frequency in directly detected dimension (P)
th Threshold (P)
vs Vertical scale (P)

dni

Display list of normalized integrals (M)

Description:
Displays integrals in a normalized format. The parameter ins represents the value of the sum of all the integrals. When the integral blanking mode is used (i.e., intmod='partial'), only the integrals corresponding to the displayed integral regions are listed and are used in the summation.

See also: NMR Spectroscopy User Guide

cz Clear integral reset points (C)
dli Display list of integrals (C)
ins Integral normalization scale (P)
dlp

Decoupler low-power control with class C amplifier (P)

Applicability: Systems with a class C amplifier.

Description:

dlp controls the decoupler power level for systems with a class C decoupler amplifier in the low-power mode, generally used for homonuclear decoupling. *dlp* specifies dB of attenuation of the decoupler, below a nominal 1 watt value. *dlp* is active only if *dhp='n'*.

On systems with a decoupler linear amplifier, *dlp* is nonfunctional and *dpwr* controls decoupler power.

Values: 0 to 39 (in dB of attenuation, 0 is maximum power).

See also: *NMR Spectroscopy User Guide*

Related:

- *dhp* Decoupler high-power control with class C amplifier (P)
- *dm* Decoupler mode for first decoupler (P)
- *dmf* Decoupler modulation frequency for first decoupler (P)
- *dpwr* Power level for first decoupler with linear amplifier (P)

dm

Decoupler mode for first decoupler (P)

Description: Determines the state of first decoupler during different status periods within a pulse sequence (refer to the manual *User Programming* for a discussion of status periods). Pulse sequences may require one, two, three, or more different decoupler states. The number of letters that make up the *dm* parameter vary appropriately, with each letter representing a status period (e.g., *dm='yny'* or *dm='ns'*). If the decoupler status is constant for the entire pulse sequence, it can be entered as a single letter (e.g., *dm='n'*).

Values: 'n', 'y', 'a', or 's' (or a combination of these values), where:

- 'n' specifies no decoupler rf.
- 'y' specifies the asynchronous mode. In this mode, the decoupler rf is gated on and modulation is started at a random places in the modulation sequence.
- 'a' specifies the asynchronous mode, the same as 'y'.
- 's' specifies the synchronous mode in which the decoupler rf is gated on and modulation is started at the beginning of the modulation sequence.

See also: *NMR Spectroscopy User Guide*

Related:

- *dm2* Decoupler mode for second decoupler (P)
- *dm3* Decoupler mode for third decoupler (P)
- *dm4* Decoupler mode for fourth decoupler (P)
- *dmf* Decoupler modulation frequency for first decoupler (P)
- *dmm* Decoupler modulation mode for first decoupler (P)
- *dn* Nucleus for first decoupler (P)
- *decasynctype* Select the type of decoupler asynchronous mode (P)

dm2

Decoupler mode for second decoupler (P)

Applicability: Systems with a second decoupler.

Description: Determines the state of second decoupler during different status periods within a pulse sequence. It functions analogously to *dm*.
Values: Same as \(dm \), except that if \(dn2='\) ' (two single quotes with no space in between) and a second decoupler is present in the console, \(dm2 \) assumes a default value of 'n' when go is executed.

See also: *NMR Spectroscopy User Guide*

Related:
- \(dm \) Decoupler mode of first decoupler (P)
- \(dmf2 \) Decoupler modulation frequency for second decoupler (P)
- \(dmm2 \) Decoupler modulation mode for second decoupler (P)
- \(dn2 \) Nucleus for second decoupler (P)

\(dm3 \)

Decoupler mode for third decoupler (P)

Applicability: Systems with a third decoupler.

Description: Determines the state of third decoupler during different status periods within a pulse sequence. It functions analogously to \(dm \).

Values: Same as \(dm \), except that if \(dn3='\) ' (two single quotes with no space in between) and a third decoupler is present in the console, \(dm3 \) assumes a default value of 'n' when go is executed.

See also: *NMR Spectroscopy User Guide*

Related:
- \(dm \) Decoupler mode of first decoupler (P)
- \(dmf3 \) Decoupler modulation frequency for third decoupler (P)
- \(dmm3 \) Decoupler modulation mode for third decoupler (P)
- \(dn3 \) Nucleus for third decoupler (P)
- \(decasynctype \) Select the type of decoupler asynchronous mode (P)

\(dm4 \)

Decoupler mode for fourth decoupler (P)

Applicability: Systems with a deuterium decoupler channel as the fourth decoupler.

Description: Determines the state of fourth decoupler during different status periods within a pulse sequence. It functions analogously to \(dm \).

Values: Same as \(dm \), except that if \(dn4='\) ' (two single quotes with no space in between) and a fourth decoupler is present in the console, \(dm4 \) assumes a default value of 'n' when go is executed.

See also: *NMR Spectroscopy User Guide*

Related:
- \(dm \) Decoupler mode of first decoupler (P)
- \(dmf4 \) Decoupler modulation frequency for fourth decoupler (P)
- \(dmm4 \) Decoupler modulation mode for fourth decoupler (P)
- \(dn4 \) Nucleus for fourth decoupler (P)
- \(decasynctype \) Select the type of decoupler asynchronous mode (P)

\(dmf \)

Decoupler modulation frequency for first decoupler (P)

Description: Controls modulation frequency of the first decoupler. It specifies \(1/pw90 \) at the particular power level used. After calibrating the decoupler field strength \(\gamma H_2 \) (expressed in units of Hz), \(dmf \) should be set equal to \(4*\gamma H_2 \) for WALTZ, MLEV16, GARP, and XY32 (when available).

\(dmf \) is inactive for CW mode decoupling (\(dmm='c' \)).

\(dmf \) is also active for square wave mode decoupling (\(dmm='s' \)) and fm-fm mode (\(dmm='f' \)) decoupling. For \(dmm='f' \), the modulation frequency is swept back and forth between about 0.5% and 5% of the \(dmf \) frequency (e.g., if \(dmf \) is 100 kHz, the modulation is swept between approximately 500 Hz and 5 kHz). A reasonable optimum value for \(dmf \) when \(dmm='f' \) is the decoupler frequency divided by 4000.
Values: 5 Hz to 2 MHz in steps of 5 Hz (steps are actually approximately 4.768 Hz).
For GARP modulation, the dmf value is internally multiplied by 45, making the limit of possible dmf values to 5 Hz to 44.4 kHz when $dmm='g'$.

See also: *NMR Spectroscopy User Guide*

Related:
- $dmf2$ Decoupler modulation frequency for second decoupler (P)
- $dmf3$ Decoupler modulation frequency for third decoupler (P)
- $dmf4$ Decoupler modulation frequency for fourth decoupler (P)
- dmm Decoupler modulation mode for first decoupler (P)
- $pw90$ 90° pulse width (P)

$dmf2$

Decoupler modulation frequency for second decoupler (P)

Applicability: Systems with a second decoupler.

Description: Controls the modulation frequency of the second decoupler. It functions analogously to the parameter dmf.

Values: Same as dmf except that if $dn2=' ' $ (two single quotes with no space in between) and a second decoupler is present in the console ($numrfch$ greater than 2), $dmf2$ assumes a default value of 1000 Hz when go is executed.

See also: *NMR Spectroscopy User Guide*

Related:
- $dm2$ Decoupler mode for second channel (P)
- dfm Decoupler modulation frequency for first decoupler (P)
- $dmm2$ Decoupler modulation mode for second decoupler (P)
- $dn2$ Nucleus for second decoupler (P)
- $numrfch$ Number of rf channels (P)

$dmf3$

Decoupler modulation frequency for third decoupler (P)

Applicability: Systems with a third decoupler.

Description: Controls the modulation frequency of the third decoupler. It functions analogously to the parameter dmf.

Values: Same as dmf except that if $dn3=' ' $ (two single quotes with no space in between) and a third decoupler is present in the console ($numrfch$ equals 4), $dmf3$ assumes a default value of 1000 Hz when go is executed.

See also: *NMR Spectroscopy User Guide*

Related:
- $dm3$ Decoupler mode for third channel (P)
- dfm Decoupler modulation frequency for first decoupler (P)
- $dmm3$ Decoupler modulation mode for third decoupler (P)
- $dn3$ Nucleus for third decoupler (P)
- $numrfch$ Number of rf channels (P)

$dmf4$

Decoupler modulation frequency for fourth decoupler (P)

Applicability: Systems with a deuterium decoupler channel as the fourth decoupler.

Description: Controls the modulation frequency of the fourth decoupler. It functions analogously to the parameter dmf.

Values: Same as dmf except that if $dn4=' ' $ (two single quotes with no space in between) and a fourth decoupler is present in the console ($numrfch$ equals 5), $dmf4$ assumes a default value of 1000 Hz when go is executed.
See also: *NMR Spectroscopy User Guide*

Related:
- `dmf` Decoupler modulation frequency for first decoupler (P)
- `dmf2adj` Adjust tip-angle resolution time for second decoupler (M)
- `dmf3adj` Adjust tip-angle resolution time third decoupler (M)
- `dmf4adj` Adjust tip-angle resolution time fourth decoupler (M)
- `dres` Tip angle resolution for programmable decoupling (P)
- `dres2` Tip angle resolution for second decoupler (P)

`dmfadj` Adjust tip-angle resolution time for first decoupler (M)

Syntax:
```
dmfadj <tipangle_resolution>
```

Description: Adjusts the parameter `dmf` so that time associated with the first decoupler tip-angle resolution is an integral multiple of 50 ns. This eliminates time truncation error in execution of programmable decoupling or spin-locking sequence by the waveform generator. For example, the tip-angle resolution for an MLEV-16 decoupling sequence should be 90.0° since every pulse in that sequence can be represented as an integral multiple of 90.0°; however, the tip-angle resolution for a GARP decoupling sequence should be 1.0°.

Arguments:
- `tipangle_resolution` specifies the necessary tip-angle resolution for the programmable decoupling or spin-locking sequence to be executed. The default value is the current value of the parameter `dres`.

Examples:
- `dmfadj`
- `dmfadj(90.0)`

See also: *NMR Spectroscopy User Guide*

Related:
- `dmf2adj` Adjust tip-angle resolution time for second decoupler (M)
- `dmf3adj` Adjust tip-angle resolution time third decoupler (M)
- `dmf4adj` Adjust tip-angle resolution time fourth decoupler (M)

`dmf2adj` Adjust tip-angle resolution time for second decoupler (M)

Applicability: Systems with a second decoupler.

Syntax:
```
dmf2adj <tipangle_resolution>
```

Description: Adjusts the parameter `dmf2` to make time associated with the second decoupler tip-angle resolution an integral multiple of 50 ns. `dmf2adj` functions analogously to the macro `dmfadj`.

Arguments:
- `tipangle_resolution` specifies the necessary tip-angle resolution for the programmable decoupling or spin-locking sequence to be executed. The default value is the current value of the parameter `dres2`.

Examples:
- `dmf2adj`
- `dmf2adj(90.0)`

See also: *NMR Spectroscopy User Guide*

Related:
- `dmf2` Decoupler modulation frequency for second decoupler (P)
- `dmfadj` Adjust decoupler tip-angle resolution time (M)
- `dres2` Tip angle resolution for second decoupler (P)

`dmf3adj` Adjust tip-angle resolution time for third decoupler (M)

Applicability: Systems with a third decoupler.

Syntax:
```
dmf3adj <tipangle_resolution>
```

01-999380-00 A 07008 Command and Parameter Reference for VnmrJ 2.2M1 159
Description: Adjusts the parameter \texttt{dmf3} to make time associated with the third decoupler tip-angle resolution an integral multiple of 50 ns. \texttt{dmf3adj} functions analogously to the macro \texttt{dmfadj}.

Arguments: \texttt{tipangle_resolution} specifies the necessary tip-angle resolution for the programmable decoupling or spin-locking sequence to be executed. The default value is the current value of the parameter \texttt{dres3}.

Examples:
\begin{verbatim}
\texttt{dmf3adj}
\texttt{dmf3adj\,(90.0)}
\end{verbatim}

See also: \textit{NMR Spectroscopy User Guide}

Related: \texttt{dmf3} Decoupler modulation frequency for third decoupler (P) \texttt{dres3} Tip-angle resolution for third decoupler (P)

\texttt{dmf4adj} \quad \textbf{Adjust tip-angle resolution time for fourth decoupler (M)}

Applicability: Systems with a deuterium decoupler as the fourth decoupler.

Syntax: \texttt{dmf4adj\,<\,(tipangle_resolution)\,>}

Description: Adjusts the parameter \texttt{dmf4} to make time associated with the fourth decoupler tip-angle resolution an integral multiple of 50 ns. \texttt{dmf4adj} functions analogously to the macro \texttt{dmfadj}.

Arguments: \texttt{tipangle_resolution} specifies the necessary tip-angle resolution for the programmable decoupling or spin-locking sequence to be executed. The default value is the current value of the parameter \texttt{dres4}.

Examples: \texttt{dmf4adj}

See also: \textit{NMR Spectroscopy User Guide}

Related: \texttt{dmf4} Decoupler modulation frequency for fourth decoupler (P) \texttt{dres4} Tip-angle resolution for fourth decoupler (P)

\texttt{dmg} \quad \textbf{Data display mode in directly detected dimension (P)}

Description: Controls the mode of data display along the directly detected dimension. \texttt{dmg} is in the display group and can be set manually or by executing the commands \texttt{ph}, \texttt{av}, \texttt{pwr}, or \texttt{pa} for the values ‘\texttt{ph}’, ‘\texttt{av}’, ‘\texttt{pwr}’, or ‘\texttt{pa}’, respectively.

Values: ‘\texttt{ph}’ sets the \textit{phased mode} in which each real point in the displayed spectrum is calculated from a linear combination of real and imaginary points comprising each respective complex data point.

‘\texttt{av}’ sets the \textit{absolute-value mode} in which each real point in the displayed spectrum is calculated as the square root of the sum of squares of the real and imaginary points comprising each respective complex data point.

‘\texttt{pwr}’ sets the \textit{power mode} in which each real point in the displayed spectrum is calculated as the sum of squares of the real and imaginary points comprising each respective complex data point.

‘\texttt{pa}’ sets the \textit{phase angle} mode in which each real point in the displayed spectrum is calculated as the phase angle from the arc tangent of the real and imaginary points comprising each respective complex data point.

See also: \textit{NMR Spectroscopy User Guide}

Related: \texttt{aig} Absolute intensity group (P) \texttt{av} Set absolute-value mode in directly detected dimension (C) \texttt{dcg} Drift correction group (P) \texttt{dmg1} Data display mode in 1st indirectly detected dimension (P) \texttt{dmg2} Data display mode in 2nd indirectly detected dimension (P) \texttt{ft} Fourier transform 1D data (C)
dmg1

Data display mode in 1st indirectly detected dimension (P)

Description: Controls the mode of data display along the first indirectly detected dimension of a multidimensional data set. dmg1 is in the display group and can be set manually or by executing the commands ph1, av1, pwr1, or pa1 for the values 'ph1', 'av1', 'pwr1', or 'pa1', respectively. If dmg1 does not exist or if it is set to the empty string (dmg1=''), VnmrJ uses the value of dmg to decide the display mode along the first indirectly detected dimension.

Values:
- 'ph1' sets phased mode.
- 'av1' sets absolute-value mode.
- 'pwr1' sets power mode.
- 'pa1' sets phase angle mode.

See also: NMR Spectroscopy User Guide

Related:
- av1 Set absolute-value mode in 1st indirectly det. dim. (C)
- dmg Data display mode in directly detected dimension (P)
- pal Set phase angle mode in 1st indirectly detected dimension (C)
- ph1 Set phased mode in 1st indirectly detected dimension (C)
- pwr1 Set power mode in 1st indirectly detected dimension (C)

dmg2

Data display mode in 2nd indirectly detected dimension (P)

Description: Controls the mode of data display along the second indirectly detected dimension of a multidimensional data set. dmg2 is in the display group and can be set manually or by executing the commands ph2, av2, or pwr2 for the values 'ph2', 'av2', or 'pwr2', respectively. If dmg2 does not exist or if it is set to the empty string (dmg2=''), VnmrJ uses the value of the parameter dmg instead of dmg2 to decide the display mode along the second indirectly detected dimension.

Values:
- 'ph2' sets phased mode.
- 'av2' sets absolute-value mode.
- 'pwr2' sets power mode.

See also: NMR Spectroscopy User Guide

Related:
- av2 Set absolute-value mode in 2nd indirectly det. dim. (C)
- dmg Data display mode in directly detected dimension (P)
- ph2 Set phased mode in 2nd indirectly det. dim. (C)
- pwr2 Set power mode in 2nd indirectly det. dim. (C)

dmgf

Absolute-value display of FID data or spectrum in acqi (P)

Description: If the parameter dmgf exists and is set to 'av', the FID display in the acqi program is set to the absolute-value mode, which displays the square root of the sum of the squares of the real and imaginary channels. dmgf has no function.
outside of the \texttt{acqi} program. This display mode may cause the displayed FID to exceed the displayed ADC limits in \texttt{acqi} by as much as a factor of the square root of 2.

See also: \textit{NMR Spectroscopy User Guide}

\textbf{Related:} \texttt{acqi} \hspace{1em} \text{Interactive acquisition display process (C)}
\texttt{av} \hspace{1em} \text{Set absolute-value mode in directly detected dimension (C)}
\texttt{gf} \hspace{1em} \text{Prepare parameters for FID/spectrum display in acqi (M)}

\textbf{\texttt{dmm}}

\textbf{Decoupler modulation mode for first decoupler (P)}

\textbf{Description:} Sets the modulation modes for the first decoupler. In the standard two-pulse sequence, \texttt{dmm} typically has a single state because the decoupler modulation is normally not changed during the pulse sequence, but this is not fixed. For example, \texttt{dmm='ccw'} gives single-frequency CW decoupling during the first part of the sequence and WALTZ-16 decoupling during acquisition.

In pulse sequences using the decoupler for pulsing (INEPT, DEPT, HETCOR, etc.), decoupler modulation must be set to ''c'' during periods of the pulse sequence when the decoupler is to be pulsed.

\textbf{Values:} 'c', 'f', 'g', 'm', 'p', 'r', 'u', 'w', and 'x' are available:
\begin{itemize}
 \item 'c' sets continuous wave (CW) modulation.
 \item 'f' sets fm-fm modulation (swept-square wave).
 \item 'g' sets GARP modulation.
 \item 'm' sets MLEV-16 modulation.
 \item 'n' sets noise modulation.
 \item 'p' sets programmable pulse modulation using the \texttt{dseq} parameter to specify the decoupling sequence.
 \item 'r' sets square-wave modulation.
 \item 'u' sets user-supplied modulation using external hardware.
 \item 'w' sets WALTZ-16 modulation.
 \item 'x' sets XY32 modulation.
\end{itemize}

See also: \textit{NMR Spectroscopy User Guide}

\textbf{Related:} \texttt{dm} \hspace{1em} \text{Decoupler mode for first decoupler (P)}
\texttt{dmf} \hspace{1em} \text{Decoupler modulation frequency for first decoupler (P)}
\texttt{dmm2} \hspace{1em} \text{Decoupler modulation mode for second decoupler (P)}
\texttt{dmm3} \hspace{1em} \text{Decoupler modulation mode for third decoupler (P)}
\texttt{dmm4} \hspace{1em} \text{Decoupler modulation mode for fourth decoupler (P)}
\texttt{dseq} \hspace{1em} \text{Decoupler sequence for the first decoupler (P)}

\textbf{\texttt{dmm2}}

\textbf{Decoupler modulation mode for second decoupler (P)}

\textbf{Applicability:} Systems with a second decoupler.

\textbf{Description:} Sets the type of decoupler modulation for the second decoupler during different status periods within a pulse sequence. It functions analogously to \texttt{dmm}.

\textbf{Values:} 'c', 'f', 'g', 'm', 'p', 'r', 'u', 'w', and 'x' are available. Refer to \texttt{dmm} for the definition of these values (note that if the mode 'p' is selected, \texttt{dseq2} specifies the decoupling sequence). If \texttt{dn2='t' \ (two single quotes)} and a second decoupler is present in the console (\texttt{numrfch} greater than 2), \texttt{dmm2} is internally set to 'c' when \texttt{go} is executed.
See also: *NMR Spectroscopy User Guide*

Related:
- `dm2`
 Decoupler modulation for the second decoupler (P)
- `dmf2`
 Decoupler modulation frequency for the second decoupler (P)
- `dmm`
 Decoupler modulation mode for first decoupler (P)
- `dn2`
 Nucleus for the second decoupler (P)
- `dseq2`
 Decoupler sequence for the second decoupler (P)
- `numrfch`
 Number of rf channels (P)

dmm3

Decoupler modulation mode for third decoupler (P)

Applicability: Systems with a third decoupler.

Description: Sets type of decoupler modulation for the third decoupler during different status periods within a pulse sequence. It functions analogously to `dmm`.

Values: 'c', 'f', 'g', 'm', 'p', 'r', 'u', 'w', and 'x' are available. Refer to `dmm` for the definition of these values (note that if the mode 'p' is selected, `dseq3` specifies the decoupling sequence). If `dn3=''` (two single quotes) and a third decoupler is present in the console (`numrfch` equal to 4), `dmm3` is internally set to 'c' when `go` is executed.

See also: *NMR Spectroscopy User Guide*

Related:
- `dm3`
 Decoupler modulation for third decoupler (P)
- `dmf3`
 Decoupler modulation frequency for third decoupler (P)
- `dmm`
 Decoupler modulation mode for first decoupler (P)
- `dn3`
 Nucleus for the third decoupler (P)
- `dseq3`
 Decoupler sequence for the third decoupler (P)
- `numrfch`
 Number of rf channels (P)

dmm4

Decoupler modulation mode for fourth decoupler (P)

Applicability: Systems with a deuterium decoupler channel as the fourth decoupler.

Description: Sets type of decoupler modulation for the fourth decoupler during different status periods within a pulse sequence. It functions analogously to `dmm`.

Values: 'c', 'f', 'g', 'm', 'r', 'u', 'w', and 'x' are available. Refer to `dmm` for the definition of these values. If `dn4=''` (two single quotes) and a fourth decoupler is present in the console (`numrfch` greater than 4), `dmm4` is internally set to 'c' when `go` is executed.

See also: *NMR Spectroscopy User Guide*

Related:
- `dm4`
 Decoupler modulation for fourth decoupler (P)
- `dmf4`
 Decoupler modulation frequency for fourth decoupler (P)
- `dmm`
 Decoupler modulation mode for first decoupler (P)
- `dn4`
 Nucleus for the fourth decoupler (P)
- `dseq4`
 Decoupler sequence for the fourth decoupler (P)
- `numrfch`
 Number of rf channels (P)

dn

Nucleus for first decoupler (P)

Description: Changing the value of `dn` causes a macro (named `_dn`) to be executed that extracts values for `dfrq` and `dof` from lookup tables. The tables, stored in the directory `/vnmr/nuctables`, are coded by atomic weights.

Values: In the lookup tables, typically 'H1', 'C13', 'P31', etc.
See also: *NMR Spectroscopy User Guide*

Related:
- `dn2` Nucleus for second decoupler (P)
- `dn3` Nucleus for third decoupler (P)
- `dn4` Nucleus for fourth decoupler (P)
- `dof` Frequency offset for first decoupler (C)
- `tn` Nucleus for observe transmitter (P)

`dn2` Nucleus for second decoupler (P)

Applicability: Systems with a second decoupler.

Description: Changing the value of `dn2` causes a macro (named `_dn2`) to be executed that extracts values for `dfrq2` and `dof2` from lookup tables. Otherwise, `dn2` functions analogously to the parameters `tn` and `dn`. If an experiment does not use the second decoupler channel, the channel can be disabled by setting `dn2=''` (two single quotes with no space in between). This sets `dm2='n'`, `dmm2='c'`, `dmf2=1000` (in Hz), `dfrq2=1` (in MHz), `dof2=0`, `dpwr2=0`, `dseq2=''`, and `dres2=1`.

See also: *NMR Spectroscopy User Guide*

Related:
- `dfrq2` Transmitter frequency of second decoupler (P)
- `dn` Nucleus for first decoupler (P)
- `dof2` Frequency offset for second decoupler (C)
- `numrfch` Number of rf channels (P)
- `tn` Nucleus for observe transmitter (P)

`dn3` Nucleus for third decoupler (P)

Applicability: Systems with a third decoupler.

Description: Changing the value of `dn3` causes a macro (named `_dn3`) to be executed that extracts values for `dfrq3` and `dof3` from lookup tables. Otherwise, `dn3` functions analogously to the parameters `tn` and `dn`. If an experiment does not use the third decoupler channel, the channel can be disabled by setting `dn3=''` (two single quotes with no space in between). This sets `dm3='n'`, `dmm3='c'`, `dmf3=1000` (in Hz), `dfrq3=1` (in MHz), `dof3=0`, `dpwr3=0`, `dseq3=''`, and `dres3=1`.

See also: *NMR Spectroscopy User Guide*

Related:
- `dfrq3` Transmitter frequency of third decoupler (P)
- `dof3` Frequency offset for third decoupler (C)
- `numrfch` Number of rf channels (P)
- `tn` Nucleus for observe transmitter (P)

`dn4` Nucleus for fourth decoupler (P)

Applicability: Systems with a deuterium decoupler channel as the fourth decoupler.

Description: Changing the value of `dn4` causes a macro (named `_dn4`) to be executed that extracts values for `dfrq4` and `dof4` from lookup tables. Otherwise, `dn4` functions analogously to the parameters `tn` and `dn` except that the only valid value for `dn4` is 'H2'. If an experiment does not use the fourth decoupler channel, the channel can be disabled by setting `dn4=''` (two single quotes with no space in between). This sets `dm4='n'`, `dmm4='c'`, `dmf4=1000` (in Hz), `dfrq4=1` (in MHz), `dof4=0`, `dpwr4=0`, `dseq4=''`, and `dres4=1`.
See also: *NMR Spectroscopy User Guide*

dndfid
Retrieves and processes fid data from the locator (M)

Applicability: Liquids, Imaging, Solids

Description: Retrieve fid data from an item selected in the locator. Data is also processed if Process data on drag-and-drop from locator is selected in the System settings dialog in the Utilities menu.

Related:
- **dndjoin:** Join a work space from the locator (M)
- **dndpar:** Retrieve a parameter set from the locator (M)
- **dndshims:** Retrieve a shimset set from the locator (M)
- **locaction:** Locator action (M)
- **locprotoexec:** Execute a protocol from the locator (M)
- **xmmakenode:** Make a new study queue node (M)

dndjoin
Join a work space from the locator (M)

Description: Join the work space selected by the locator.

Related:
- **dndfid:** Retrieve and process fid data from the locator (M)
- **dndpar:** Retrieve a parameter set from the locator (M)
- **dndshims:** Retrieve a shimset set from the locator (M)
- **locaction:** Locator action (M)
- **locprotoexec:** Execute a protocol from the locator (M)
- **xmmakenode:** Make a new study queue node (M)

dndpar
Retrieve a parameter set from the locator (M)

Description: Retrieve a parameter set selected by the locator.

Related:
- **dndfid:** Retrieve and process fid data from the locator (M)
- **dndjoin:** Join a work space from the locator (M)
- **dndshims:** Retrieve a shimset set from the locator (M)
- **locaction:** Locator action (M)
- **locprotoexec:** Execute a protocol from the locator (M)
- **xmmakenode:** Make a new study queue node (M)

dndshims
Retrieve a shimset set from the locator (M)

Description: Retrieve a shimset set selected by the locator.

Related:
- **dndfid:** Retrieve and process fid data from the locator (M)
- **dndjoin:** Join a work space from the locator (M)
- **dndpar:** Retrieve a parameter set from the locator (M)
- **locaction:** Locator action (M)
- **locprotoexec:** Execute a protocol from the locator (M)
- **xmmakenode:** Make a new study queue node (M)
dnode

Display list of valid limNET nodes (M,U)

Applicability: Systems with limNET.

Description: Displays the contents of the user's limNET node database (i.e., all remote nodes available to limNET). Each node is listed by name, Ethernet address (6 hexadecimal bytes), and burst size.

See also: *NMR Spectroscopy User Guide*

Related: eaddr Display Ethernet address (M,U)

doautodialog

Start a dialog window using def file (M)

Applicability: Systems with automation.

Syntax: doautodialog

Description: Internal macro used by *enter* to start a dialog window using the *def* file for an experiment in the *dialoglib* directory.

Related: *enter* Enter sample information for automation run (M,U)

dodialog

Start a dialog window with dialoglib file (M)

Syntax: dodialog

Description: Internal macro that starts a dialog window using a dialog file in the *dialoglib* directory.

dof

Frequency offset for first decoupler (P)

Description: Controls the frequency offset of the first decoupler. Higher numbers move the decoupler to higher frequency (toward the left side of the spectrum). The frequency accuracy of the decoupler offset is generally 0.1 Hz. The value is specified in the *config* program.

Values: –100000 to 100000 Hz (approximate, depends on frequency), in steps of 0.1 Hz.

See also: *NMR Spectroscopy User Guide*

Related: config Display current configuration and possible change it (M)
dof2 Frequency offset for second decoupler (P)
dof3 Frequency offset for third decoupler (P)
dof4 Frequency offset for fourth decoupler (P)
tof Frequency offset for observe transmitter (P)

dof2

Frequency offset for second decoupler (P)

Applicability: Systems with a second decoupler.

Description: Controls the frequency offset for the second decoupler. *dof2* functions analogously to the parameters *tOf* and *dof*.

Values: –100000 to 100000 Hz (approximate, depends on frequency), in steps of 0.1 Hz. If *dn2=''* (two single quotes with no space in between) and a second decoupler channel is present in the console, *dof2* assumes a default value of 0 when *go* is executed.

See also: *NMR Spectroscopy User Guide*

Related: dn2 Nucleus for second decoupler (P)dof Frequency offset for first decoupler (P)tof Frequency offset for observe transmitter (P)
dof3 Frequency offset for third decoupler (P)
Applicability: Systems with a third decoupler.
Description: Controls the frequency offset for the third decoupler. `dof3` functions analogously to the parameters `tof` and `dof`.
Values: -100000 to 100000 Hz (approximate, depends on frequency), in steps of 0.1 Hz. If `dn3`=' ' (two single quotes with no space in between) and a third decoupler channel is present in the console, `dof3` assumes a default value of 0 when `go` is executed.
See also: *NMR Spectroscopy User Guide*
Related: `dn3` Nucleus for third decoupler (P)
`dof` Frequency offset for first decoupler (P)
`tof` Frequency offset for observe transmitter (P)

dof4 Frequency offset for fourth decoupler (P)
Applicability: Systems with a deuterium decoupler channel as the fourth decoupler.
Description: Controls the frequency offset for the fourth decoupler. `dof4` functions analogously to the parameters `tof` and `dof`.
Values: -100000 to 100000 Hz (approximate, depends on frequency), in steps of 2.384 Hz. If `dn4`=' ' (two single quotes with no space in between) and a fourth decoupler channel is present in the console, `dof4` assumes a default value of 0 when `go` is executed.
See also: *NMR Spectroscopy User Guide*
Related: `dn4` Nucleus for fourth decoupler (P)
`dof` Frequency offset for first decoupler (P)
`tof` Frequency offset for observe transmitter (P)

Doneshot Set up parameters for Doneshot pulse sequence (M)
Description: Converts a parameter set to Doneshot experiment.
See also: *NMR Spectroscopy User Guide*
Related: `dosy` Process DOSY experiments (M)
`fiddle` Perform reference deconvolution (M)
`setup_dosy` Set up gradient levels for DOSY experiments (M)

dopardialog Start a dialog with dialoglib/experiment def file (M)
Description: Internal macro that starts a dialog window using a `def` file in the directory `dialoglib/experiment`.

do_pcss Calculate proton chemical shifts spectrum (C)
Syntax: `do_pcss(<threshold>,max_cc),max_width)`
Description: Strips a high-resolution proton spectrum down to a list of chemical shifts. The list is saved in the file `pcss.outpar`. If no argument is given, `do_pcss` automatically calculates the threshold and uses default values for the maximum allowable coupling constant and the maximum width of a spin multiplet.
Arguments: `threshold` sets the level whether a point belongs to a peak or is noise. `max_cc` is the maximum allowable coupling constant in the spectrum. Default is 20 Hz.
max_width is the maximum width of a spin multiplet in the spectrum. Default is 60 Hz.

Examples:

```
do_pcss
  do_pcss(10)
do_pcss(9, 20, 80)
```

See also: *NMR Spectroscopy User Guide*

Related: `pcss` Calculate and show proton chemical shifts spectrum (M)

dosy

Process DOSY experiments (M)

Syntax: `dosy(<'prune'>, <lowerlimit, upperlimit>)`

Description: Performs a DOSY (diffusion ordered spectroscopy) analysis of the data in an array of spectra.

`dosy` uses the commands `dll` and `fp` to determine the heights of all signals above the threshold defined by the parameter `th` and then fits the decay curve for each signal to a Gaussian using the program `dosyfit`. It stores a summary of all diffusion coefficients and their estimated standard errors and various other results as follows:

- In the directory `$HOME/vnmrsys/Dosy`
 - `diffusion_display.inp`, `general_dosy_stats`, `calibrated_gradients`, `fit_errors`, and `diffusion_spectrum`
- In the current experiment: a second copy of `diffusion_display.inp`.

The command `showdosy` has been incorporated into `dosy`.

Arguments:

- **prune** starts a dialog to allow one or more spectra to be omitted from the analysis.
- **lowerlimit** is the lower diffusion limit (in units of $10^{-10} \text{ m}^2/\text{s}$) to be displayed.
- **upperlimit** is the upper diffusion limit (in units of $10^{-10} \text{ m}^2/\text{s}$) to be displayed.

Without arguments, `dosy` uses all the experimental spectra and covers the whole diffusion range seen in the experimental peaks.

See also: *NMR Spectroscopy User Guide*

Related: `dif` Synthesize and display DOSY plot (C)

- `fiddle` Perform reference deconvolution (M)
- `setup_dosy` Set up gradient levels for DOSY experiments (M)

dosy2d

Apptype macro for dosy 2D experiments (M)

Applicability: Liquids

Description: Performs the actions for 2D dosy protocols to set up, process, and plot experiments. It is only available if the Dosy software is installed.

Related: `apptype` Application type (PM)

- `execpars` Set up the exec parameters (M)

dosyfrq

Larmor frequency of phase encoded nucleus in DOSY (P)

Description: Stores the NMR frequency of the phase encoded nucleus in DOSY experiments. It is directly set by the DOSY sequences.

See also: *NMR Spectroscopy User Guide*

Related: `dosy` Process DOSY experiments (M)
dosygamma Gyromagnetic constant of phase encoded nucleus in DOSY (P)

Description: Stores the gyromagnetic constant of the phase encoded nucleus in DOSY experiments. It is automatically set by the DOSY sequences and used by the dosy macro.

See also: NMR Spectroscopy User Guide

Related: dosy Process DOSY experiments (M)

dosytimecubed Gyromagnetic constant of phase encoded nucleus in DOSY (P)

Description: Time cubed factor in the expression for diffusional attenuation. It is automatically set by the DOSY sequences and used by the dosy macro.

See also: NMR Spectroscopy User Guide

Related: dosy Process DOSY experiments (M)

dot1 Set up a T_1 experiment (M)

Syntax: `dot1<(min_T1_estimate,max_T1_estimate,time)>`

Description: Sets up all parameters to perform a T_1 experiment, including $d1$, pw, $p1$, nt, and an array of $d2$ values, based on information entered you enter. Make sure that the parameter $pw90$ is set properly and contains the correctly calibrated 90° pulse width because dot1 uses this information. If you have not done a pulse width calibration recently, you may wish to do so now.

Minimum and maximum T_1 for the peaks of interest are estimates. Do the best you can. Your estimates are used to select optimum values of $d2$. If the T_1 does not fall between your two guesses, your experiment may not be optimum, but it should still be usable unless your estimates are extremely far off. When you are satisfied with the parameters, enter `ga` or `au` to acquire the data.

Arguments:

- `min_T1_estimate` is the estimated minimum expected T_1. The default is the system prompts the user for the value.
- `max_T1_estimate` is the estimated maximum expected T_1. The default is the system prompts the user for the value.
- `time` is the total time in hours that the experiment should take. The default is the system prompts the user for the value.

Examples:

```
dot1
```

```
dot1(1,2,.5)
```

See also: NMR Spectroscopy User Guide

Related:

- `d1` First delay (P)
- `d2` Incremented delay in 1st indirectly detected dimension (P)
- `ga` Submit experiment to acquisition and FT the result (C)
- `go` Submit experiment to acquisition (C)
- `nt` Number of transients (P)
- `p1` First pulse width (P)
- `pw` Pulse width (P)
- `pw90` 90° pulse width (P)

dotflag Display FID as connected dots (P)

Description: When sparse FID data points are displayed, they are displayed as unconnected dots. If dotflag exists and is set to 'n', the FID dots will be connected. To create dotflag, enter `create('dotflag','flag')`. To create dotflag and the FID display parameters `axisf`, `vpf`, `vpfi`, `crf`, and
deltaf (if the parameter set is older and lacks these parameters), enter `addpar('fid')`.

Values: 'n' sets connecting the dots. 'y' sets not connecting the dots.

See also: NMR Spectroscopy User Guide

Related: addpar Add selected parameters to the current experiment (M)
create Create new parameter in a parameter tree (C)
df Display a single FID (C)

downsamp
Downsampling factor applied after digital filtering (P)

Description: Specifies the downsampling factor applied after digital filtering. The spectral width of the data set after digital filtering and downsampling is sw divided by $downsamp$, where sw is the acquired spectral width. If $downsamp$ does not exist in the current experiment, enter `addpar('downsamp')` to add it. `addpar('downsamp')` creates the digital filtering and downsampling parameters $downsamp$, $dscoef$, $dsfb$, $dslfsfrq$, and $filtfile$.

Values: Number for the downsampling factor. 1 sets digital filtering with a filter bandwidth specified by $dsfb$ without downsampling.
'n' sets normal data processing without digital filtering.

See also: NMR Spectroscopy User Guide

Related: addpar Add selected parameters to current experiment (M)
digfilt Write digitally filtered FID to another experiment (M)
dscoef Digital filter coefficients for downsampling (P)
dsfb Digital filter bandwidth for downsampling (P)
dslfsfrq Bandpass filter offset for downsampling (P)
filtfile File of FIR digital filter coefficients (P)
pards Create additional parameters used by downsampling (M)
sw Spectral width in directly detected dimension (P)

dp
Double precision (P)

Description: Sets whether data are acquired in a 16-bit or 32-bit integer format.

Values: 'n' sets 16-bit format, 'y' sets 32-bit format. If the 200-kHz receiver option is installed (Max. Narrowband Width set to 200 kHz in the Spectrometer Configuration window), dp is forced to 'n' if $120000 < sw <= 200000$. If $sw > 200000$, dp is forced to 'y'. On wideline systems, $dp='y$' is required when $sw > 100000$.

See also: NMR Spectroscopy User Guide

Related: sw Spectral width in directly detected dimension (P)

dpcon
Display plotted contours (C)

Syntax: `dpcon(<options,><levels,spacing>)`

Description: Produces a true contour plot display.

Arguments: $options$ must precede $levels$ and $spacing$ in the argument list and can be one or more of the following:
- 'pos' is a keyword to limit the display to positive peaks only in phased spectra. The default is both positive and negative peaks.
- 'neg' is a keyword to limit the display to negative peaks only in phased spectra.
• 'noaxis' is a keyword to omit outlining the display and drawing the horizontal or vertical axis.

levels is the maximum number of contours to be shown. The default is 4.

spacing is the spacing by relative intensity of successive contour levels. The default is 2.

Examples:

dpcon

dpcon('pos', 6)

dpcon(15, 1.4)

See also: *NMR Spectroscopy User Guide*

Related:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dcon</td>
<td>Display noninteractive color intensity map (C)</td>
</tr>
<tr>
<td>dconi</td>
<td>Control display selection for the dconi program (P)</td>
</tr>
<tr>
<td>dpconn</td>
<td>Display plotted contours without screen erase (C)</td>
</tr>
<tr>
<td>pcon</td>
<td>Plot contours on plotter (C)</td>
</tr>
</tbody>
</table>

dpconn
Display plotted contours without screen erase (C)

Syntax:
dpconn(<options,><levels,spacing>)

Description:
Produces a true contour plot display exactly the same as the dpcon command, but without erasing the screen before drawing. The arguments are entered the same as dpcon.

See also:
NMR Spectroscopy User Guide

Related:
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dpcon</td>
<td>Display plotted contours (C)</td>
</tr>
</tbody>
</table>

dpf
Display peak frequencies over spectrum (C)

Syntax:
(1) dpf(<'noll'><,'pos'><,noise_mult><,'top'>)>

(2) dpf(<'noll'><,'pos'><,noise_mult><,'leader'>
<,length>)>

Description:
Displays peak frequencies in the graphics window, with units specified by the axis parameter. Only those peaks greater than th high are selected. If the interactive command ds is active, dpf deactivates it.

Two basic modes of label positioning are available: labels placed at the top, with long leaders extending down to the tops of the lines (syntax 1 using 'top' keyword) or labels positioned just above each peak, with short leaders (syntax 2 using 'leader' keyword). The default is short leaders.

Arguments:
'noll' is a keyword to display frequencies using last previous line listing.

'pos' (or 'noneg') is a keyword to display positive peaks only.

noise_mult is a numerical value that determines the number of noise peaks displayed for broad, noisy peaks. The default is 3. A smaller value results in more peaks, a larger value results in fewer peaks, and a value of 0.0 results in a line listing containing all peaks above the threshold th. Negative values of noise_mult are changed to a value of 3. The noise_mult argument is inactive when the 'noll' keyword is specified.

'top' is a keyword to display peak labels at the top with long leaders. In this mode, the height of labels is varied by changing the parameter wc2.

'leader' is a keyword to display labels positioned just above each peak.

length specifies the leader length, in mm, if labels are positioned just above each peak. The default is 20.

Examples:

dpf('pos')

dpf('leader', 30)
dpf('top', 'noll')
dpf('pos', 0.0, 'leader', 30)

See also: *NMR Spectroscopy User Guide*

Related:
- **axis**: Axis label for displays and plots (P)
- **dpf**: Display peak frequencies over spectrum (C)
- **dpirc**: Display integral amplitudes below spectrum (C)
- **dpircn**: Display normalized integral amplitudes below spectrum (M)
- **pir**: Plot integral amplitudes below spectrum (C)
- **pirn**: Plot normalized integral amplitudes below spectrum (M)
- **ppf**: Plot peak frequencies over spectrum (M)
- **th**: Threshold (P)
- **vp**: Vertical position of spectrum (P)
- **wc2**: Width of chart in second direction (P)

dpirc

Display integral amplitudes below spectrum (C)

Description: Displays integral amplitudes below the appropriate spectral regions.

See also: *NMR Spectroscopy User Guide*

Related:
- **dpf**: Display peak frequencies over spectrum (C)
- **dpircn**: Display normalized integral amplitudes below spectrum (M)
- **pir**: Plot integral amplitudes below spectrum (C)
- **pirn**: Plot normalized integral amplitudes below spectrum (M)
- **ppf**: Plot peak frequencies over spectrum (M)

dpircn

Display normalized integral amplitudes below spectrum (M)

Description: Equivalent to the command `dpirc` except that the sum of the integrals is normalized to the value of the parameter `ins`.

See also: *NMR Spectroscopy User Guide*

Related:
- **dpf**: Display peak frequencies over spectrum (C)
- **dpirc**: Display integral amplitudes below spectrum (C)
- **ins**: Integral normalization scale (P)
- **pir**: Plot integral amplitudes below spectrum (C)
- **pirn**: Plot normalized integral amplitudes below spectrum (M)
- **ppf**: Plot peak frequencies over spectrum (M)

dpiv

Display integral values below spectrum (M)

Syntax: `dpiv<vertical_position>`

Description: Labels integrals with a bracket below the spectrum and a vertical number indicating the integral value.

- vertical labels for narrower regions
- avoids label overlap by label shifting
- more flexible vertical positioning

The vertical position defaults to a location just underneath the scale labels, assuming there is enough room below the scale. If the vertical position is too low, the vertical position is allowed to approach the position of the spectrum up to 1 mm. If the spectral position is so low that the integral labels would overlap with the spectrum, an error message is produced (indicating the minimum `vp`), and the command aborts. No error message is produced in case of overlap with the scale. The minimum for `vp` depends on the plotter and the character size, and in the case of `dpiv` also on the size of the graphics window.

Use an optional argument to force the vertical position to any value; no checking is done, and no error message is produced in case of overlap.

`piv(vp-2)` produces integral labels with the brackets ending 2 mm below the position of the spectrum.
dpiv follows this convention: the output is controlled by ins and insref and not by is. Restore the is integration mode by creating a (local or global) parameter oldint and set oldint='y':

```matlab
create('oldint','flag','global')
oldint='y'
oldint='n' (or destroy the parameter) switches back to the default integration mode.
```

Examples:

```matlab
vp=25 dpiv

vp=50 pl pscale piv(0)
```

Related:

`dpiv` Display integral amplitudes below spectrum (M)
`dpir` Display integral amplitudes below spectrum (C)
`dpirn` Display normalized integral amplitudes below spectrum (C)
`dpivn` Display normalized integral amplitudes below spectrum (M)
`pir` Plot integral amplitudes below spectrum (C)
`piv` Plot integral amplitudes below spectrum (M)
`pivn` Plot normalized integral amplitudes below spectrum (M)
`dpivn` Display normalized integral values below spectrum (M)

dpivn

Display normalized integral values below spectrum (M)

Syntax:

```
dpivn<(vertical_position)>
```

Description: Labels integrals with a bracket below the spectrum and a vertical number indicating the integral value.

See `dpiv` for description and use.

Related:

`dpiv` Display integral amplitudes below spectrum (M)
`dpir` Display integral amplitudes below spectrum (C)
`dpirn` Display normalized integral amplitudes below spectrum (C)
`dpivn` Display normalized integral amplitudes below spectrum (M)
`pir` Plot integral amplitudes below spectrum (C)
`piv` Plot integral amplitudes below spectrum (M)
`pivn` Plot normalized integral amplitudes below spectrum (M)

dpl

Default plot (M)

Description: Looks for sequence-specific default plot macro (`dpl_seqfil`) and executes if one is found.

Related:

`dpl_seqfil` Sequence-specific default plot (M)
`dpr` Default process (M)
`dds` Default display (M)

dpl_seqfil

Sequence-specific default plot (M)

Description: Sequence-specific default plot. These macros are called by the `dpl` macro.

Examples:

```matlab
dpl_NOESY1D
dpl_TOCSY1D
```

Related:

`dpl` Default plot (M)
`dpr` Default process (M)
`dds` Default display (M)
dplane

Display a 3D plane (M)

Syntax:

dplane(<plane_type>, plane_number)

Description: Displays the 2D color map of a particular data plane from a 3D spectral data set. The 3D parameters are loaded into VNMRJ each time dplane is executed. The parameter path3d specifies the absolute path to the directory (without the .extr file extension) where the 2D planes extracted from the 3D spectral data set reside.

Arguments:

- **plane_type** is one of the keywords 'f1f3', 'f2f3', and 'f1f2' for the f1f3, f2f3, and f1f2 planes, respectively. If **plane_type** is specified, the parameter **plane** is updated with that new value. **plane** is then used to determine the type of 3D plane to be displayed.
- **plane_number** specifies which plane of a particular type is to be displayed:
 - For plane f1f3, the range of plane_number is 1 to fn2/2
 - For plane f2f3, the range of plane_number is 1 to fn1/2
 - For plane f1f2, the range of plane_number is 1 to fn/2

Examples:

dplane(3)
dplane('f1f2', 2)

See also: *NMR Spectroscopy User Guide*

Related:

dplanes Display a series of 3D planes (M)
dproj Display a 3D plane projection (M)
getplane Extract planes from a 3D spectral data set (M)
nextpl Display the next 3D plane (M)
path3d Path to currently displayed 2D planes from a 3D data set (P)
plane Currently displayed 3D plane type (P)
prevpl Display the previous 3D plane (M)
plplanes Plot a series of 3D planes (M)

dpr

Default process (M)

Description: Looks for sequence-specific default plot macro (dpr_seqfil) and executes if one is found.

Related:

dpr_seqfil Sequence-specific default process (M)
dpl Default plot (M)
dds Default display (M)

dpr_seqfil

Sequence-specific default process (M)

Description: Sequence-specific default plot. These macros are called by the dpr macro.

Examples:

dpr_NOESY1D
dpr_TOCSY1D

Related:

dpr Default process (M)
dpl Default plot (M)
dds Default display (M)

dprofile

Display pulse excitation profile (M)

Syntax:

dprofile<(axisflag,profile,shapefile)>

dprofile

Description: Displays the X, Y and Z excitation (inversion) profile for a pulse shape generated by the Pbox software. If *shapefile* is not provided, the last simulation data stored in the shapelib/pbox.sim file are displayed.

Arguments: The *axisflag* and *profile* arguments can be given in any order.

- *axisflag* is 'y' to display the full spectrum and a frequency scale, or 'n' to suppress the scale and spectrum. The default is 'n'.
- *profile* is a character string identifying the desired profile. 'xyz' selects X, Y, and Z (inversion) profiles; 'xy' selects only the excitation (transverse) profiles; 'x' selects only the X transverse excitation profile; and 'z' selects only the inversion profile. The default is 'xyz'.
- *shapefile* is the name of a *.RF or *.DEC file, including the extension.

Examples:

- `dprofile`
- `dprofile('y','xy')`
- `dprofile('xy','n','softpls.RF')`

See also: NMR Spectroscopy User Guide

Related: pprofile Plot pulse excitation profile (M) Pbox Pulse shaping software (U)

dproj

Display a 3D plane projection (M)

Syntax: `dproj<(plane_type)>`

Description: Displays 2D color map of the 2D projection plane from a 3D spectral data set. The projection is a skyline projection. The 3D parameters are loaded into VnmrJ each time `dproj` is executed. For this macro, the parameter path3d specifies the directory (without the .extr extension) where the 2D projection resides that has been created from the 3D spectral data set.

Arguments: *plane_type* is one of the keywords 'f1f3', 'f2f3', and 'f1f2' for the f1f3, f2f3, and f1f2 planes, respectively. If *plane_type* is specified, the parameter *plane* is updated with that value. *plane* is then used to determine the type of 2D projection to be displayed.

Examples:

- `dproj`
- `dproj('f1f2')`

See also: NMR Spectroscopy User Guide

Related: dplane Display a 3D plane (M) dsplanes Display a series of 3D planes (M) getplane Extract planes from a 3D spectral data set (M) nextpl Display the next 3D plane (M) path3d Path to currently displayed 2D planes from a 3D data set (P) plane Currently displayed 3D plane type (P) plplanes Plot a series of 3D planes (M) prevpl Display the previous 3D plane (M)

dps

Display pulse sequence (C)

Syntax: `dps<(file),x,y,width,height>`

Description: Displays a picture of pulse sequences consisting of three to five parts. The top part is the transmitter pulse sequence (Tx). The second part is the decoupler pulse sequence (Dec). The third part might be the second or third decoupler (Dec2 or Dec3) pulse sequence or gradients (X, Y, or Z), depending on the program. The lowest part is the status.
The pulse parameters are displayed if there is enough space and if the length of the parameter name is less than thirty letters. The value of each pulse is also displayed. If the value delay or width is less than zero, a question mark (?) is displayed. The time units are displayed in color (on a color monitor). The height of pulses is scaled according to their power level.

dpse also displays spin lock, transmitter gating, observe transmitter power, and other information.

Arguments:
- **file** specifies the name of the file containing the pulse sequences. The default is the file seqfil.
- **x, y** specifies the start of the position with respect to the lower-left corner of the window.
- **width, height** are in proportion to wcmax and wc2max.

See also: *NMR Spectroscopy User Guide*

Related:
- pps: Plot pulse sequence (C)
- seqfil: Pulse sequence name (P)
- wc: Width of chart (P)
- wcmax: Maximum width of chart (P)
- wc2max: Maximum width of chart in second direction (P)

dpwr

Power level for first decoupler with linear amplifier (P)

Applicability: Systems with a linear amplifier.

Description: On systems equipped with a linear amplifier, a 63-dB or 79-dB attenuator between the decoupler transmitter and the amplifier controls the power level. The system value for the attenuator upper safety limit is set in the Spectrometer Configuration window (opened by config). The Upper Limit entry sets this value. For broadband decoupling of^{1}H nuclei, typical values range from 36 to 49 dB. For homonuclear decoupling, typical values range from 5 to 15 dB.

Values: 79 dB, -16 to +63, in steps of 1 dB.

Decoupler power greater than 2 watts in a switchable probe will damage the probe. Always carefully calibrate decoupling to avoid exceeding 2 watts. The maximum value for dpwr on a 200-, 300-, or 400-MHz system with a linear amplifier on the decoupler channel has been set to 49, corresponding to about 2 watts of power. Before using dpwr=49 for continuous decoupling, ensure safe operation by measuring the output power. This should be done during system installation and checked periodically by the user.

See also: *VnmrJ Installation and Administration*

Related:
- cattn: Coarse attenuator (P)
- config: Display current configuration and possible change it (M)
- dpwrf: First decoupler fine power (P)
- dpwr2: Power level for second decoupler (P)
- dpwr3: Power level for third decoupler (P)
- dpwr4: Power level for fourth decoupler (P)
- fattn: Fine attenuator (P)
- tpwr: Power level of observe transmitter with linear amplifiers (P)
- tpwrf: Observe transmitter fine power (P)

dpwr2

Power level for second decoupler with linear amplifier (P)

Applicability: Systems with a linear amplifier as the second decoupler.

Description: Controls the coarse attenuator (63 dB or 79 dB) that resides between the transmitter board and the linear amplifier associated with the second decoupler.
The system value for the attenuator upper safety limit is set in the Spectrometer Configuration window (opened by config).

Values: 79 dB, -16 to +63, in steps of 1 dB.

If \texttt{dn2}=''' (two single quotes) and a second decoupler channel is present in the console, \texttt{dpwr2} assumes a default value of 0 when \texttt{go} is executed.

CAUTION: Decoupler power greater than 2 watts in a switchable probe will damage the probe. Always carefully calibrate decoupling to avoid exceeding 2 watts. The maximum value for \texttt{dpwr2} on a 200-, 300-, or 400-MHz system with a linear amplifier on the decoupler channel has been set to 49, corresponding to about 2 watts of power. Before using \texttt{dpwr2}=49 for continuous decoupling, ensure safe operation by measuring the output power. This should be done during system installation and checked periodically by the user.

See also: *NMR Spectroscopy User Guide*

Related: \texttt{cattn} Coarse attenuator type (P) \texttt{config} Display current configuration and possible change it (M) \texttt{dn2} Nucleus for second decoupler (P)

\textbf{dpwr3} \hspace{1cm} \textit{Power level for third decoupler with linear amplifier (P)}

Applicability: Systems with a linear amplifier as the third decoupler.

Description: Controls the coarse attenuator (63 dB or 79 dB) that resides between the transmitter board and the linear amplifier associated with the third decoupler. The system value for the attenuator upper safety limit is set in the Spectrometer Configuration window (opened by config).

Values: If 63-dB attenuator installed: 0 to 63 (63 is max. power), in units of dB. If 79-dB attenuator installed: –16 to 63 (63 is max. power), in units of dB. If \texttt{dn3}=''' (two single quotes) and a third decoupler channel is present in the console, \texttt{dpwr3} assumes a default value of 0 when \texttt{go} is executed.

CAUTION: Decoupler power greater than 2 watts in a switchable probe will damage the probe. Always carefully calibrate decoupling to avoid exceeding 2 watts. The maximum value for \texttt{dpwr3} on a 200-, 300-, or 400-MHz system with a linear amplifier on the decoupler channel has been set to 49, corresponding to about 2 watts of power. Before using \texttt{dpwr3}=49 for continuous decoupling, ensure safe operation by measuring the output power. This should be done during system installation and checked periodically by the user.

See also: *NMR Spectroscopy User Guide*

Related: \texttt{cattn} Coarse attenuator type (P) \texttt{config} Display current configuration and possible change it (M) \texttt{dn3} Nucleus for third decoupler (P)

\textbf{dpwr4} \hspace{1cm} \textit{Power level for fourth decoupler amplifier (P)}

Applicability: Systems with deuterium decoupler channel as the fourth decoupler.

Description: Controls the coarse attenuator (45 dB range) that resides on the Lock Transceiver board and the amplifier associated with the fourth decoupler. The system value for the attenuator upper safety limit is set in the Spectrometer Configuration window (opened by config).

Values: 48-dB attenuator: 15 to 63 (63 is max. power), in units of dB. If \texttt{dn4}=''' (two single quotes) and a third decoupler channel is present in the console, \texttt{dpwr4} assumes a default value of 0 when \texttt{go} is executed.
CAUTION: Decoupling power greater than 5 watts applied to a triple-resonance probe will damage the probe. The maximum value for dpwr4 is 63, corresponding to about 35 watts to the probe. A value of dpwr4 equal to 52 corresponds to about 5 watts and will produce approximately a 1 kHz decoupling field. Always carefully calibrate decoupling power to avoid exceeding 5 watts. Before using dpwr4 = 52 continuous decoupling, ensure safe operation by measuring the output power. Measurement should be taken during system installation and checked periodically by the user.

See also: *NMR Spectroscopy User Guide*

Related:
- cattn: Coarse attenuator type (P)
- config: Display current configuration and possible change it (M)
- dn3: Nucleus for third decoupler (P)

dpwr

First decoupler fine power (P)

Applicability: Systems with an optional fine attenuator on the decoupler channel.

Description: Controls the first decoupler fine attenuator. Systems with this attenuator are designated within the Spectrometer Configuration window (opened by `config`) by the status of the Fine Attenuator entry. The fine attenuator is linear and spans 6 dB.

Values: 0 to 4095 (where 4095 is maximum power). If dpwr does not exist in the parameter table, a value of 4095 is assumed.

See also: *User Programming, User Guide: Solids; CP/MAS Installation*.

Related: `config`: Display current configuration and possibly change it (M)
- dpwr: Power level for first decoupler with linear amplifiers (P)
- dpwr2: Second decoupler fine power (P)
- dpwr3: Third decoupler fine power (P)
- fatty: Fine attenuator (P)
- tpwr: Power level of observe transmitter with linear amplifiers (P)
- tpwr2: Transmitter fine power (P)

dpwr2

Second decoupler fine power (P)

Applicability: Systems with an optional fine attenuator on the second decoupler channel.

Description: Controls the second decoupler fine attenuator, functioning analogously to dpwr.

Values: 0 to 4095 (where 4095 is maximum power). If dpwr2 does not exist in the parameter table, a value of 4095 is assumed.

See also: *User Programming*

Related: `dpwr`: First decoupler fine power (P)

dpwr3

Third decoupler fine power (P)

Applicability: Systems with an optional fine attenuator on the third decoupler channel.

Description: Controls the third decoupler fine attenuator, functioning analogously to dpwr.

Values: 0 to 4095 (where 4095 is maximum power). If dpwr3 does not exist in the parameter table, a value of 4095 is assumed.

See also: *User Programming*

Related: `dpwr`: First decoupler fine power (P)
dpwrm First decoupler linear modulator power (P)

Applicability: Systems with a first decoupler linear modulator.
The fine power control is linear and spans 0 to dpwr:

Values: 0 to 4095 (where 4095 is maximum power). If dpwrm does not exist in the
parameter table, a value of 4095 is assumed.

See also: User Programming; User Guide: Solids; CP/MAS Installation

Related: dpwrm2 Second decoupler linear modulator power (P)
dpwrm3 Third decoupler linear modulator power (P)
tpwrm Observe transmitter linear modulator power (P)

dpwrm2 Second decoupler linear modulator power (P)

Applicability: Systems with a second decoupler linear modulator.

Description: Controls the second decoupler linear modulator systems.

Values: 0 to 4095 (where 4095 is maximum power). If dpwrm2 does not exist in the
parameter table, a value of 4095 is assumed.

See also: User Programming

Related: dpwrm First decoupler linear modulator power (P)

dpwrm3 Third decoupler linear modulator power (P)

Applicability: Systems with a third decoupler linear modulator.

Description: Controls the third decoupler linear modulator systems.

Values: 0 to 4095 (where 4095 is maximum power). If dpwrm3 does not exist in the
parameter table, a value of 4095 is assumed.

See also: User Programming

Related: dpwrm First decoupler linear modulator power (P)

dqcosy Convert the parameter to a DQCOSY experiment (M)

Description: Convert the parameter to a double-quantum filtered (DQCOSY) experiment

See also: NMR Spectroscopy User Guide

Related: cosyps Set up parameters for phase-sensitive COSY (M)
Cosy Set up parameters for COSY pulse sequence (M)
relayh Set up parameters for COSY pulse sequence (M)

draw Draw line from current location to another location (C)

Syntax: draw(<'keywords'>x,y)

Description: Draws a line from the current location to the absolute location with coordinates
given by the arguments.

Arguments: 'keywords' identifies the output device ('graphics'|'plotter'),
drawing mode ('xor'|'normal'), and drawing capability
('newovly'|'ovly'|'ovlyC').

- 'graphics'|'plotter' is a keyword for the output device. The
default is 'plotter'. The output selected is passed to subsequent pen,
move, or draw commands and remains active until a different output is
specified.
• 'xor', 'normal' is a keyword for the drawing mode when using the 'graphics' output device. The default is 'normal'. In the 'xor' mode, if a line is drawn such that one or more points of the line are in common with a previous 'xor' line, the common points are erased. In the normal mode, the common points remain. The mode selected is passed to subsequent draw, pen, and move commands and remains active until a different mode is specified.

• 'newovly', 'ovly', and 'ovlyC' are keywords that specify an interactive drawing capability that is slightly slower than the 'xor' mode but more consistent in color. 'newovly' clears any previous draws, boxes, and writes made with the 'ovly' modes and draws the figure. 'ovly' draws without clearing so that multisegment figures can be created. 'ovlyC' clears without drawing.

x, y are the absolute coordinates, in mm, of the endpoint of the line to be drawn. The range of x is 0 at the left edge of the chart and wcmax at the right edge. The range of y is –20 at the bottom of the chart and wc2max at the top.

Examples:
draw('graphics','xor'.wcmax–sc,vp+th)
draw(wcmax–sc–wc*(cr–delta–sp)/wp,wc2max)

See also: NMR Spectroscopy User Guide

Related:

\textit{dres} \quad \textbf{Measure linewidth and digital resolution (C)}

Syntax: \texttt{dres(<freq>,fractional_height)> :linewidth,digital_resolution}

Description: Analyzes the line defined by the current cursor position for its linewidth (width at half-height) and digital resolution.

Arguments:

\begin{itemize}
\item \texttt{freq} is the frequency of the line. The default is the parameter \texttt{cr}. This overrides using the current cursor position as the frequency.
\item \texttt{fractional_height} is the linewidth is measured at this height.
\item \texttt{linewidth} is the value returned for the linewidth of the line.
\item \texttt{digital_resolution} is the value returned for the digital resolution of the line.
\end{itemize}

Examples:
dres:$width,$res
dres(cr,0.55)

See also: NMR Spectroscopy User Guide; User Programming

Related:

cr \quad \text{Current cursor position (P)}
dsn \quad \text{Measure signal-to-noise (C)}

dres \quad \textbf{Tip-angle resolution for first decoupler (P)}

Applicability: Systems with waveform generators.

Description: Controls the tip-angle resolution to be used within a waveform generator decoupling sequence on the first decoupler. The optimum value is a function of the decoupling sequence to be used: for WALTZ-16, dres=90.0; for MLEV16-240, dres=30.0; and for GARP1, dres=1.0.
Values: 1.0 to 90.0, in units of degrees. In reality, \texttt{dres} can assume values as small of 0.7 (but no smaller) and can be specified in units of 0.1°. To use this capability, change the limits of \texttt{dres} by using \texttt{destroy ('dres') create ('dres', 'real') setlimit ('dres', 360, 0.7, 0.1}). Making corresponding changes within the \texttt{fixpar} macro ensures that \texttt{dres} is created in the desired way with each new parameter set.

See also: \textit{NMR Spectroscopy User Guide}

Related: \texttt{dmfadj} Adjust decoupler tip-angle resolution time (M)
\texttt{dres2} Tip angle resolution for second decoupler (P)
\texttt{dres3} Tip angle resolution for third decoupler (P)
\texttt{fixpar} Correct parameter characteristics in experiment (M)

\textbf{dres2} \textit{Tip-angle resolution for second decoupler (P)}

Applicability: Systems with waveform generators.

Description: Controls the tip-angle resolution to be used within a waveform generator decoupling sequence on the second decoupler. The optimum value is a function of the decoupling sequence to be used: for WALTZ-16, \texttt{dres2}=90.0; for MLEV16-240, \texttt{dres2}=30.0; and for GARP1, \texttt{dres2}=1.0.

Values: 1.0 to 90.0, in units of degrees.

See also: \textit{NMR Spectroscopy User Guide}

Related: \texttt{dmf2adj} Adjust second decoupler tip-angle resolution time (M)
\texttt{dres} Tip-angle resolution for first decoupler (P)

\textbf{dres3} \textit{Tip-angle resolution for third decoupler (P)}

Applicability: Systems with waveform generators.

Description: Controls the tip-angle resolution to be used within a waveform generator decoupling sequence on the third decoupler. The optimum value is a function of the decoupling sequence to be used: for WALTZ-16, \texttt{dres3}=90.0; for MLEV16-240, \texttt{dres3}=30.0; and for GARP1, \texttt{dres3}=1.0.

Values: 1.0 to 90.0, in units of degrees.

See also: \textit{NMR Spectroscopy User Guide}

Related: \texttt{dmf3adj} Adjust third decoupler tip-angle resolution time (M)
\texttt{dres} Tip-angle resolution for first decoupler (P)

\textbf{dres4} \textit{Tip-angle resolution for fourth decoupler (P)}

Applicability: Systems with deuterium decoupler channel as the fourth decoupler.

Description: Controls the tip-angle resolution to be used for the decoupling sequence on the fourth decoupler. The optimum value is a function of the decoupling sequence to be used: for WALTZ-16, \texttt{dres4}=90.0; for MLEV16-240, \texttt{dres4}=30.0; and for GARP1, \texttt{dres4}=1.0.

Values: 1.0 to 90.0, in units of degrees.

See also: \textit{NMR Spectroscopy User Guide}

Related: \texttt{dmf4adj} Adjust fourth decoupler tip-angle resolution time (M)
\texttt{dres} Tip-angle resolution for first decoupler (P)
Display a spectrum (C)

Syntax: (1) `ds<(index)>`
(2) `ds<(options)>`

Description: Displays a single spectrum. Parameter `intmod` controls integral display:

- `intmod='off'` turns off the integral display
- `intmod='full'` displays the entire integral
- `intmod='partial'` displays every other integral region

Parameter entry after a spectrum has been displayed with the `ds` command causes the spectrum to be updated.

Two additional parameters control the behavior of the `ds` command:

- The parameter `phasing` (in the “global” parameter set) controls the percentage of the spectrum updated during interactive phasing. This parameter can be set in the range of 10 to 100. A value of 100 causes the entire spectrum to be updated. A value of 20 causes the area between the two horizontal cursors to be updated.

- The parameter `lvltlt` (in the “current” parameter set) controls the sensitivity of the interactive `lvl` and `tlt` adjustments. `lvltlt` can be set to any positive real number. It is basically a multiplier for the sensitivity. The default value is 1.0. Larger values make the adjustments larger. Smaller values make the adjustments smaller.

For arrayed 1D spectra or for 2D spectra, a particular trace can be viewed by supplying the index number as an argument. For 2D data sets, spectra can be displayed from either the `f1` or `f2` domain by setting the parameter `trace` equal to `'f1'` or `'f2'`, respectively. After entering `ftld`, interferograms can be viewed by setting `trace='f1'` and then typing `ds`.

Spectra are scaled according to the number of completed transients `ct`. If `nt` is arrayed (`nt=1, 2, 4, 8`), each spectrum is scaled by its own `ct`.

Arguments: `index` (used with syntax 1) is the index number of a particular trace to be displayed in arrayed 1D spectra or in 2D spectra (syntax 1).

`options` (used with syntax 2) is any of the following keywords:

- `'toggle'` switches between the box and the cursor modes.
- `'restart'` redraws the cursor if it has been turned off.
- `'expand'` toggles between expanded and full view of the spectrum.
- `'spwp'` interactively adjusts start and width of the spectrum display.
- `'phase'` enters an interactive phasing mode.
- `'thresh'` interactively adjusts the threshold.
- `'z'` interactively sets integral resets.
- `'dscale'` toggles the scale below the spectrum on and off.
- `'lvltlt'` interactively adjusts the `lvl` and `tlt` parameters.
- `'scwc'` interactively adjusts the start and width of chart.
- `'noclear'` start or restart the `ds` display without clearing the graphics screen
- `'exists'` exit the `ds` display, leaving a non-interactive `dss` display.

Examples:
```
ds
```
```
ds(7)
ds('restart')
```
See also: NMR Spectroscopy User Guide

Related: crmode Current state of cursors in dfid, ds, or dconi (P)
 ct Completed transients (P)
 exists
 ftld Fourier transform along f_2 dimension (C)
 intmod Integral display mode (P)
 lp First-order phase in directly detected dimension (P)
 lvl Zero-order baseline correction (P)
 lvlltlt Control sensitivity of lvl and tlt adjustments (P)
 nt Number of transients (P)
 phasing Control update region during dsn phasing (P)
 rp Zero-order phase in directly detected dimension (P)
 select Select a spectrum without displaying It (C)
 tlt First-order baseline correction (P)
 trace Mode for n-dimensional data display (P)
 wftld Weight and Fourier transform f_2 for 2D data (C)

ds2d

Display 2D spectra in whitewash mode (C)

Syntax: `ds2d<(options)>`

Description: Displays a stacked plot of 2D spectra in whitewash mode (after the first spectra, each spectra is blanked out in regions in which it is behind an earlier spectra). Color does not represent intensity (unlike dcon), because intensity can be seen visually, but instead successive traces are displayed in different colors so that color represents frequency.

Arguments: `options` can be any of the following keywords:

- `'nobase'` is a keyword to activate the `th` parameter to suppress all intensity below the `th` level.
- `'fill'` is a keyword to fill in the peaks. When using `'fill'`, `th` operates linearly and not logarithmically (factors of 2) as it does in the contour or color intensity displays.
- `'fillnb'` is a keyword to combine base suppression and peak filling. When using `'fillnb'`, `th` operates linearly and not logarithmically (factors of 2) as it does in the contour or color intensity displays.
- `'noaxis'` is a keyword to omit outlining the display and drawing the horizontal and vertical axis.

Examples: `ds2d`
 `ds2d('fillnb')`

See also: NMR Spectroscopy User Guide

Related: dcon Display noninteractive color intensity map (C)
 dconi Control display selection for the dconi program (P)
 ds2dn Display 2D spectra in whitewash mode without screen erase (C)
 pl2d Plot 2D spectra in whitewash mode (C)
 th Threshold (P)

ds2dn

Display 2D spectra in whitewash mode without screen erase (C)

Syntax: `ds2dn<(options)>`

Description: Displays a stacked plot of 2D spectra in whitewash mode (after the first spectra, each spectra is blanked out in regions in which it is behind an earlier spectra) the same as `ds2d` but without erasing the screen before drawing. The arguments are the same as `ds2d`.
Examples:
`ds2dn`
`ds2dn('fillnb')`

See also: *NMR Spectroscopy User Guide*

Related:
`ds2d` Display 2D spectra in whitewash mode (C)

dsnarray
Report statistical signal-to-noise for Cold Probes (M)

Applicability: Systems with Varian, Inc. Cold Probes

Description: Report the statistical S/N of a series of repeated gNhsqc data sets acquired with a labeled protein sample.

dscale
Display scale below spectrum or FID (C)

Syntax:
`dscale(<rev><,axis><,label><,vp0><,sp0><,color><,pen>)>`

Description: Displays a scale under a spectrum or FID.

Arguments:
- `rev` – reverses the direction of the scale. That is, the smaller numbers will be at the left side of the scale. If used, `'rev'` must be the first argument.
- `axis` – If the letter `p`, `h`, `k`, etc. is supplied, it will be used instead of the current value of the parameter `axis`. For an FID scale, if the letter `s`, `m`, or `u` is supplied, it will be used instead of the current value of the parameter `axisf`.
- `label` – If a string of 2 or more characters is supplied, it will be used as the axis label.
- `vp0` – This is supplied as the first real number. It defines the vertical position where the scale is drawn. The default is 5 mm below the current value of the parameter `vp`.
- `sp0` – This is supplied as the second real number. It is a modified start of plot. If, for example, the display is from 347 to 447 hz, but the scale is desired to read 0 to 100 hz, `sp0` would be input as 0.
- `wp0` – This is supplied as the third real number. It is a modified width of plot. If, for example, the display is from 347 to 447 hz, but the scale is desired to read 0 to 550 Units, `sp0` would be input as 0, `wp0` would be 550, and the label would be 'Units'.

An optional color or pen number can be supplied to `dscale` or `pscale`. The available colors and pens are: `red`, `green`, `blue`, `cyan`, `magenta`, `yellow`, `black`, `white` `pen1`, `pen2`, `pen3`, ... `pen8`

Examples:
`dscale`
`dscale('rev')`
`dscale('h',0,'green')`
`dscale('h',vp-10,0)`

See also: *NMR Spectroscopy User Guide*

Related:
`axis` Axis label for displays and plots (P)
`axisf` Axis label for FID displays and plots (P)
`pscale` Plot scale below spectrum or FID (C)
`vp` Vertical position of spectrum (P)

dscoef
Digital filter coefficients for downsampling (P)

Description: Specifies the number of coefficients used in the digital filter. This parameter does not need to be changed as the parameter `downsamp` is changed, because `dscoef` is automatically adjusted by VnmrJ to give filter cutoffs that are the same, regardless of the value of `downsamp`. This is done by using
dscoef*downsamp/2 coefficients in the digital filter. VnmrJ always rounds dscoef*downsamp/2 to an odd number. If dscoef does not exist in the current experiment, enter addpar('downsamp') to add it. Entering addpar('downsamp') creates the digital filtering and downsampling parameters downsamp, dscoef, dsfb, dslsfrq, and filtfile.

Values: Number of digital filter coefficients. The default is 61. A larger number of coefficients gives a filter with sharper cutoffs; a smaller number gives a filter with more gradual cutoffs.

See also: NMR Spectroscopy User Guide

Related:
- addpar Add selected parameters to current experiment (M)
- downsamp Downsampling factor applied after digital filtering (P)
- dsfb Digital filter bandwidth for downsampling (P)
- dslsfrq Bandpass filter offset for downsampling (P)
- filtfile File of FIR digital filter coefficients (P)
- pards Create additional parameters used for downsampling (M)

dseq

Decoupler sequence for first decoupler (P)

Applicability: Systems with waveform generators.

Description: Specifies the decoupling sequence (without the .DEC file extension) to be used during any period of programmable decoupling on the first decoupler under status control (i.e., dmm='p'). The decoupling sequence must be located in the user’s shapelib directory or in the VnmrJ system’s shapelib directory.

See also: NMR Spectroscopy User Guide

Related:
- dmm Decoupler modulation mode for first decoupler (P)
- dseq2 Decoupler sequence for second decoupler (P)
- dseq3 Decoupler sequence for third decoupler (P)

dseq2

Decoupler sequence for second decoupler (P)

Applicability: Systems with waveform generators.

Description: Specifies the decoupling sequence (without the .DEC file extension) to be used during any period of programmable decoupling on the second decoupler under status control (i.e., dmm2='p'). The decoupling sequence must be located in the user’s shapelib directory or in the VnmrJ system shapelib directory.

See also: NMR Spectroscopy User Guide

Related:
- dmm2 Decoupler modulation mode for second decoupler (P)
- dseq Decoupler sequence for first decoupler (P)

dseq3

Decoupler sequence for third decoupler (P)

Applicability: Systems with waveform generators.

Description: Specifies the decoupling sequence (without the .DEC file extension) to be used during any period of programmable decoupling on the third decoupler under status control (i.e., dmm3='p'). The decoupling sequence must be located in the user's shapelib directory or in the shapelib directory.

See also: NMR Spectroscopy User Guide

Related:
- dmm3 Decoupler modulation mode for third decoupler (P)
- dseq Decoupler sequence for first decoupler (P)
dseq4 Decoupler sequence for fourth decoupler (P)

Applicability: Systems with waveform generators.

Description: Specifies the decoupling sequence (without the .DEC file extension) to be used during any period of programmable decoupling on the third decoupler under status control (i.e., dmm4='p'). The decoupling sequence must be located in the user's shapelib directory or in the system's shapelib directory.

See also: NMR Spectroscopy User Guide

Related: dmm4 Decoupler modulation mode for third decoupler (P)
dseq Decoupler sequence for first decoupler (P)

dsfb Digital filter bandwidth for downsampling (P)

Description: Specifies the bandwidth of the digital filter used for downsampling. If dsfb does not exist in the current experiment, enter addpar('downsamp') to add it. addpar('downsamp') creates the digital filtering and downsampling parameters downsamp, dscoef, dsfb, dsrlsfrq, and filtfile.

Values: Number, in Hz. A smaller value rejects frequencies at the spectrum edges; a larger value aliases noise and signals at frequencies outside of ±sw/2.

'n' makes dsfb default to the final sw/2.

See also: NMR Spectroscopy User Guide

Related: addpar Add selected parameters to current experiment (M)
downsamp Downsampling factor applied after digital filtering (P)
dscoef Digital filter coefficients for downsampling (P)
dslsfrq Bandpass filter offset for downsampling (P)
filtfile File of FIR digital filter coefficients (P)
pards Create additional parameters used for downsampling (M)
sw Spectral width in directly detected dimension (P)

dshape Display pulse shape or modulation pattern (M)

Syntax: dshape < (pattern.ext) >

Description: Displays the real (X) and imaginary (Y) components of a shaped pulse. Any type of waveform (.RF, .DEC or .GRD) can be displayed.

Arguments: pattern is the name of a shape or pattern file specified by an absolute file name, relative file name, or a simple pattern file name. ext is a file name extension that specifies the file type. In the case of a simple file name, dshape searches for the file in the local directory, then in the user's shapelib, and finally in the directory /vnmr/shapelib. If pattern.ext is not given, dshape displays the last created waveform stored in the pbox.fid file.

Examples: dshape
dshape({'Pbox.RF'})

See also: NMR Spectroscopy User Guide

Related: Pbox Pulse shaping software (U)
pshape Plot pulse shape or modulation pattern (M)

dshapef Display last generated pulse shape (M)

Description: Displays the real (X) and imaginary (Y) components of last generated shaped pulse, stored in pbox.fid file.
See also: *NMR Spectroscopy User Guide*

Related:
- **Pbox**
 Pulse shaping software (U)
- **pshapef**
 Plot last generated pulse shape (M)

dsshapei
Display pulse shape or modulation pattern interactively (M)

Syntax:
dshapei<(pattern.ext)>

Description: Displays the real (X) and imaginary (Y) components of a pulse shape, modulation pattern or gradient shape interactively. `dsshapei` overwrites the existing data (FID) after the permission is granted by the user. It also asks for the duration of the waveform and displays the timescale.

Arguments:
- **pattern** is the name of a shape or pattern file specified by an absolute file name, relative file name, or a simple pattern file name.
- **ext** is a file name extension that specifies the file type. In the case of a simple file name, `dsshapei` searches for the file in the local directory, then in the user’s shapelib, and finally in the directory `/vnmr/shapelib`. If no file name is given, `dsshapei` displays the last created waveform stored in the `pbox.fid` file.

Examples:
dshapei

dshapei('myfile.DEC')

See also: *NMR Spectroscopy User Guide*

Related:
- **Pbox**
 Pulse shaping software (U)

dshim
Display a shim “method” string (M)

Syntax:
(1) dshim<(file)>
(2) dshim('method'|'help')

Description: Looks in the user’s shimmethods directory and then in the system shimmethods directory for a file and displays the file (syntax 1) or displays information about method strings (syntax 2).

Arguments:
- **file** is the name of a file to be searched for in the shimmethods directories. The default is to display the contents of the shimmethods directories.
- **method** is a keyword to explain the structure of method strings.
- **help** is a keyword to describe the method strings in the system’s shimmethods directory.

Examples:
dshim

dshim('method')

dshim('help')

See also: *NMR Spectroscopy User Guide*

Related:
- **method**
 Autoshim method (P)
- **newshm**
 Interactively create a shim “method” with options (M)
- **shim**
 Submit an Autoshim experiment to acquisition (C)
- **stdshm**
 Interactively create a shim “method” (M)

dslsafrq
Bandpass filter offset for downsampling (P)

Description: For downsampling, selects a bandpass filter that is not centered about the transmitter frequency. In this way, `dslsafrq` works much like `lsafrq`. If `dslsafrq` does not exist in the current experiment, add it by entering `addpar('downsamp')`. The command `addpar('downsamp')` creates
the digital filtering and downsampling parameters downsamp, dscoef,
dsfb, dslsfrq, and filtfile.

Values: A number, in Hz. A positive value selects a region upfield from the transmitter
frequency; a negative value selects a downfield region.

See also: NMR Spectroscopy User Guide

Related:
- addpar: Add selected parameters to current experiment (M)
- downsamp: Downsampling factor applied after digital filtering (P)
- dscoef: Digital filter coefficients for downsampling (P)
- dsfb: Digital filter bandwidth for downsampling (P)
- filtfile: File of FIR digital filter coefficients (P)
- lsfrq: Frequency shift of the fn spectrum in Hz (P)
- movedssw: Set parameters for digital filtering and downsampling (M)
- pards: Create additional parameters used by downsampling (M)

dsn

Measure signal-to-noise (C)

Syntax: dsn<(low_field,high_field)>:signal_to_noise,noise

Description: Measures the signal-to-noise ratio of the spectrum by first measuring the
intensity of the largest peak in the spectral range defined by sp and wp, and then
measuring the noise in the spectral region defined by the position of the two
cursors. The noise value returned from dsn is not scaled by vs. The
interrelations between the signal-to-noise ratio, the noise, and peak intensities
can be illustrated by comparing dsn:$sn,$noise and peak:$signal. In this case, $sn is equal to ($signal /$noise)/vs.

Calculate noise by first doing a drift correction on the noise region. Noise is
declared as:

\[
noise = \left(\frac{1}{np} \sum_{i=1}^{np} Y_i^2 \right)^{1/2}
\]

\(Y_i^2\) values are the square of the drift-corrected amplitude and \(np\) is the number
of points in the noise region.

Arguments: low_field and high_field are the upper and lower frequencies of the
noise region to be measured. The default is the position of the two cursors.

signal_to_noise is the calculated value of signal-to-noise ratio.

noise is the noise value measured within the defined spectral region.

Examples: dsn:$ston
dsn(sp+sp,sp+wp–100)
dsn(10000,8000):r1

See also: User Programming

Related: dres: Measure linewidth and digital resolution (C)

peak: Find tallest peak in specified region (C)

sp: Start of plot (P)

vs: Vertical scale (P)

wp: Width of plot (P)

dsnmax

Calculate maximum signal-to-noise (M)

Syntax: dsnmax<(noise_region)>

Description: Finds the best signal-to-noise in a specified region.

Arguments: noise_region is the size, in Hz, of the region. The default is the region between the cursors as defined by the parameter delta.

Examples: dsnmax
dsnmax(400)

See also: User Programming

Related: delta Cursor difference in directly detected dimension (P)

dsp Display calculated spectrum (C)

Syntax: dsp<(file<,'nods'>)>

Description: Using the current table of transitions and intensities, dsp recalculates the simulated spectrum (using the current value for the linewidth slw) and displays the spectrum. dsp can only be used after the spins program has been run. If only the linewidth slw or vertical scale svs have been changed, dsp can be used to redisplay the spectrum. If a chemical shift or coupling constant has been changed, however, dsp will not display a spectrum reflecting the changes in the parameter; spins must be run again to recalculate the new spectrum.

The number of points in the calculated spectrum is fn/2. To increase the number of points, change fn and rerun dsp without doing a transform.

To display a synthetic spectrum, prepare a file in the following format:
Freq1, Intens1, LineWidth1, GaussFrac1
Freq2, Intens2, LineWidth2, GaussFrac2
...
FreqN, IntensN, LineWidthN, GaussFracN

The units for frequency and line width are Hz. The Gaussian fraction, which is the percentage of the line shape that is Gaussian (the rest is Lorentzian) should be between 0 and 1 (i.e., 0 is pure Lorentzian, 1 is pure Gaussian). Units for intensity are not particularly important. Given numbers in a file myshape, it is only necessary to enter dsp('myshape') to display the synthetic spectrum. This approach is often preferred over deconvolution for quantifying small shoulders on large peaks.

Arguments: file is the name of a file containing spectral information that displays the result of a spectrum deconvolution. Any file in the proper format can be used to generate a display. The default is the file spins.outdata in the experiment directory. This file contains information about frequencies, intensities, line widths, and Gaussian/Lorentzian fractions.

'nods' is a keyword for dsp to recalculate the simulated spectrum but not to display the spectrum. The spectrum can be displayed with the ds or dss command.

Examples: dsp
dsp('fitspec.outpar')

See also: NMR Spectroscopy User Guide

Related: ds Display a spectrum (C)
dss Display stacked spectra (C)
fn Fourier number in directly detected dimension (P)
slw Spin simulation linewidth (P)
spins Perform spin simulation calculation (C)
svs Spin simulation vertical scale (P)
Type of DSP for data acquisition (P)

Applicability: Inova and *MERCURYplus/-Vx* systems

Description: Selects the type of DSP (digital signal processing) for data acquisition:

- **Inline DSP** performs digital filtering and downsampling on the workstation immediately after each oversampled FID is transferred from the console. `sw` and `at` should be set to the values desired for the final spectrum. Only the digital filtered and downsampled data is written to the disk. Selective detection of a region of a spectrum is available using the `moveossw` macro.

- **Real-time DSP** uses optional hardware (Inova only) to filter the data prior to summing to memory. Real-time DSP is not compatible with pulse sequences that use explicit acquisition to acquire less than the full number of data points (`np`) in a single acquire statement (e.g., solids sequences such as BR24 and FLIPFLOP).

If either type is active, the filter bandwidth parameter `fb` is not active. The actual analog filter is active and is automatically set by the software to a value that matches `(sw/2)*oversamp` as closely as possible.

Another type of DSP is available that allows post-processing of data. See the description of the `pards` macro for details.

Values:

- `'i'` selects inline DSP and calls `addpar('oversamp')` to create the DSP parameters `def_osfilt`, `filtfile`, `oscoef`, `osfb`, `osfilt`, `oslsfrq`, and `oversamp`. A value of `oversamp` greater than 1 causes the next experiment run to be oversampled, digitally filtered, and downsampled back to the selected `sw` prior to saving it to disk.

- `'r'` selects real-time DSP and calls the macro `addpar('oversamp')` to create the DSP parameters `def_osfilt`, `filtfile`, `oscoef`, `osfb`, `osfilt`, `oslsfrq`, and `oversamp` (although only `oversamp` and `osfilt` are user adjustable for real-time DSP). Use `dsp='r'` only if the optional DSP hardware is present in the system. Set `fsq='y'` to use frequency-shifted quadrature detection.

- `'n'` (or parameter `dsp` is not present) disables both types of DSP. Set `dsp='n'` if you wish to turn off DSP on a permanent or semi-permanent basis. To turn off DSP within just a single experiment, set `oversamp='n'`.

See also: *NMR Spectroscopy User Guide*

Related:

- `addpar` Add selected parameters to current experiment (M)
- `at` Acquisition time (P)
- `def_osfilt` Default value of osfilt (P)
- `fb` Filter bandwidth (P)
- `filtfile` File of FIR digital filter coefficients (P)
- `fsq` Frequency-shifted quadrature detection (P)
- `il` Interleave arrayed and 2D experiments (P)
- `moveossw` Set oversampling parameters for selected spectral region (M)
- `np` Number of data points (P)
- `oscoef` Digital filter coefficients for oversampling (P)
- `osfb` Digital filter bandwidth for oversampling (P)
- `osfilt` Oversampling filter for real-time DSP (P)
- `oslsfrq` Bandpass filter offset for oversampling (P)
- `oversamp` Oversampling factor for acquisition (P)
- `pards` Create additional parameters used by downsampling (M)
- `paros` Create additional parameters used by oversampling (M)
- `ra` Resume acquisition stopped with `sa` command (C)
- `sa` Stop acquisition (C)
- `sw` Spectral width in the directly detected dimension (P)
dsplanes Display a series of 3D planes (M)

Syntax: dsplanes(start_plane, stop_plane)

Description: Produces a graphical 2D color or contour map for a subset of 3D planes. The dconi program is used to display the planes.

Arguments: start_plane specifies the number of the 3D plane with which display is to begin. It must be greater than 0.

stop_plane specifies the number of the 3D plane with which the display is to end. If start_plane is greater than stop_plane, only the first plane, whose number is start_plane, is plotted. The range of stop_plane depends on the value of the parameter plane as follows:

- If plane='f1f3', range of stop_plane is between 0 and fn2/2
- If plane='f2f3', range of stop_plane is between 0 and fn1/2
- If plane='f1f2', range of stop_plane is between 0 and fn/2

Examples: dsplanes(1,3)

See also: NMR Spectroscopy User Guide

Related: dconi Interactive 2D data display (C)
dplane Display a 3D plane (M)
dproj Display a 3D plane projection (M)
getplane Extract planes from 3D spectral data set (M)
nextpl Display the next 3D plane (M)
plane Currently displayed 3D plane type (P)
plplanes Plot a series of 3D planes (M)
prevpl Display the previous 3D plane (M)

dsptype Type of DSP (P)

Description: Indicates the existence of digital signal processing (DSP).

Values: 0 indicates no digital signal processing. 1 indicates DSP exists.

Examples: dsptype?=0 dsptype?=1

See also: NMR Spectroscopy User Guide

Related: dsp Type of DSP for data acquisition (P)

dss Display stacked spectra (C)

Syntax: dss(<start,finish>,step><,options>)>

Description: Displays one or more spectra on the screen.

The display is not interactive like the command ds. Integral display is controlled by the parameter intmod when a single spectrum is displayed (see 'int' option below). The following values are accepted for intmod:

- intmod='off' turns off the integral display.
- intmod='full' displays the entire integral.
- intmod='partial' displays every other integral region.

An individual trace is displayed from and arrayed 1D spectra or 2D spectra by supplying the index number as an argument. Spectra from 2D data set are displayed from either the f1 or f2 domain by setting the parameter trace equal to 'f1' or 'f2', respectively. Enter ft1d, trace='f1', and dss to view the interferogram. Multiple spectra are displayed by supplying indexes of the first and last spectra.
The position of the first spectrum is governed by the parameters wc, sc, and vp. For 1D data, subsequent spectra are positioned relative to the preceding spectrum by the parameters vo (vertical offset) and ho (horizontal offset). For 2D data, ho defines the total horizontal offset between the first and last spectrum. Also for 2D data, vo is inactive while the parameter $wc2$ defines the total vertical offset between the first and last spectrum.

The parameter $cutoff$, if it exists and is active, defines the distance above and below the current vertical position vp at which peaks are truncated. By arraying $cutoff$ to have two different values, the truncation limits above and below the current vertical position can be controlled independently. For example, $cutoff=50$ truncates peaks at $vp+50$ mm and $vp-50$ mm. $cutoff=50,10$ truncates peaks at $vp+50$ mm and $vp-10$ mm.

Arguments:

- **start** is the index of the first spectra when displaying multiple spectra. It is also the index number of a particular trace to be viewed when displaying arrayed 1D spectra or 2D spectra.
- **finish** is the index of the last spectra when displaying multiple spectra. Since the parameter $arraydim$ is automatically set to the total number of spectra, it can be used to set $finish$ to include all spectra (e.g., `dss(1,arraydim,3)`).
- **step** is the increment for the spectral index when displaying multiple spectra. The default is 1.
- **options** can be any of the following:
 - 'all' is a keyword to display all of the spectra.
 - 'int' is a keyword to display only the integral, independently of the value of the parameter intmod.
 - 'top' or 'side' are keywords that cause the spectrum to be displayed either above or at the left edge, respectively, of a contour plot. This assumes that the parameters sc, wc, $sc2$, and $wc2$ are those used to position the contour plot.
 - 'dodc' is a keyword for all spectra to be drift corrected independently.
 - 'red', 'green', 'blue', 'cyan', 'magenta', 'yellow', 'black', and 'white' are keywords that select a color.
 - 'pen1', 'pen2', 'pen3' ... are keywords that pens.
 - 'nopars' — prevents the display commands from drawing the parameters at the bottom of the graphics screen.
 - 'custom' — uses the parameters $shownumx$ (x position) and $shownumy$ (y position), counting from bottom left of every spectrum.
 - 'reverse' — rotate the text by 90° - useful if the arrayed parameter values are long with respect to the width of the individual sub-spectra.
 - 'value' —The values of up to two simultaneous arrays are displayed. Diagonal arrays are allowed. The second parameter is shown in different color). The name of the arrayed parameter(s) is also shown. If used on a one-dimensional array representation of a 2D spectrum, ni and $phase$ (in case of phase sensitive 2Ds) parameters are shown.

Examples:

```
dss(1,3)
dss(1,12,3,'green')
```

See also: NMR Spectroscopy User Guide

Related:

- **cutoff** Data truncation limit (P)
- **dssa** Display stacked spectra automatically (C)
- **dssan** Display stacked spectra automatically without erasing (C)
- **dssh** Display stacked spectra horizontally (C)
dssa

Display stacked spectra automatically (C)

Syntax:
dssa(<start,finish<,step>><,options>)>

Description: Displays one or more spectra automatically.

Integral display is controlled by the parameter intmod when a single spectrum is displayed (see 'int' option below). The following values are accepted for intmod:

- intmod='off' turns off the integral display.
- intmod='full' displays the entire integral.
- intmod='partial' displays every other integral region.

An individual trace is displayed from and arrayed 1D spectra or 2D spectra by supplying the index number as an argument. Spectra from 2D data set are displayed from either the f1 or f2 domain by setting the parameter trace equal to 'f1' or 'f2', respectively. Enter ft1d, trace='f1', and dss to view the interferogram. Multiple spectra are displayed by supplying indexes of the first and last spectra.

The position of the first spectrum is governed by the parameters wc, sc, and vp. For 1D data, subsequent spectra are positioned relative to the preceding spectrum by the parameters vo (vertical offset) and ho (horizontal offset). For 2D data, ho defines the total horizontal offset between the first and last spectrum.

Also for 2D data, vo is inactive while the parameter wc2 defines the total vertical offset between the first and last spectrum. To display spectra “automatically,” the command dssa adjusts the parameters vo and ho to fill the screen in a lower left to upper right presentation (wc must be set to less than full screen width for this to work).

The parameter cutoff, if it exists and is active, defines the distance above and below the current vertical position vp at which peaks are truncated. By arraying cutoff to have two different values, the truncation limits above and below the current vertical position can be controlled independently. For example, cutoff=50 truncates peaks at vp+50 mm and vp-50 mm. cutoff=50,10 truncates peaks at vp+50 mm and vp-10 mm.

Arguments:
start is the index of the first spectra when displaying multiple spectra. It is also the index number of a particular trace to be viewed when displaying arrayed 1D spectra or 2D spectra.

finish is the index of the last spectra when displaying multiple spectra.
step is the increment for the spectral index when displaying multiple spectra. The default is 1.

options can be any of the following:
- 'all' is a keyword to display all of the spectra.
- 'int' is a keyword to only display the integral, independently of the value of the parameter intmod.
- 'dodc' is a keyword for all spectra to be drift corrected independently.
- 'red', 'green', 'blue', 'cyan', 'magenta', 'yellow', 'black', and 'white' are keywords that select a color.
- 'pen1', 'pen2', 'pen3' ... are keywords that pens.
- 'nopars' — prevents the display commands from drawing the parameters at the bottom of the graphics screen.

Examples: dssa(1,3)

See also: NMR Spectroscopy User Guide

Related:
cutoff Data truncation limit (P)
dss Display stacked spectra (C)
dssan Display stacked spectra automatically without erasing (C)
dssh Display stacked spectra horizontally (C)
dsshn Display stacked spectra horizontally without erasing (C)
dssn Display stacked spectra without screen erase (C)
daww Display spectra in whitewash mode (C)
ftld Fourier transform along f2 dimension (C)
ho Horizontal offset (P)
intmod Integral display mode (P)
pl Plot spectra (C)
plww Plot spectra in whitewash mode (C)
sc Start of chart (P)
sc2 Start of chart in second direction (P)
shownumx x position counting from bottom left of every spectrum (P)
shownumy y position counting from bottom left of every spectrum (P)
trace Mode for 2D data display (P)
vo Vertical offset (P)
vp Vertical position of spectrum (P)
wc Width of chart (P)
wc2 Width of chart in second direction (P)

dssan

Display stacked spectra automatically without erasing (C)

Syntax: dssan(<start,finish<,step><,options>>)>

Description: Functions the same as the command dssa except the graphics window is not erased before starting the display. This allows composite displays of many spectra to be created. The arguments are the same as dssa.

Examples: dssan(1,3)

See also: NMR Spectroscopy User Guide

Related: dssa Display stacked spectra automatically (C)

dssh

Display stacked spectra horizontally (C)

Syntax: dssh<(<start,finish<,step><,options>)>

Description: Displays one or more spectra horizontally.
Integral display is controlled by the parameter intmod when a single spectrum is displayed (see 'int' option below). The following values are accepted for intmod:

- intmod='off' turns off the integral display.
- intmod='full' displays the entire integral.
- intmod='partial' displays every other integral region.

An individual trace is displayed from and arrayed 1D spectra or 2D spectra by supplying the index number as an argument. Spectra from 2D data set are displayed from either the f1 or f2 domain by setting the parameter trace equal to 'f1' or 'f2', respectively. Enter ft1d, trace='f1', and dss to view the interferogram. Multiple spectra are displayed by supplying indexes of the first and last spectra.

The position of the first spectrum is governed by the parameters wc, sc, and vp. For 1D data, subsequent spectra are positioned relative to the preceding spectrum by the parameters vo (vertical offset) and ho (horizontal offset). For 2D data, ho defines the total horizontal offset between the first and last spectrum. Also for 2D data, vo is inactive while the parameter wc2 defines the total vertical offset between the first and last spectrum. To display spectra horizontally, the command dssh causes vo to be set to zero and for ho, sc, and wc to be adjusted to fill the screen from left to right with the entire array.

The parameter cutoff, if it exists and is active, defines the distance above and below the current vertical position vp at which peaks are truncated. By arraying cutoff to have two different values, the truncation limits above and below the current vertical position may be controlled independently. For example, cutoff=50 truncates peaks at vp+50 mm and vp–50 mm, and cutoff=50,10 truncates peaks at vp+50 mm and vp–10 mm.

Arguments:
- start is the index of the first spectra when displaying multiple spectra. It is also the index number of a particular trace to be viewed when displaying arrayed 1D spectra or 2D spectra.
- finish is the index of the last spectra when displaying multiple spectra.
- step is the increment for the spectral index when displaying multiple spectra. The default is 1.

options can be any of the following:

- 'all' is a keyword to display all of the spectra.
- 'int' is a keyword to only display the integral, independently of the value of the parameter intmod
- 'dodc' is a keyword that causes all spectra to be drift corrected independently.
- 'red', 'green', 'blue', 'cyan', 'magenta', 'yellow', 'black', and 'white' are keywords that select a color.
- 'pen1', 'pen2', 'pen3' ... are keywords that pens.
- 'nopars' — prevents the display commands from drawing the parameters at the bottom of the graphics screen.

Examples: dash(1,3)

See also: NMR Spectroscopy User Guide

Related:
- cutoff Data truncation limit (P)
- dss Display stacked spectra (C)
- dssa Display stacked spectra automatically (C)
- dssan Display stacked spectra automatically without erasing (C)
- dsshn Display stacked spectra horizontally without erasing (C)
- dssn Display stacked spectra without screen erase (C)
dsshn

Display stacked spectra horizontally without erasing (C)

Syntax: dsshn<>(start,finish><,step><,options>)>

Description: Functions the same as the command dssh except the graphics window is not erased before starting the display. This allows composite displays of many spectra to be created. The arguments are the same as dssh.

Examples: dssh(1,3)

See also: NMR Spectroscopy User Guide

Related: dssh Display stacked spectra horizontally (C)

dssl

Label a display of stacked spectra (M)

Syntax: dssl(<options>)

Description: Displays a label for each element in a set of stacked spectra. The label is an integer value from 1 up to the number of spectra in the display or the values of parameters up to 2 dimensions.

Labels can appear at incorrect positions if wysiwyg='n'. The positions are empirically determined for a large screen display and are not guaranteed to be correct for all displays.

Arguments: options control the display (more than one option can be entered as long as the options do not conflict with each other):

- 'center', 'left', 'right', 'top', 'bottom', 'above', and 'below' are keywords setting the position of the displayed index relative to each spectrum.
- 'custom' — uses the parameters shownumx (x position) and shownumy (y position), counting from bottom left of every spectrum.
- 'list=xxx' produces a display of the values contained in the arrayed parameter xxx.
- 'format=yyy' uses the format yyy to control the display of each label. See the write command for information about formats.
- 'reverse' — rotate the text by 90° - useful if the arrayed parameter values are long with respect to the width of the individual sub-spectra.
- 'value' — The values of up to two simultaneous arrays are displayed. Diagonal arrays are allowed. The second parameter is shown in different color). The name of the arrayed parameter(s) is also shown. If used on a
one-dimensional array representation of a 2D spectrum, \(n_i \) and \(\text{phase} \) (in case of phase sensitive 2Ds) parameters are shown.

Examples:

\[
dssl
\]

\[
dssl('top','left')
\]

\[
dssl('value','format=%3.1f') \text{ pssl}
\]

See also: NMR Spectroscopy User Guide

Related:

\[\text{dss} \quad \text{Display stacked spectra (C)}\]

\[\text{shownumx} \quad \text{x position counting from bottom left of every spectrum (P)}\]

\[\text{shownummy} \quad \text{y position counting from bottom left of every spectrum (P)}\]

\[\text{write} \quad \text{Write formatted text to a device (C)}\]

\[\text{dssn} \quad \text{Display stacked spectra without screen erase (C)}\]

Syntax: \[\text{dssn}\langle\text{<start},\text{finish}>,\text{step}>\langle\text{,options}\rangle\rangle\]

Description: Functions the same as the command \text{dss} except the graphics window is not erased before starting the display. This allows composite displays of many spectra to be created. The arguments are the same as \text{dss}.

Examples:

\[\text{dssn}(1,3)\]

See also: NMR Spectroscopy User Guide

Related:

\[\text{dss} \quad \text{Display stacked spectra (C)}\]

\[\text{dsvast} \quad \text{Display VAST data in a stacked 1D-NMR matrix format (M)}\]

Applicability: Systems with the VAST accessory.

Syntax: \[\text{dsvast}\langle\text{display order},\text{number of columns displayed}\rangle\]

Description: \text{dsvast} will arrange and display the traces from a reconstructed 2D data set (see \text{vastglue}) as an array of 1D spectra in a matrix of 1D spectra. If no arguments are provided, the number of rows and columns will be determined by the periodicity of the display order based on the \text{doneQ}. For example, if a block of 96 spectra (typical for a microtiter-plate) have been acquired using VAST automation, the spectra will be displayed in a matrix 8 rows and 12 columns with the well label using the format \([A->H], [1->12]\).

The spectra can be plotted using the macro \text{plvast}.

Arguments: \text{display order} is optional and its default value is the glue order as listed in \text{glueorderarray}. A \text{display order} can be defined using the \text{plate_glue} program.

The default value of \text{number of columns displayed} can entered as the second argument or as the first argument if the default \text{display order} is used.

Examples:

\[\text{dsvast}\]

\[\text{dsvast}(12)\]

\[\text{dsvast('glue_file', 4)}\]

See also: NMR Spectroscopy User Guide

Related:

\[\text{dsvast2d} \quad \text{Display VAST data in a pseudo-2D format (M)}\]

\[\text{plvast} \quad \text{Plot VAST data in a stacked 1D-NMR matrix (M)}\]

\[\text{plvast2d} \quad \text{Plot VAST data in a pseudo-2D format (M)}\]

\[\text{plate_glue} \quad \text{Define a display order (U)}\]
dsvast2d **Display VAST data in a pseudo-2D format (M)**

Applicability: Systems with the VAST accessory.

Syntax:

```
# dsvast2d(number)
```

Description: If an array of 1D spectra have been acquired (in particular if a block of 96 spectra has been acquired using VAST automation, especially in a microtiter-plate format), and if these spectra have been glued into a reconstructed 2D dataset (see `vastglue`), this macro will arrange and display them (on the screen) in a convenient pseudo-2D format (almost like an LC-NMR chromatogram). Well labels are not attached to the spectra and spectra are plotted with 8 spectra per row.

Arguments: The default is to display all the spectra (from 1 through `arraydim`) with 8 columns (spectra) and 12 rows. An optional argument `dsvast2d(number)` allows specifying that only spectra from 1 through `number` should be plotted. The number of spectra displayed is rounded up to the nearest multiple of 8.

Related:
- `dsast` Display VAST data in a 1D-NMR matrix format (M)
- `plvast` Plot VAST data in a stacked 1D-NMR matrix (M)
- `plvast2d` Plot VAST data in a pseudo-2D format (M)

dswv **Display spectra in whitewash mode (C)**

Syntax:

```
# dswv(<start,finish,step>,,'int'>)
```

Description: Displays one or more spectra in whitewash mode (after the first spectra, each spectra is blanked out in regions in which it is behind a prior spectra).

Arguments:
- `start` is the index of the first spectra when displaying multiple spectra. It is also the index number of a particular trace to be viewed when displaying arrayed 1D spectra or 2D spectra; default is to display all spectra.
- `finish` is the index of the last spectra when displaying multiple spectra.
- `step` is the increment for the spectral index when displaying multiple spectra. The default is 1.
- `'int'` is a keyword to display only the integral, independently of the value of the parameter `intmod`.

Examples:

```
dswv(1,3)
```

Related:
- `dss` Display stacked spectra (C)
- `dssa` Display stacked spectra automatically (C)
- `dssan` Display stacked spectra automatically without erasing (C)
- `dssh` Display stacked spectra horizontally (C)
- `dsshn` Display stacked spectra horizontally without erasing (C)
- `dssn` Display stacked spectra without screen erase (C)
- `pl` Plot spectra (C)
- `plww` Plot spectra in whitewash mode (C)

dtext **Display a text file in graphics window (M)**

Syntax:

```
# dtext<(file,x,y)><:$x_next,$y_next,$increment>
```

Description: Displays a text file in the graphics window.

Arguments:
- `file` is the name of a text file. The default is the current experiment text file.
- `x` and `y` are coordinates of the first line of text. This positions the location of the output. The default is the upper left-hand corner of the screen.
\$x_next and \$y_next are the coordinates where the start of the next line would have been displayed. This is useful for subsequent character display. \$increment is the increment between lines.

Examples:

\begin{verbatim}
\texttt{dtext}
\texttt{dtext(userdir+'/exp3/text')}
\texttt{dtext(100,100)}
\texttt{dtext:$$x,$$y,$$dy}
\end{verbatim}

Related:

\begin{verbatim}
\texttt{pltext} Plot a text file (M)
\texttt{ptext} Print out a text file (M)
\texttt{text} Display text or set new text for current experiment (C)
\texttt{write} Write formatted text to a device (C)
\end{verbatim}

\subsection*{\texttt{dtrig}}

\begin{description}
\item[Delay to wait for another trigger or acquire a spectrum (P)]
\item[Applicability:] Systems with LC-NMR accessory.
\item[Description:] If \texttt{ntrig} is greater than 0 after a trigger is detected, a pulse sequence waits for \texttt{dtrig} seconds before either waiting for another trigger or acquiring a spectrum. Typically, after the LC has positioned the sample in the NMR probe and stopped the pump, there is a small time (30 seconds) during which conditions (pressure, etc.) in the NMR probe are still settling; better NMR performance is obtained if an appropriate delay is inserted using \texttt{dtrig}. If \texttt{dtrig} does not exist, a value of 0 is assumed. If \texttt{dtrig} does not exist, the \texttt{parlc} macro can create it.
\end{description}

Related:

\begin{verbatim}
\texttt{ntrig} Number of trigger signals to wait before acquisition (P)
\texttt{parlc} Create LC-NMR parameters (M)
\end{verbatim}

\subsection*{\texttt{dutyc}}

\begin{description}
\item[Duty cycle for homodecoupling (optional) (P)]
\item[Applicability:] DirectDrive systems, 400 MR
\item[Syntax:] \texttt{dutyc=value}
\item[Description:] Sets the rf duty cycle fraction (0.0-0.4) for rf on part of homonuclear decoupling. The duty cycle default is 0.1 (or 10\% rf on) if the \texttt{dutyc} does not exist. Homonuclear decoupling delay before and after the rf on period, \texttt{homorof1}, \texttt{homorof2}, and \texttt{homorof3}, are equivalent to \texttt{rof1}, \texttt{rof2} and \texttt{rof3} and all default to 2 \textmu sec.
\item[Values:] 0.0 to 0.4 — default is 0.1
\item[Examples:] \texttt{dutyc=0.2} sets a 20\% duty cycle
\end{description}

Related:

\begin{verbatim}
\texttt{homo} Homodecoupling control for observe channel (P)
\texttt{hdof} Frequency offset for homodecoupling (P)
\texttt{hdpwr} Sets the rf attenuator to control the power for homonuclear decoupling (P)
\texttt{hdmf} Modulation frequency for the band selective homonuclear decoupling (P)
\texttt{hdpwrf} Sets the rf linear modulator fine power for homonuclear decoupling (P)
\texttt{hdres} Sets the tip angle resolution (P)
\texttt{hdseq} Sets the decoupler waveform filename (P)
\texttt{homorof1} Delay before turning on homo decoupling rf (P)
\texttt{homorof2} Delay after blanking the amplifier and setting T/R switch to receive (P)
\end{verbatim}
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>homorof3</td>
<td>Delay between setting T/R switch to receive gating on the receiver (P)</td>
</tr>
<tr>
<td>tn</td>
<td>Nucleus for observe transmitter (P)</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>e</td>
<td>Eject sample (M)</td>
</tr>
<tr>
<td>eaddr</td>
<td>Display Ethernet address (M,U)</td>
</tr>
<tr>
<td>ecc_on</td>
<td>Turns on eddy current compensation for Cold Probes (M)</td>
</tr>
<tr>
<td>ecc_off</td>
<td>Turns off eddy current compensation for Cold Probes (M)</td>
</tr>
<tr>
<td>echo</td>
<td>Display strings and parameter values in text window (C)</td>
</tr>
<tr>
<td>edit</td>
<td>Edit a file with user-selectable editor (M)</td>
</tr>
<tr>
<td>eject</td>
<td>Eject sample (M)</td>
</tr>
<tr>
<td>elist</td>
<td>Display directory on remote VXR-style system (M,U)</td>
</tr>
<tr>
<td>email</td>
<td>Email address (P)</td>
</tr>
<tr>
<td>enter</td>
<td>Enter sample information for automation run (M,U)</td>
</tr>
<tr>
<td>enterdialog</td>
<td>Start a dialog window using enterexp file (M)</td>
</tr>
<tr>
<td>eread</td>
<td>Transfer file from remote source (M,U)</td>
</tr>
<tr>
<td>ernst</td>
<td>Calculate the Ernst angle pulse (C)</td>
</tr>
<tr>
<td>errlog</td>
<td>Display recent error messages (C)</td>
</tr>
<tr>
<td>errloglen</td>
<td>Number of lines in error message display (P)</td>
</tr>
<tr>
<td>ewrite</td>
<td>Transfer file to remote destination (M,U)</td>
</tr>
<tr>
<td>exec</td>
<td>Execute a command (C)</td>
</tr>
<tr>
<td>execpars</td>
<td>Set up the exec parameters (M)</td>
</tr>
<tr>
<td>execplot</td>
<td>Execute plotting macro (P)</td>
</tr>
<tr>
<td>execprep</td>
<td>Execute prepare macro (P)</td>
</tr>
<tr>
<td>execprescan</td>
<td>Execute prescan macro (P)</td>
</tr>
<tr>
<td>execproc</td>
<td>Execute processing macro (P)</td>
</tr>
<tr>
<td>execprocess</td>
<td>Execute processing macro (P)</td>
</tr>
<tr>
<td>execsetup</td>
<td>Execute setup macro (P)</td>
</tr>
<tr>
<td>exists</td>
<td>Checks if parameter, file, or macro exists and file type (C)</td>
</tr>
<tr>
<td>exit</td>
<td>Call the vnmrexit command (M)</td>
</tr>
<tr>
<td>exp</td>
<td>Find exponential value of a number (C)</td>
</tr>
<tr>
<td>expactive</td>
<td>Determine if experiment has active acquisition (C)</td>
</tr>
<tr>
<td>expfit</td>
<td>Make least-squares fit to polynomial or exponential curve (U)</td>
</tr>
<tr>
<td>expl</td>
<td>Display exponential or polynomial curves (C)</td>
</tr>
<tr>
<td>expladd</td>
<td>Add another diffusion analysis to current display (M)</td>
</tr>
<tr>
<td>explib</td>
<td>Display experiment library (M)</td>
</tr>
<tr>
<td>explist</td>
<td>Display current experiment chain and approx. time for each (M)</td>
</tr>
<tr>
<td>explog</td>
<td>Display log file for experiment (M)</td>
</tr>
<tr>
<td>expmtime</td>
<td>Display experiment time (C)</td>
</tr>
</tbody>
</table>

e
Eject sample (M)

Description: Ejects the sample from the probe by turning on the eject air and the slow drop air. The e macro functions the same as the **eject** macro.
See also: *NMR Spectroscopy User Guide*

eaddr

Display Ethernet address (M,U)

Description: Displays the name of the local host and its hardware Ethernet address. The 48-bit address is presented in octal, decimal, and hexadecimal formats.

See also: *NMR Spectroscopy User Guide*

ecc_on

Turns on eddy current compensation for Cold Probes (M)

Applicability: Systems with Varian, Inc. Cold Probes

Description: Turns on eddy current compensation.

ecc_off

Turns off eddy current compensation for Cold Probes (M)

Applicability: Systems with Varian, Inc. Cold Probes

Description: Turns off eddy current compensation.

echo

Display strings and parameter values in text window (C)

Syntax: `echo<(<'–n',>string1,string2, ...)>

Description: Displays strings and parameter values in the text window similar to the UNIX `echo` command.

Arguments: `–n` is a keyword that suppresses advancing to the next line. The default is to advance to the next line.

`string1,string2,...` are one or more strings (surrounded with single quote marks) or parameters. The format used for numbers is identical to the `%g` format described for the `write` command.

Examples:
```
echo
echo('This is a string')
echo('Pulse Width is: ',pwr)
echo('–n','No new line')
```

See also: *User Programming*

edit

Edit a file with user-selectable editor (M)

Syntax: `edit (file)`

Description: Opens a file for editing using a text editor. The default editor is `vi`. To select another editor, set the UNIX environmental variable `vnmreditor` to the name of the editor (change the line `setenv vnmreditor old_editor` in `.login` to become `setenv vnmreditor new_editor`, e.g., `setenv vnmreditor emacs`) and make sure a script with the prefix `vnmr_` followed...
Scripts provided with VnmrJ include `vnmr_vi` and `vnmr_textedit`. To create other scripts, see the `vnmr_vi` script for non-window editor interfaces and the `vnmr_textedit` script for window-based editor interfaces.

Arguments: `file` is the name of the file you wish to edit.

Examples: `edit('myfile')`

See also: `User Programming`

Related: `paramedit` Edit a parameter and its attributes with user-selected editor (C)
`paramvi` Edit a parameter and its attributes with `vi` editor (M)
`macroedit` Edit a user macro with user-selectable editor (C)
`macrovi` Edit a user macro with `vi` editor (C)
`menuvi` Edit a menu with the `vi` editor (M)
`textvi` Edit text file of current experiment with `vi` editor (M)

eject

Eject sample (M)

Syntax: `eject`

Description: Ejects the sample from the probe by turning on the eject air and the slow drop air. The `e` macro functions the same as the `e` macro.

See also: `NMR Spectroscopy User Guide`

Related: `e` Eject sample (M)
`i` Insert sample (M)
`insert` Insert sample (M)

elist

Display directory on remote VXR-style system (M,U)

Syntax: `elist(remote_node,remote_directory)`

(From UNIX) `elist remote_node remote_directory`

Description: Lists directory contents on a remote VXR-style (Gemini, VXR-4000, or XL) system.

Arguments: `remote_node` is the name of the remote VXR-style system.
`remote_directory` is the name of the directory on the remote system.

Examples: `elist('gemini','fidlib')`

(From UNIX) `elist gemini fidlib`

See also: `NMR Spectroscopy User Guide`

Related: `dnode` Display list of valid limNET nodes (M,U)

email

Email address (P)

Applicability: `VnmrJ Walkup`

Description: A global parameter set to the email address of an operator. It is used to send an email message to an operator when an experiment or sample is complete. The parameter is set from the operator email field in the VnmrJ Adm interface.

See also: `VnmrJ Installation and Administration, VnmrJ Walkup`

Related: `operatorlogin` Sets workspace and parameters for the operator (M)
`prescan` Study queue prescan (P)
enter Enter sample information for automation run (M,U)

Applicability: Systems with an automatic sample changer.

Syntax: enter< (file<,configuration_file>) >
(From UNIX) enter <file> <configuration_file>

Description: Enables entry of sample information for automation runs, including the sample location, user information, solvent used, experiment or experiments to run, and arbitrary text information. enter('abc') creates a directory named abc. In this directory is a file named abc, which contains experiment information.

Arguments: file is the name of the file to be edited. The default is that enter prompts for this information. If the file already exists, new entries are appended to it.

configuration_file is the name of a user-supplied file that customizes enter for local use. Several configuration files are provided:

- enter.conf is used when defining an experiment when an automation run is not currently active.
- auto.conf is used when defining an experiment for a current automation run. The walkup macro is provided for this style of entering samples.
- gilson.conf is used with the VAST accessory.

Examples: (From VnmrJ or UNIX) enter
(From VnmrJ) enter('mysamples')
(From UNIX) enter MySamples
(From VnmrJ) enter('mysamples','auto.conf')

See also: NMR Spectroscopy User Guide; User Programming, VnmrJ Walkup

Related: auto Set up an automation directory (C)
autogo Start an automation run (C)
autoname Prefix for automation data file (P)
autora Resume a suspended automation run (C)
autosa Suspend current automation run (C)
printer Printer device (P)
status Display status of all experiments (C)
walkup Walkup automation (M)

enterdialog Start a dialog window using enterexp file (M)

Applicability: Systems with automation.

Syntax: enterdialog

Description: Internal macro used by enter to start a dialog window using the enterexp file in the dialoglib directory.

See also: NMR Spectroscopy User Guide; User Programming, VnmrJ Walkup

Related: enter Enter sample information for automation run (M,U)

eread Transfer file from remote source (M,U)

Applicability: Systems with limNET protocol software installed.

Syntax: (From VnmrJ) eread(local_file,remote_node,remote_file)
(From UNIX) eread local_file remote_node remote_file

Description: Copies a remote file to the local host. It will not overwrite a preexisting file.
Arguments:
 local_file is the file name of the local host. If *local_file* is not a dot file (i.e., starts with "."), *eread* uses the "I1" and "I2" values of the remote file to create an extension and then append it to the local file name.

 remote_node is a symbolic node name for a specified node file. Use the command *dnode* to list nodes defined on your system. The names of the remote computers or "nodes" available to the limNET protocol are contained in the file `/vnmr/nodes`. Note that this is not the same file as the name of the remote computers available to the Internet protocol (IP), which are contained in the file `/etc/hosts`. Each user only needs to know the "names" of relevant nodes.

 remote_file is the name of file to be transferred from the remote host.

Examples:
(From VnmrJ)

  ```
  eread('osv700','VXR4000','dsk1.osv700')
  ```

(From UNIX)

  ```
  eread osv700 VXR4000 dsk1.osv700
  ```

See also:

 NMR Spectroscopy User Guide

Related:

 dnode
 Display list of valid limNET nodes (M,U)

 ewrite
 Transfer file to remote destination (M,U)

ernst
Calculate the Ernst angle pulse (C)

Syntax:

  ```
  ernst(t1_estimate<,90_pulse_width>)
  ```

Description:
Calculates the optimum ("Ernst") pulse width according to the formula

\[pw = \cos^{-1}\left(\exp\left(-\frac{at}{t1_estimate}\right)\right) \cdot \left(\frac{pw90}{360}\right) \]

The new *pw* value is entered in the parameter table.

Arguments:
 t1_estimate is an estimate of the *T*\textsubscript{1} for a peak of interest.

 90_pulse_width is a 90° pulse width determined by the parameter *pw90*. The default is the current value of parameter *pw90* if *pw90* exists.

Examples:

  ```
  ernst(5)
  ```

  ```
  ernst(3,12.6)
  ```

See also:

 NMR Spectroscopy User Guide

Related:

 pw
 Pulse width (P)

 pw90
 90° pulse width (P)

errlog
Display recent error messages (C)

Description:
Displays in the text window the most recent error messages. The global parameter *errloglen* controls the number of lines displayed. If *errloglen* is not defined, *errlog* displays 10 lines by default.

See also:

 NMR Spectroscopy User Guide

Related:

 acqstatus
 Acquisition status (P)

 errloglen
 Number of lines in error message display (P)

errloglen
Number of lines in error message display (P)

Description:
Sets the number of lines in the display of error messages by *errlog*.

Values:
Integer, default is 10.

See also:

 NMR Spectroscopy User Guide

Related:

 errlog
 Display recent error messages (P)
ewrite
Transfer file to remote destination (M,U)

Applicability: Systems with limNET protocol software installed.

Syntax:
(From VnmrJ) `ewrite(local_file,remote_node,remote_file)`
(From UNIX) `ewrite local_file remote_node remote_file`

Description: Takes a preexisting local file and copies it to a remote host. The file cannot preexist on the remote host.

Arguments:
- `local_file` is the file name of the local host.
- `remote_node` is a symbolic node name for a specified node file. Use the command `dnode` to list nodes defined on your system. The names of the remote computers or “nodes” available to the limNET protocol are contained in the file `/vnmr/nodes`. Note that this is not the same file as the name of the remote computers available to the Internet Protocol (IP), which are contained in the file `/etc/hosts`. Each user only needs to know the “names” of relevant nodes.
- `remote_file` is the name of file to be transferred from the remote host.

Examples:
(From VnmrJ) `ewrite('osv700','VXR4000','dsk1.osv700')`
(From UNIX) `ewrite osv700 VXR4000 dsk1.osv700`

See also: [NMR Spectroscopy User Guide](#)

Related:
- `dnode` Display list of valid limNET nodes (M,U)
- `eread` Transfer file from remote source (M,U)

exec
Execute a command (C)

Syntax:
`exec(command_string)`

Description: Executes the command given by the string argument.

Arguments:
- `command_string` is a character string constructed from a macro.

Examples:
`exec($cmdstr)`
`exec(parstyle)`

See also: [User Programming](#)

execpars
Set up the exec parameters (M)

Description: Set up the exec parameters as listed in `/vnmr/execpars`.

See also: [User Programming](#)

Related:
- `apptype` Application type (P)
- `execplot` Execute plotting macro (P)
- `execprep` Execute prepare macro (P)
- `execprescan` Execute prescan macro (p)
- `execproc` Execute processing macro (P)
- `execsetup` Execute setup macro (P)

execplot
Execute plotting macro (P)

Description: Defines which plotting macro to use to plot this experiment.

See also: [User Programming](#)

Related:
- `apptype` Application type (P)
- `plot` Automatically plot spectra (M)
execprep **Execute prepare macro (P)**
Description: Defines which prepare macro to use to prescan this experiment.
See also: User Programming
Related: apptype Application type (P)
acquire Acquire data (M)
plot Automatically plot spectra (M)

execprescan **Execute prescan macro (P)**
Description: Defines which prescan macro to use to prescan this experiment.
See also: User Programming
Related: apptype Application type (P)
acquire Acquire data (M)

execproc **Execute processing macro (P)**
Description: Defines which processing macro to use to process this experiment.
See also: User Programming
Related: apptype Application type (P)
acquire Acquire data (M)

execprocess **Execute processing macro (P)**
Description: Defines which processing macro to use to process this experiment.
See also: User Programming

execsetup **Execute setup macro (P)**
Description: Defines which setup macro to use to prescan this experiment.
See also: User Programming
Related: apptype Application type (P)
cqexp Load experiment from protocol (M)
sqexp Load experiment from protocol (M)

exists **Checks if parameter, file, or macro exists and file type (C)**
Syntax: exists(name, 'keyword'):$res1, $res2
exists(name, 'keyword','<',argument,')':$res1, $res2
Description: Checks for the existence of a parameter, file, command, parameter file, or a macro from within a macro. The command can be used to check if a file is an ASCII text file, a directory, or to search the application directories for a file or directory.
Arguments: $res1 — results from exists are returned to the $ variable.
$res2 — optional: returns the absolute path to the file, command, macro, etc. The exists command does not pass anything to the optional second argument if it does not find the specified file, command, macro, etc.
name — the name of a parameter, file, command, or macro.
Keyword Description and Returned Values

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description and Returned Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>'maclib'</td>
<td>Macros reside in applications directories, or appdirs. Typical directories are the users vnmr\sys/maclib directory and /vnmr/maclib. The appdirs are searched in order then macros are executed. Exists returns the following to $res1: 0 — if the macro is not found in any of the appdirs 1, 2, or larger integer — indicates it was found in the first, second, third, etc. appdir. Name of any appdir (shapelib, manual, probes, shims) directory or directory within appdir and be used for the keyword maclib.</td>
</tr>
<tr>
<td>'command'</td>
<td>The command keyword is similar to the maclib keyword, except that it firsts checks to see if the name represents a built-in Vnmr command. Exists returns the following to $res1: 0 — if the name is neither a built-in command nor a macro. 1 — if the name represents a built-in command. 2, 3, 4, or 5 — if name is a macro.</td>
</tr>
<tr>
<td>'ascii'</td>
<td>Checks if the file specified by name is an ASCII text file. Exists returns the following to $res1: 0 — if the file is not an ascii file. 1 — if the file is an ascii file.</td>
</tr>
<tr>
<td>'parlib'</td>
<td>Checks for the file specified by name is in parlib using the path defined by applications directories or appdirs for parlib. A .par is appended to the name if it is not found and the search repeated if the file is not found on the first pass. Exists returns the following to $res1: 0 — if the file is not found. 1 — if the file is found. Optional: result returned to $res2. Return the absolute path of the parameter set if it is found.</td>
</tr>
<tr>
<td>'psglib'</td>
<td>Checks for the file specified by name is in psglib using the path defined by applications directories or appdirs for psglib. A .c is appended to the name if it is not found and the search repeated if the file is not found on the first pass. Exists returns the following to $res1: 0 — if the file is not found. 1 — if the file is found. Optional: result returned to $res2. Return the absolute path of the file set if it is found.</td>
</tr>
</tbody>
</table>

The following keywords accept an argument

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description and Returned Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>'file'</td>
<td>Checks if the file specified by name exists. Exists returns the following to $res1: 0 — if the file does not exist. 1 — if the file exists.</td>
</tr>
<tr>
<td>'perm'</td>
<td>perm is a combination of one or more of the following: r — read w — write e — execute Access permission can be checked by passing one, two, or three characters in a single argument.</td>
</tr>
</tbody>
</table>
Examples:

```plaintext
exists('ni','parameter'):$twod
eexists('/vnmr/conpar','file','rw')
eexists('wft','command'):$num
```

Using `exists` from within a macro to search the `bin` directory in the applications directories for the file `myprog` and, if found, return the path to the `$myprogPath` argument:

```plaintext
eexists($myprog,'bin'):$e,$myprogPath
```

if ($e) then
 shell($myprogPath):$res
else
 write('line3','%s: Program %s has not been installed',$0,$myprog)
endif

Using `exists` from within a macro to search for files in the top-level of the `appdirs`.

```plaintext
eexists('pulsecal','')
```

The search for `pulsecal` starts at the top-level of all `appdirs`.

Using `exists` from within a macro to search multi-level directories:

```plaintext
eexists(probename,'probes/'+probe)
```

The first argument is set to `'` which forces `exists` to check for directories in the `appdirs`.

```plaintext
eexists('nomacro','maclib',-1):$ok
```

Sets `$ok` to `-1` instead of `0` if `nomacro` does not exist in any of the applications directories. This feature can be applied to interface controls to make a button either not appear or appear grayed out if a macro (or file) does not exist.

See also: *User Programming*

Related:

- `appdirs` Starts Applications Directory Editor (M)
- `create` Create new parameter in a parameter tree (C)
- `hidecommand` Execute macro instead of command with same name (C)
- `which` Display which macro or command is used (M)
exit

Call the vnmrexit command (M)

Description: Calls the `vnmrexit` command to exit from VnmrJ. As a macro, `exit` provides a user some flexibility in defining other things to do when exiting.

CAUTION: When you exit from the VnmrJ user interface on your X display system, whether you are using an X terminal or a Sun computer, and whether you are using OpenWindows, CDE, or Motif, you must first exit from any copy of VnmrJ running on your system. Failure to do this can cause current parameter values and even current data to be lost.

exp

Find exponential value of a number (C)

Syntax: `exp(value)<:n>`

Description: Finds the exponential value (base e) of a number.

Arguments:
- `value` is a number.
- `n` is the return value giving the exponential value of `value`. The default is to display the exponential value in the status window.

Examples:
- `exp(.5)`
- `exp(val):exp_val`

See also: User Programming

Related:
- `atan` Find arc tangent of a number (C)
- `cos` Find cosine value of an angle (C)
- `ln` Find natural logarithm of a number (C)
- `sin` Find sine value of an angle (C)
- `tan` Find tangent value of an angle (C)

expactive

Determine if experiment has active acquisition (C)

Syntax:
1. `expactive<(exp_number)> <: $answer>`
2. `expactive('auto') <: $mode>`
3. `expactive('current') <: $exp>, $user>`

Description: Determines whether an acquisition is active or pending in an experiment.

Arguments:
- `exp_number` is the number, from 1 to 9999, of the experiment to be checked. The default is the current experiment.
- `$answer` is a return value: -1 if an acquisition is not possible (e.g., the system is a data station), 0 if no acquisition active in the requested experiment, 1 if an acquisition active in that experiment, and 2 or larger if an acquisition is queued in the requested experiment (subtract 1 from the value to determine its position in the acquisition queue). With no return argument, the result displays on line 3.
- `'auto'` is a keyword to check if the system is in automation mode.
- `$mode` is a return value: 1 if the system is in automation mode, or 0 if otherwise. With no return argument, the result is displayed on line 3.
- `'current'` is a keyword that determines whether an active experiment has an active acquisition command running. An experiment is still considered active if it holds up additional acquisitions during its `wexp` processing by the `'wait'` flag. If `expactive('current')` does not have a return argument, results are displayed on line 3.
- `$exp` is a return value indicating the current active experiment number: -1 if no acquisition is possible, or 0 if no acquisition is active.
- `$user` is a return value indicating the user who started the acquisition. If the system is running in automation mode, `$user` is set to “auto.” If no acquisition is running, `$user` is set to “nobody.”
Examples: expactive
expactive(3)
expactive(2):$active
expactive('auto'): $automode

expfit

Make least-squares fit to polynomial or exponential curve (U)

Syntax: (From UNIX) expfit options <analyze.inp >analyze.list

Description: Makes a least-squares curve fitting to the data supplied in the file analyze.inp. For the specialized uses of analyze, VnmrJ macros (e.g., t1, t2, kind) are available that provide the correct file format and avoid the need for the user to select options.

In the regression mode, the type of curve fitting, ('poly1', ...) must be selected. For regression (generalized curve fitting), the regression section in the manual NMR Spectroscopy User Guide shows the input file format and describes the menus that permit option choices indirectly through menu buttons.

The following text file is an example of the file analyze.inp (for options T1, T2, kinetics, contact_time, and regression). (1), (2), etc. do not actually appear in the file but are used to identify lines in the description presented below the file.

(1) time
(2) <amp>
(3) 2 4 linear linear

(4) NEXT 4
(5) 1
(6) 1 1
2 4
3 9
4 16

(4) NEXT 3
(5) 2
(6) 2 5
3 10
4 17

This file contains the following information:

(1) Optional x-axis title.
(2) Optional y-axis title, for regression only.
(3) Line containing an integer for the number of peaks, followed by another integer for the number of pairs per peak. If regression, the x-scale type and y-scale type are also listed.
(4) In the regression mode, a line beginning with the keyword NEXT is inserted at the start of each data set when the number of pairs per peak is variable, followed by an integer for the number of pairs for the peak.
(5) An integer that indexes the peaks.
(6) Data pairs, one to a line, listed by peak.

For options T1, T2, kinetics, and contact_time, information from the file fp.out and from the array xarray are used to construct this file; therefore, it is necessary to run fp prior to analyze. For regression, this file is made by running expl ('regression').

For diffusion, contact_time, and, if not in regression mode, poly1 and poly2, the analyze.inp file is slightly different:

(1) List of n x-y data pairs
(2) <text line>
(3) <x-values> <y-values>
(4) x y
 ...

(1) Title line.
(2) Descriptive text line.
(3) Number of x values and y values.
(4) Data pairs, one to a line, are listed by peak in the following order:
 x y (first peak, first pair)
 x y (first peak, second pair)
 ...
 x y (second peak, first pair)
 ...

`expfit` also makes a file `analyze.out` that is used by `expl` to display the results of the analysis in addition to output to the standard output, which is usually directed to `analyze.list`.

Arguments: `options` can be any of the following:
- `T1` sets T_1 analysis. This value is the default.
- `T2` sets T_2 analysis.
- `kinetics` sets kinetics analysis with decreasing peak height.
- `increment` sets kinetics analysis with increasing peak height.
- `list` sets an extended listing for each peak.
- `diffusion` sets a special analysis for diffusion experiments.
- `contact_time` sets a special analysis for solids cross-polarization spin-lock experiments.
- `regression` sets regression mode, providing generalized curve fitting with choices `poly0`, `poly1`, `poly2`, `poly3`, and `exp`:
 - `poly0` calculates the mean.
 - `poly1` sets a linear fitting.
 - `poly2` sets a quadratic fitting.
 - `poly3` sets a cubic curve fitting.
 - `exp` sets an exponential curve fitting.

Examples: (From UNIX)
```
    expfit d2 T1 list <analyze.inp >analyze.out
(From UNIX) expfit regression exp list <analyze.inp >analyze.out
```

See also: `NMR Spectroscopy User Guide`

Related:
- `analyze` Generalized curve fitting (C)
- `expl` Display exponential or polynomial curves (C)
- `fp` Find peak heights (C)
- `kind` Kinetics analysis, decreasing intensity (M)
- `t1` T_1 exponential analysis (M)
- `t2` T_2 exponential analysis (M)

`expl` **Display exponential or polynomial curves (C)**

Syntax: `expl(<options,>line1,line2,...)>

Description: Displays exponential curves resulting from T_1, T_2, or kinetic analyses. Also displays polynomial curves from diffusion or other types of analysis. The parameters `sc`, `wc`, `sc2`, and `wc2` control the size of the display.
In general, the first time `expl` is displayed, it calculates appropriate limits for the two axes. A subsequent call to `expl`, while a previous `expl` is displayed on the graphics screen, uses the axis scaling that displayed `expl`. To have the new `expl` recalculate its own axis limits and not use those currently displayed, call the `autoscale` macro before executing `expl`. Alternately, the axis limit for the `expl` display can be specified using the `scalelimits` macro.

Arguments: `options` can be any of the following:

- `'regression'` is a keyword signifying the beginning of generalized curve fitting. `expl` displays the data in the file `regression.inp` as unconnected points and also uses `regression.inp` to create the file `analyze.inp`, which serves as input to `analyze` for curve fitting.
- `'linear'`, `'square'`, and `'log'` are keywords for display of the data points against a square or logarithmic axis scale, with the exception of the results from regression. The first keyword controls the x-axis scale, the second the y-axis. The default is `'linear'`.
- `'link'` is a keyword to link the data points rather than a display of the theoretical curve.
- `'nocurve'` is a keyword to produce a plot of data points only.
- `'tinysymbol'` is a keyword to display small-scale data point symbols.
- `'nosymbol'` is a keyword to produce a plot of the curve only.
- `'noclear'` is a keyword to not erase the graphics screen before drawing the plot. This prevents the graphics screen from being cleared of data.
- `'oldbox'` is a keyword to plot an additional curve on an existing plot. Only the first data set in the file `analyze.out` is plotted. The box and scale description is derived from the file `expl.out` in the current experiment. When the `'oldbox'` option is used, a second argument is necessary to identify the curve number and data point symbol to represent the data. This second argument is a number from 1 to 6.
- `'file'` is a keyword that, when followed by a file name, makes that file replace the file `analyze.out` as the input to `expl`.

`line1`, `line2`,... specify the curves to be displayed. The default is to display the first eight curves (if that many exist) along with data points.

Examples: `expl`
`expl(1,3,6)`
`expl('oldbox',5)`
`expl('regression')`
`expl('regression',4,5)`

See also: `NMR Spectroscopy User Guide`

Related: `analyze`, `autoscale`, `expfit`, `pexpl`, `sc`, `sc2`, `scalelimits`, `wc`, `wc2`
Syntax: `expladd(integral_region)`

Description: Adds results of another diffusion analysis to the currently displayed results.

Arguments: `integral_region` specifies the number of the region whose results are to be added to the existing graph.

Examples: `expladd(1)`

See also: NMR Spectroscopy User Guide

Related: `expl` Display exponential or polynomial curves (C)
 `peexpl` Plot exponential or polynomial curves (C)
 `peexpladd` Add another diffusion analysis to current plot (M)

explib

Display experiment library (M)

Description: Displays the currently available experiment files. For each experiment, `explib` displays the name of the experiment and its subexperiments, whether an acquisition is active or its position in the acquisition queue, the current size of the experiments, the pulse sequence currently active in the experiments, and the first 50 characters of the text file in the experiment. `explib` also displays a message if the system is in automation mode.

See also: NMR Spectroscopy User Guide; VnmrJ Walkup

explist

Display current experiment chain and approx. time for each (M)

See also: Displays approximate time for each experiment in a chained experiment.

Related: `autotime` Display approximate time for automation (M)

explog

Display log file for experiment (M)

Description: Displays the log file for an experiment. This file includes when the experiment started, any acquisition errors that may have occurred, and when the experiment finished. Each acquisition generates this information, which is stored in the experiment's acqfil directory in a text file named log.

See also: NMR Spectroscopy User Guide

exptime

Display experiment time (C)

Syntax: `exptime<(sequence)><:$seconds>`

Description: Estimates the acquisition time for an experiment, based on the parameters used in the current experiment, and displays the time in the format hh:mm:ss. The `time` macro uses `exptime` to determine the time of an experiment.

Arguments: `sequence` is a pulse sequence that exists in the seqlib directory. If this argument is used, `exptime` estimates the acquisition time for the specified sequence. The default is the current value of seqlib.

$seconds` is a return argument with the number of seconds estimated for the experiment. If this argument is used, the time display is suppressed.

Examples: `exptime` `exptime('apt')` `exptime:$etime` `exptime('noesy'):$est_time`

See also: NMR Spectroscopy User Guide

Related: `time` Display experiment time or recalculate number of transients (M)
f

Set display parameters to full spectrum (C)

f19

Automated fluorine acquisition (M)

f19p

Process 1D fluorine spectra (M)

f1coef

Coefficient to construct F1 interferogram (P)

f2coef

Coefficient to construct F2 interferogram (P)

fattn

Fine attenuator (P)

fb

Filter bandwidth (P)

fbc

Apply baseline correction for each spectrum in an array (M)

fdm1

Set, write 1D FDM parameters, run FDM (M)

fiddc3d

3D time-domain dc correction (P)

fiddle

Perform reference deconvolution (M)

fiddled

Perform reference deconvolution subtracting alternate FIDs (C)

fiddleu

Perform reference deconvolution subtracting successive FIDs (C)

fiddle2d

Perform 2D reference deconvolution (C)

fiddle2D

Perform 2D reference deconvolution (C)

fiddle2dd

2D reference deconvolution subtracting alternate FIDs (C)

fiddle2Dd

2D reference deconvolution subtracting alternate FIDs (C)

fimax

Find the maximum point in an FID (C)

fidpar

Add parameters for FID display in current experiment (M)

fidsave

Save data (M)

fifolpsize

FIFO loop size (P)

file

File name of parameter set (P)

files

Interactively handle files (C)

filesinfo

Return file information for files display (C)

filtfile

File of FIR digital filter coefficients (P)

findxmlmenu

Find an xml menu (M)

fitspec

Perform spectrum deconvolution (C, U)

fixgrd

Convert gauss/cm value to DAC (M)

fixpar

Correct parameter characteristics in experiment (M)

fixpar3rf

Create parameters for third rf channel (M)

fixpar4rf

Create parameters for fourth rf channel (M)

fixpar5rf

Create parameters for fifth rf channel (M)

fixup

Adjust parameter values selected by setup macros (M)

fixpsg

Update psg libraries (M)

flashc

Convert compressed 2D data to standard 2D format (C)

flipflop

Set up parameters for FLIPFLOP pulse sequence (M)

Fluorine

Set up parameters for 19F experiment (M)

flush

Write out data in memory (C)

fn

Fourier number in directly detected dimension (P)

fn1

Fourier number in 1st indirectly detected dimension (P)

fn2

Fourier number in 2nd indirectly detected dimension (P)

fn2D

Fourier number to build up 2D DOSY display in freq. domain (P)

focus

Send keyboard focus to input window (C)
Set display parameters to full spectrum (C)

Description: Sets up the sp and wp display parameters for a full display of a 1D spectrum. If an FID is displayed, the parameters sf and wf are set for a full display. In multidimensional data sets, the parameters for both displayed dimensions are set up. For 2D data sets, the parameters sp, wp, sp1, and wp1 would be set. For planes of higher dimensional data sets, the appropriate two groups of sp-wp, sp1-wp1, and sp2-wp2, parameter pairs are set.

See also: NMR Spectroscopy User Guide

Related: sf Start of FID (P)
sp Start of plot in directly detected dimension (P)
spl Start of plot in 1st indirectly detected dimension (P)
sp2 Start of plot in 2nd indirectly detected dimension (P)
wf Width of FID (P)
wp Width of plot in directly detected dimension (P)
wp1 Width of plot in 1st indirectly detected dimension (P)
wp2 Width of plot in 2nd indirectly detected dimension (P)

Automated fluorine acquisition (M)

Syntax: f19<(solvent)>

Description: Prepares parameters for automatically acquiring a standard ^19F spectrum. The parameter wexp is set to 'procplot' for standard processing. If f19 is used as the command for automation via the enter program, then the macro au is
supplied automatically and should not be entered on the MACRO line of the enter program. However, it is possible to customize the standard f19 macro on the MACRO line by following it with additional commands and parameters. For example, f19 nt=1 uses the standard f19 setup but with only one transient.

Arguments: solvent is the name of the solvent. In automation mode, the solvent is supplied by the enter program. The default is 'CDCl3'

Examples: f19 f19('DMSO')

See also: NMR Spectroscopy User Guide

f19p Process 1D fluorine spectra (M)

Description: Processes non-arrayed 1D fluorine spectra using a set of standard macros. f19p is called by proc1d, but can also be used directly. Fully automatic processing (up to a point where a spectrum could be plotted) is provided: Fourier transformation (using preset weighting functions), automatic phasing (aphx macro), select integral regions (hregions macro), adjust integral size (integrate macro), vertical scale adjustment (vsadjc macro), avoiding excessive noise (noislm macro), threshold adjustment (if required, thadj macro), and referencing to the TMS signal, if present (tmsref macro).

See also: NMR Spectroscopy User Guide

Related: aphx Perform optimized automatic phasing (M)

f19 Automated fluorine acquisition (M)

hregions Select integral regions for proton spectra (M)

integrate Automatically integrate 1D spectrum (M)

noislm Avoids excessive noise (M)

proc1d Processing macro for simple (non-arrayed) 1D spectra (M)

thadj Adjust threshold (M)

tmsref Reference spectrum to TMS line (M)

vsadjh Adjust vertical scale for proton spectra (M)

f1coef Coefficient to construct F1 interferogram (P)

Description: Holds the coefficient to construct an F1 interferogram for 2D and 3D transformation. Coefficients are used by the ft2da and ft3d macros. If f1coef has a null value, ft2da uses the “standard” coefficients. f1coef is created by the par2d macro.

Values: Series of coefficients, separated by spaces (not a comma), and stored as a string variable. For example, the coefficient for standard States-Hypercomplex data set is f1coef='1 0 0 0 0 -1 0'.

See also: NMR Spectroscopy User Guide

Related: f2coef Coefficient to construct F2 interferogram (P)

ft2da Fourier transform phase-sensitive data (M)

ft3d Perform a 3D Fourier transform on a 3D FID data set (M,U)
f2coef

Coefficient to construct F2 interferogram (P)

Description: Holds the coefficient to construct an F2 interferogram for 2D and 3D transformation. Coefficients are used by the `ft2da('ni2')` and `ft3d` macros. If `f2coef` has a null value, `ft2da('ni2')` uses the “standard” coefficients. `f2coef` is created by the `par3d` macro.

Values: Series of coefficients, separated by spaces (not a comma), and stored as a string variable. For example, the coefficient for standard States-Hypercomplex data set is `f2coef='1 0 0 0 0 0 -1 0'`.

fattn

Fine attenuator (P)

Description: Configuration parameter for whether the current rf channel has a fine attenuator. The value is set using the label Fine Attenuator in the Spectrometer Configuration window (opened from `config`).

Values:
- 0 specifies the fine attenuator is not present on the channel (Not Present choice in Spectrometer Configuration window).
- 4095 specifies the fine attenuator is present on the channel (Present choice in Spectrometer Configuration window).

See also:
- *VnmrJ Installation and Administration; User Guide: Solids; CP/MAS Installation*

Related:
- `config` Display current configuration and possibly change it (M)
- `dpwrf` First decoupler fine power (P)
- `tpwrf` Observe transmitter fine power (P)

fb

Filter bandwidth (P)

Description: Sets the bandwidth of the audio filters, which prevents noise of higher frequency than the spectral limits from “folding in” to the spectrum. Because the transmitter is in the center of the spectrum, the range of audio frequencies that must be filtered out is half the spectral width `sw` (e.g., for a spectral width of 4000 Hz, frequencies higher than ±2000 Hz should be filtered out). The audio filters have some attenuation at frequencies lower than their nominal cutoff frequency, which is the frequency at which signals have been attenuated by 3 dB (50%). This impacts on quantitative accuracy near the edges of the spectrum so that the standard value of `fb` is 10% more than half of `sw`. `fb` is automatically changed whenever the spectral width `sw` is changed and thus is normally not a user-entered parameter. For example, typing `sw=4000` automatically sets `fb=2200`, which is 10% more than 2000 Hz. After changing the value of `sw`, `fb` can be changed.

Values:
- If `sw` is 500,000 or less: 1000 to 256000 Hz, 1000-Hz steps.
- If `sw` is greater than 500,000: 256 kHz, 1 MHz.

See also:
- *NMR Spectroscopy User Guide*

Related:
- `sw` Spectral width in directly detected dimension (P)
- `mrfb` Set the filter bandwidths for multiple receivers (P)
fbc

Apply baseline correction for each spectrum in an array (M)

Description: Applies bc-type baseline correction to all the spectra in an array. The partial integral mode should be used to set integral regions to include all significant signals, while leaving blank as large an area of baseline as is possible.

See also: *NMR Spectroscopy User Guide*

Related: *dosy* Process DOSY experiments (M)

fdm1

Set, write 1D FDM parameters, run FDM (M)

Syntax: `fdm1<(filename<,n1, v1<, n2, v2<...>>>)` or `fdm1 (i)` for the i-th trace

Description: Sets 1D Filter Diagonalization Method (FDM) parameters to the default values, writes the parameters to the `curexp/datdir/fdm1.inparm` file, and runs a stand-alone C++ program (`/vnmr/bin/fdm1d`).

Arguments: filename is the FID file; the default is `curexp+`acqfil/fid`.

n1, n2... is one or more following variable names (the order is arbitrary):

```plaintext
axis ~1 (default) to reverse the spec.
cheat No cheat if cheat=1, lines are narrower if cheat<1.
cheatmore No cheatmore if cheatmore=0.
error Error threshold for throwing away poles.
fidfmt FID format: VnmrJ or ASCII.
fdm 1 for FDM; ~1 for Digital or Discrete Fourier Transform.
fn_Sp1D Spectrum file; default is `curexp/datdir/fdm1.parm`.
Gamm Smoothing width (line broadening).
Gcut Maximum width for a pole.
datat Data type of ASCII FID file ~4 for complex data, ignored if data is in VnmrJ format.
i_fid The i-th trace of the FID.
kcoef If kcoef > 0, use 'complicated' dk(k). -1 is always preferred.
Nb Number of basis functions in a single window.
Nbc Number of coarse basis vectors.
Npower Number of spectrum data points.
Nsig Number of points to use.
Nskip Number of points to skip.
par Line list file; default is `curexp/datdir/fdm1.parm`
rho rho=1 is optimal.
specfmt Spec format: VnmrJ or ASCII.
spectyp Spectrum type: complex (default), real imag, or abs.
ssw A test parameter.
t0 Delay of the first point.
theta Overall phase of FID (rp in radians).
wmax Maximum spectrum frequency in hertz.
wmin Minimum spectrum frequency in hertz.
```
v1, v2... is the value for the variable(s).

Examples:
```plaintext
fdm1('cheat', 0.8)
fdm1('Nsig', 3000, 'Nb', 20, 1, 'Gamm', 0.5)
```

See also: *NMR Spectroscopy User Guide*

fiddc3d
3D time-domain dc correction (P)

Description: Sets whether a 3D time-domain dc correction occurs. If `fiddc3d` does not exist, it is created by the macro `par3d`. The time-domain dc correction occurs immediately after any linear prediction operations and before all other operations on time-domain data.

Values: A three-character string. The default value is `'nnn'`.
- The first character refers to the f3 dimension (`sw`, `np`, `fn`), the second character refers to the f1 dimension (`sw1`, `ni`, `fn1`), and the third character refers to the f2 dimension (`sw2`, `ni2`, `fn2`).
- Each character may take one of two values: 'n' for no time-domain dc correction along the relevant dimension, and 'y' for time-domain dc correction along the relevant dimension.

See also: *NMR Spectroscopy User Guide*

Related:
- `fn` Fourier number in directly detected dimension (P)
- `fn1` Fourier number in 1st indirectly detected dimension (P)
- `fn2` Fourier number in 2nd indirectly detected dimension (P)
- `ft3d` Perform a 3D Fourier transform (M)
- `ni` Number of increments in 1st indirectly detected dimension (P)
- `ni2` Number of increments in 2nd indirectly detected dimension (P)
- `np` Number of data points (P)
- `par3d` Create 3D acquisition, processing, display parameters (C)
- `ptspec3d` Region-selective 3D processing (P)
- `specdc3d` 3D spectral drift correction (P)
- `sw` Spectral width in directly detected dimension (P)
- `sw1` Spectral width in 1st indirectly detected dimension (P)
- `sw2` Spectral width in 2nd indirectly detected dimension (P)

fiddle
Perform reference deconvolution (M)

Syntax: `fiddle(option<,file><,option<,file>>,<start><,finish><,increment>)`

Description: Performs reference deconvolution using a reference signal with known characteristics to correct instrumental errors in experimental 1D or 2D spectra.

Arguments: `option` can be any of the following:
- 'alternate' is a keyword specifying the alternate reference phase +-(for phase sensitive gradient 2D data).
- 'autophase' is a keyword specifying to automatically adjust the phase of the reference signal.
- 'displaycf' is a keyword specifying to stop at the display of the correction function.
- 'fittedbaseline' is a keyword specifying to use cubic spline baseline correction defined by the choice of integral regions.
- 'invert' is a keyword specifying to invert the corrected difference spectrum/spectra.
'noaph' is a keyword specifying not to automatically adjust zero order phase of the reference region.

'nodc' is a keyword specifying not to use dc correction of reference region.

'noextrap' is a keyword specifying not to use extrapolated dispersion mode.

'nohilbert' is a keyword specifying not to use Hilbert transform algorithm and to use extrapolated dispersion mode reference signal unless 'noextrap' is also used as an option.

'normalise' is a keyword specifying to keep corrected spectrum integrals equal to that of the first spectrum.

'satellites' is a keyword specifying to use satellites defined in file in ideal reference region; file should be in /vnmr/satellites, and should immediately follow 'satellites' in the argument list.

'stop1' is a keyword specifying to stop at display of experimental reference FID.

'stop2' is a keyword specifying to stop at display of correction function.

'stop3' is a keyword specifying to stop at display of corrected FID.

'stop4' is a keyword specifying to stop at display of first corrected FID.

'verbose' is a specifying keyword to display information about processing in the main window.

'writecf' is a keyword specifying to write the correction function to file; the argument file must immediately follow 'writecf'.

'writefid' is a keyword specifying to write out corrected FID to file; if file does not begin with /, it is assumed to be in the current working directory. In the argument list, file should immediately follow 'writefid'.

See also: NMR Spectroscopy User Guide

Related:
- fiddled
- fiddleu
- fiddle2d
- fiddle2D
- fiddle2dd
- fiddle2Dd

fiddled Perform reference deconvolution subtracting alternate FIDs (C)

Description: Produces the corrected difference between successive spectra. Refer to the description of fiddle for details.

See also: NMR Spectroscopy User Guide

Related: fiddle
fiddleu
Perform reference deconvolution subtracting successive FIDs (C)
Description: Produces corrected differences between successive FIDs and the first FID. Refer to the description of fiddle for details.
See also: *NMR Spectroscopy User Guide*
Related: fiddle — Perform reference deconvolution

fiddle2d
Perform 2D reference deconvolution (C)
Description: Functions the same as the fiddle program except fiddle2d performs 2D reference deconvolution. Refer to the description of fiddle for details.
See also: *NMR Spectroscopy User Guide*
Related: fiddle — Perform reference deconvolution

fiddle2D
Perform 2D reference deconvolution (C)
Description: Functions the same as the fiddle program except fiddle2D performs 2D reference deconvolution. Refer to the description of fiddle for details.
See also: *NMR Spectroscopy User Guide*
Related: fiddle — Perform reference deconvolution

fiddle2dd
2D reference deconvolution subtracting alternate FIDs (C)
Description: Functions the same as the fiddle program except fiddle2dd performs 2D reference deconvolution. Refer to the description of fiddle for details.
See also: *NMR Spectroscopy User Guide*
Related: fiddle — Perform reference deconvolution

fiddle2Dd
2D reference deconvolution subtracting alternate FIDs (C)
Description: Functions the same as the fiddle program except fiddle2Dd performs 2D reference deconvolution. Refer to the description of fiddle for details.
See also: *NMR Spectroscopy User Guide*
Related: fiddle — Perform reference deconvolution

fidmax
Find the maximum point in an FID (C)
Applicability: All
Syntax:

```  
fidmax<(trace)>:$max  
fidmax:$max  
fidmax(1):$max  
fidmax(arraydim):$max  
```

Description: fidmax finds the absolute maximum value in an FID.
Arguments: No arguments — fidmax uses the currently active FID FID selected by df or select.
A FID index supplied as an argument.
fidpar Add parameters for FID display in current experiment (M)
Description: Creates the FID display parameters axisf, crf, deltaf, dotflag, vpf, and vpfi in the current experiment. Use fidpar to define these parameters in old parameter sets (they are already defined in new parameter sets).
See also: NMR Spectroscopy User Guide
Related: addpar Add selected parameters to current experiment (M)
 axisf Axis label for FID displays and plots (P)
 crf Current time domain cursor position (P)
 deltaf Difference of two time cursors (P)
 dotflag Display FID as connected dots (P)
 vpf Current vertical position of FID (P)
 vpfi Current vertical position of imaginary FID (P)

fidsave Save data (M)
Description: Macro to save data. It uses svfdir and svfname to construct the data filename.

fifolpsize FIFO loop size (P)
Description: Configuration parameter for the size of the FIFO loop. The size depends on which controller board is present on the system—the Output board, the Acquisition Controller board, or the Pulse Sequence Controller board (refer to the description of the acquire statement in the manual User Programming for information on identifying the boards). The value is set using the label Fifo Loop Size in the Spectrometer Configuration window (opened by config).
Values: 2048
See also: VnmrJ Installation and Administration
Related: config Display current configuration and possibly change it (M)

file File name of parameter set (P)
Description: Contains the file name of the parameter set returned by a rt or rtp command. This parameter is reset when the go command is issued. If the system is not in automation mode (auto='n'), file is reset to the 'exp' value. If the system is in automation mode (auto='y'), file is set to the path of the directory where the data is stored.
See also: NMR Spectroscopy User Guide
Related: auto Automation mode active (P)
 go Submit experiment to acquisition (C)
 rt Retrieve FID (C)
 rtp Retrieve parameters (C)

files Interactively handle files (C)
Syntax: files<(files_menu)>
Description: Brings up the interactive file handling program. With this program, the mouse and keyboard are used to copy, delete, rename, change directories, and load and save experiment data. The files command uses the graphics window to display file names. A mouse clicked on a file name selects it and the file name is displayed in reverse video. Various operations can be conducted on one or more selected files. The menus used for the files program are placed in the
standard menulib directories. Refer to the manual *NMR Spectroscopy User Guide* for more information on using menus, and refer to the manual *User Programming* for information on programming menus.

Arguments: files_menu is the files menu to control the menu buttons; the default menu is 'files_main' or the last active files menu.

Examples:
```
files
files('files_dir')
```

See also: *User Programming*

filesinfo

Return file information for files display (C)

Syntax:
1. `filesinfo('number')`: $number_files
2. `filesinfo('name', file_number)`: $file
3. `filesinfo('redisplay')`

Description: Allows access to the list of files selected from the files interactive display. filesinfo is normally used only by the macros that implement the menu functions of the file system and not entered from the keyboard. The command will not execute unless the files program is active.

Arguments:
- `'number'` is a keyword to return the number of files selected in the files display, or 0 if no files have been selected.
- `$number_files` is the return variable when `'number'` is used.
- `'name'` is a keyword to return a list of file names selected in the files display.
- `file_number` is a number following the `'name'` keyword to return only the file name in the list given by `file_number`.
- `$file` is a string variable that returns the file name when `'name'` is used.
- `'redisplay'` is a keyword that causes the current contents of the directory to be displayed. This display is useful after making changes in the directory, such as deleting or creating a file.

See also: *User Programming*

Related:
- `files` Interactively handle files (C)

filtfile

File of FIR digital filter coefficients (P)

Description: Specifies name of a file of FIR (finite impulse response) digital filter coefficients. This file is a text file with one real filter coefficient per line (complex filters are not supported). If the parameter `filtfile` does not exist in the current experiment, enter `addpar('downsamp')` or `addpar('oversamp')` to add it. Entering `addpar('downsamp')` creates the digital filtering and downsampling parameters `downsamp`, `dscoef`, `dsfb`, `dsisfrq`, and `filtfile`. Similarly, entering `addpar('oversamp')` creates digital filtering and oversampling parameters `def_osfilt`, `filtfile`, `oscoef`, `osfb`, `osfilt`, `osisfrq`, and `oversamp`.

Values: File name. The file must be in the user's vnmrsys/filtlib directory.

Related:
- `addpar` Add selected parameters to current experiment (M)
- `def_osfilt` Default value of osfilt (P)
- `downsamp` Downsampling factor applied after digital filtering (P)
findxmlmenu Find an xml menu (M)
Description: Find an xml menu. Used by the menu system to find and display VnmrJ menus.

fitspec Perform spectrum deconvolution (C, U)
Syntax: (From VnmrJ) fitspec(<'usell'><,><'setsfreq'>)> (From UNIX) fitspec
Description: Fits experimental data to Lorentzian and/or Gaussian lineshapes. fitspec uses as a starting point data in a file fitspec.inpar, which must be prepared prior to performing the calculation. This file contains the frequency, intensity, linewidth, and (optionally) the Gaussian fraction of the lineshape. Any number followed by an asterisk (*) is held fixed during the calculation; all other parameters are varied to obtain the best fit. fitspec creates a file fitspec.data, which is a text representation of the spectral data (that part of the spectrum between sp and sp+wp). After the calculation is finished, the results of the fit are contained in a file fitspec.outpar, with a format identical to fitspec.inpar.

It is often useful to use the output from a deconvolution as the input to a spin simulation to ensure the most accurate possible frequencies for the spin simulation calculation. For this reason, the frequencies and amplitudes of the calculated lines in a deconvolution are automatically stored in the parameters slfreq, respectively, from where they can serve as input to an iterative spin simulation. If the spin system is defined after a deconvolution is performed, this information is lost (slfreq is reset). In this case, fitspec('setslfreq') can be used to copy the information from fitspec.outpar back into slfreq. This is not necessary if you define the spin system before performing the deconvolution (you need not perform the entire spin simulation, only define the spin system).

Arguments: 'usell' is a keyword to prepare the file fitspec.inpar from the last line listing (stored in llfrq and llamp). All lines are set to have a linewidth of slw and a fixed Gaussian fraction of 0. If another starting point is desired, this file can be edited with a text editor. Alternatively, the macro usemark may be used.
'setslfreq' is a keyword to copy the information from the file fitspec.outpar back into slfreq.

Examples:
fitspec
fitspec('usell')
fitspec('setslfreq')

See also: NMR Spectroscopy User Guide
Related: llamp List of line amplitudes (P)
llfrq List of line frequencies (P)
setgauss Set a Gaussian fraction for lineshape (M)
fixgrd

Convert gauss/cm value to DAC (M)

Syntax: `fixgrd(gradient_value):parameter`

Description: Uses the `gcal` value in the probe table to return the DAC value for a specified gradient strength.

Arguments:
- `gradient_value` is the required gradient strength in gauss/cm.
- `parameter` is any local variable or VnmrJ variable.

Examples: `fixgrd(20):gzlvl`

Related: `gcal` Gradient calibration constant (P)

fixpar

Correct parameter characteristics in experiment (M)

Description: After bringing parameters into the current experiment with `convert`, `rt`, `rtp`, or `rtv`, `fixpar` is automatically executed. `fixpar` updates old parameter characteristics and reconciles parameter differences due to the hardware on the spectrometer. If a macro `userfixpar` exists, `fixpar` runs it also. This allows an easy mechanism to customize parameter sets.

Related:
- `convert` Convert data set from a VXR-style system (C)
- `fixpar3rf` Create parameters for third rf channel (M)
- `fixpar4rf` Create parameters for fourth rf channel (M)
- `parfix` Update parameter set (M)
- `parversion` Version of parameter set (P)
- `rt` Retrieve FIDs (C)
- `rtp` Retrieve parameters (C)
- `rtv` Retrieve individual parameters (C)
- `updatepars` Update all parameter sets saved in a directory (M)
- `userfixpar` Macro called by `fixpar` (M)

fixpar3rf

Create parameters for third rf channel (M)

Applicability: Systems with a second decoupler.

Description: Checks for the existence of all acquisition parameters related to the second decoupler. Any parameters found to be absent are created, characterized, and initialized by the macro. `fixpar3rf` is run as a part of the standard `fixpar` macro if the system configuration parameter `numrfch` is greater than 2 (i.e., the number of rf channels on the system is set at 3 or more).

fixpar4rf

Create parameters for fourth rf channel (M)

Applicability: Systems with a third decoupler.

Description: Checks for the existence of all acquisition parameters related to the third decoupler. Any parameters found to be absent are created, characterized, and initialized. `fixpar4rf` is run as a part of the standard `fixpar` macro if the system configuration parameter `numrfch` is greater than 3 (i.e., the number of rf channels on the system is set at 4).
fixpar5rf
Create parameters for fifth rf channel (M)
Applicability: Systems with a deuterium decoupler channel as the fourth decoupler.
Description: Checks for the existence of all acquisition parameters related to the fourth decoupler. Any parameters found to be absent are created, characterized, and initialized. *fixpar5rf* is run as a part of the standard *fixpar* macro if the system configuration parameter `numrfch` is greater than 4 (i.e., the number of rf channels on the system is set at 5).

fixup
Adjust parameter values selected by setup macros (M)
Description: Called by the experiment setup macros `h1`, `c13`, `hc`, `hcapt`, `capt`, and `hcossy`. As provided, the text of *fixup* is all in quotes so that it does nothing. It is intended to provide each user with a mechanism to make adjustments to values selected by the setup macros.

fixpsg
Update psg libraries (M)
Description: Used by `patchinstall` to recompile the psg files and create new psg libraries `libpsglib.so` in `/vnmr/lib`.

flashc
Convert compressed 2D data to standard 2D format (C)
Syntax: `flashc(<'nf'>,'ms'|'mi'|'rare',ns,traces,echoes)`
Description: Converts 2D FID data files from compressed formats (`seqcon='nnncsn'`, `seqcon='nccnn'`, `seqcon='nnccn'`) to standard format (`seqcon='ncsnn'`) or from standard format to compressed format. Compressed data is taken by using the `nf` parameter; that is, compressed data is acquired as one large uninterrupted “multiFID” acquisition.
`flashc` reads the file `fid` in the `acqfil` subdirectory of the current experiment.
`flashc` can convert a compressed-compressed multislice, multiecho, or multi-image sequence. It can also convert a “rare” type sequence with a compressed phase-encode echo train.
`flashc` changes the values of the following parameters:

- **Compressed-compressed or standard format to compressed format**
 - `ni` is set to 1 if no argument is provided.
 - `nf` is set to the value of `nf` divided by the multislice, `ms`, or multi-image, `mi`, value.
 - `arraydim` is set to the product of its original value and the value of the `traces` argument.
 - `arrayelemts` is set to 1 if no parameters were arrayed during data acquisition or to 2 if any parameter was arrayed during data acquisition.

- **Compressed format to standard format**
 - `nf` is set to the value of the `traces` argument, or to 1 if no argument is provided.
 - `ni` is set to the value of `nf` divided by the multislice, `ms`, or multi-image, `mi`, value.
 - `arraydim` is set to the product of its original value and the original value of `nf`.
 - `arrayelemts` is set to 1 if no parameters were arrayed during data acquisition or to 2 if any parameter was arrayed during data acquisition.
Arguments: \(nf \) is the number of FIDs in the second dimension of a 2D experiment. When converting data in the standard format to a compressed format, \(nf \) must always be the first argument.

When converting compressed-compressed or “rare” type sequences, the first argument must be a string defining the type of compression:

- '\(mi \)' is a keyword for the multi-image type of compression.
- '\(ms \)' is a keyword for the multislice type of compression.
- '\(rare \)' is a keyword for the “rare” multiecho, rare type, fast-imaging data sets.

\((\text{Standard to compressed})\) \(ns \) is the number of images slices or array elements to be retained.

\((\text{Compressed-compressed or rare to standard})\) \(traces \) is the number of compressed traces to retain for each \(ni \). The parameter \(nf \) is set to this number after \(\text{flashc} \) has run.

\((\text{Compressed-compressed or rare to standard})\) \(echoes \) is the number of compressed echoes, used with “rare” type formatting.

Examples:

\(\text{Compressed-compressed or standard format to compressed format} \)
\(\text{flashc}('nf') \) (standard to compressed)
\(\text{flashc}('nf','ms',ns) \) (compressed phase-encode and multislice)
\(\text{flashc}('nf','mi',ns) \) (compressed multi-image and phase-encode)

\(\text{Compressed-compressed format or rare format to standard format} \)
\(\text{flashc}(\text{simple compressed phase-encode}) \)
\(\text{flashc}('ms',ns) \) (compressed phase-encode and multislice)
\(\text{flashc}('mi',ns) \) (compressed multi-image and phase-encode)
\(\text{flashc}('rare',ns,etl) \)

See also: \(\text{VnmrJ Imaging NMR} \)

Related:
- \(\text{arraydim} \) Dimension of experiment (P)
- \(\text{ft2d} \) Fourier transform 2D data (C)
- \(\text{ft3d} \) Fourier transform 3D data (C)
- \(\text{nf} \) Number of FIDs (P)
- \(\text{ni} \) Number of increments in 1st indirectly detected dimension (P)

\(\text{flipflop}\) Set up parameters for FLIPFLOP pulse sequence (M)

Applicability: Systems with solids module.

Description: Sets up a multipulse parameter set for tuning out “phase glitch” in the probe and pulse amplifier.

See also: \(\text{User Guide: Solid-State NMR} \)

\(\text{Fluorine}\) Set up parameters for \(^{19}\text{F} \) experiment (M)

Description: Set Up parameters for \(^{19}\text{F} \) experiment.

\(\text{flush}\) Write out data in memory (C)

Description: Writes out the current data and parameters in memory buffers. Normally, this information is not written to disk until exiting VnmrJ or joining another experiment. One reason to use \(\text{flush} \) is to be able to access experimental data from a program separate from the VnmrJ program.

See also: \(\text{User Programming} \)
fn

Fourier number in directly detected dimension (P)

Description: Selects the Fourier number for the Fourier transformation along the directly detected dimension. This dimension is often referred to as the f_2 dimension in 2D data sets, the f_3 dimension in 3D data sets, etc.

Values: 'n' or a number equal to a power of 2 (minimum is 32). If fn is not entered exactly as a power of 2, it is automatically rounded to the nearest higher power of 2 (e.g., setting fn=32000 gives fn=32768). fn can be less than, equal to, or greater than np, the number of directly detected data points:

- If fn is less than np, only fn points are transformed.
- If fn is greater than np, fn minus np zeros are added to the data table (“zero-filling”).
- If fn='n', fn is automatically set to the power of 2 greater than or equal to np.

fn1

Fourier number in 1st indirectly detected dimension (P)

Description: Selects the Fourier number for the Fourier transformation along the first indirectly detected dimension. This dimension is often referred to as the f_1 dimension of a multi-dimensional data set. The number of increments along this dimension is controlled by the parameter ni.

Values: fn1 is set in a manner analogous to the parameter fn, with np being substituted by 2*ni.

See also: *NMR Spectroscopy User Guide*

Related:
- fn
 - Fourier number in directly detected dimension (P)
- fn2
 - Fourier number in 2nd indirectly detected dimension (P)
- ni
 - Number of increments in 1st indirectly detected dimension (P)
- np
 - Number of data points (P)

fn2

Fourier number in 2nd indirectly detected dimension (P)

Description: Selects the Fourier number for the Fourier transformation along the second indirectly detected dimension. This dimension is often referred to as the f_2 dimension of a multidimensional data set. The number of increments along this dimension is controlled by the parameter ni2. fn2 is set in a manner analogous to the parameter fn, with np being substituted by 2*ni2.

See also: *NMR Spectroscopy User Guide*

Related:
- fn
 - Fourier number in directly detected dimension (P)
- fn1
 - Fourier number in 1st indirectly detected dimension (P)
- ni2
 - Number of increments in 2nd indirectly detected dimension (P)
- np
 - Number of data points (P)

fn2D

Fourier number to build up 2D DOSY display in freq. domain (P)

Description: In 2D DOSY sequences (Dbppste, DgcsteSL, Doneshot, Dbppsteinepnt), replaces fn when setting up the 2D display.

See also: *NMR Spectroscopy User Guide*

Related:
- ddif
 - Synthesize and display DOSY plot (C)
- dosy
 - Process DOSY experiments (M)
focus

Send keyboard focus to input window (C)

Description: Sends keyboard focus to the input window. This is only useful for macro programming.

See also: *User Programming*

foldcc

Fold INADEQUATE data about two-quantum axis (C)

Syntax:

foldcc

Description: Symmetrizes 2D INADEQUATE data along the P-type double-quantum axis and applies an automatic `dc` baseline correction. `foldcc` functions for both hypercomplex and complex 2D data.

See also: *NMR Spectroscopy User Guide*

Related:

- `dc`: Calculate spectral drift correction (C)
- `foldj`: Fold J-resolved 2D spectrum about $f_1=0$ axis (C)
- `foldt`: Fold COSY-like spectrum along diagonal axis (C)
- `rotate`: Rotate 2D data (C)

foldj

Fold J-resolved 2D spectrum about $f_1=0$ axis (C)

Description: Symmetrizes heteronuclear 2D-J, or rotated homonuclear 2D-J, experiments about the $f_1=0$ axis. The `foldj` command functions with both complex and hypercomplex 2D data.

Related:

- `foldcc`: Fold INADEQUATE data about 2-quantum axis (C)
- `foldt`: Fold COSY-like spectrum along diagonal axis (C)
- `rotate`: Rotate 2D data (C)

foldt

Fold COSY-like spectrum along diagonal axis (C)

Syntax:

foldt<('symm'|'triang')>

Description: Folds COSY-like correlation spectra about the diagonal. The 2D spectrum must exhibit a P-type diagonal for `foldt` to work properly (a P-type diagonal goes from the bottom left-hand side to the top right-hand side of the contour display.) `foldt` functions for both hypercomplex and complex 2D data but requires that $fn=fn1$ and $sw=sw1$.

Arguments:

- `'symm'` is a keyword for the folding process to perform a symmetrization of the data by replacing every two symmetry-related points with the one point therein that has the least magnitude. This value is the default.
- `'triang'` is a keyword for the folding process to perform a triangularization of the data by replacing every two symmetry-related points with their geometric mean.

Related:

- `fn`: Fourier number in directly detected dimension (P)
- `fn1`: Fourier number in 1st indirectly detected dimension (P)
- `foldcc`: Fold INADEQUATE data about 2-quantum axis (C)
- `foldj`: Fold J-resolved 2D spectrum about $f_1=0$ axis (C)
- `rotate`: Rotate 2D data (C)
- `sw`: Spectral width in directly detected dimension (P)
- `sw1`: Spectral width in 1st indirectly detected dimension (P)
fontselect

Open FontSelect window (C)

Description: Opens the FontSelect window for defining fonts in window panes created by setgrid. A different font can be selected for every window pane combination of rows and columns. Separate fonts can also be selected for a large or small overall graphic window.

See also: NMR Spectroscopy User Guide

Related: curwin Current window (P)

jwin Activate current window (M)

mapwin List of experiment numbers (P)

setgrid Activate selected window (M)

setwin Activate selected window (C)

format

Format a real number or convert a string for output (C)

Applicability: All

Syntax:

- format(realvar,'length','precision'):$rval
- format(stringvar,'isreal'):$rval
- format(stringvar,<'upper' or 'lower'>):$sval

Description: Give the command these arguments to format the output as a real number. Accepts arguments specifying the real number length, precision, and output variable. The realvar input must be a real number, string holding a real number, or a string variable that satisfies the rules for a real number.

Give the command two arguments, stringvar and isreal to test the string. The command returns a 1 if the first argument can represent a real number and a 0 if it cannot. The output is written to the specified output variable.

Give the command two arguments, stringvar and either 'upper' or 'lower' to write the string to the output string variable (e.g., $sval) in either all upper case or all lower case. The temporary $ parameter (e.g., $sval) must first be initialized as a string (e.g., $sval='').

Arguments:

- realvar a real variable
- stringvar a string variable
- length of the real number
- precision of the real number
- $sval a temporary string $ parameter
- $rval a temporary real $ parameter

Examples:

format(a,5,2):sa
If a=24.1264 then string sa='24.13'

format(solvent,'lower'):n1
If solvent='CDCl3' then string n1='cdcl3'

format($1,'isreal'):$a
Sets $a to 1 if $1 represents a number or Sets $a to 0 if $1 represents a string.

$sval='' Initialize $sval to a string variable to return the value into a string

$snum = '143.92'
$rnum = 32.75
format($rnum,3,1):$sval
sets $sval to the string '32.8'. $sval is a string return value.

format($rnum,3,1):$rval
sets $rval to the number 32.8. $rval is a real return value.

Format string value $snum = '143.92'
format($snum,3,1):$sval sets $sval to the string '143.9'
format($snum,3,1):$rval sets $rval to the number 143.9

See also: *User Programming*

Related:
- n1,n2,n3 Name storage for macros (P)
- r1-r7 Real-value storage for macros (P)

fp

Find peak heights or phases (C)

Syntax: fp<(<'phase',)>,<index1,index2,...>)>

Description: Following a line listing (either dll or nll), fp measures the peak height of each peak in an array of spectra. The results of the analysis are written to a text file fp.out in the current experiment directory. If the npoint parameter is defined in the current parameter set and this parameter is “on,” it determines the range of data points over which a maximum is searched when determining peak heights. The possible values of npoint are 1 to fn/4. The default is 2.

Arguments:
- 'phase' is a keyword to measure the phase of each peak instead of height.
- index1,index2,... restricts measuring peak heights or phases to the lines listed.

Examples:
- fp
- fp(1,3)
- fp('phase')

See also: *NMR Spectroscopy User Guide*

Related:
- dll Display listed line frequencies and intensities (C)
- fn Fourier number in directly detected dimension (P)
- getll Get line frequency and intensity from line list (C)
- ni Position cursor at the nearest line (C)
- nll Find line frequencies and intensities (C)
- npoint Number of points for fp peak search (P)

fpmult

First point multiplier for np FID data (P)

Description: Allows error correction if the first point of an FID is misadjusted. In a 1D experiment, this adjustment influences the overall integral of the spectrum. For n-dimensional experiments, if the correction is not made, “ridges” can appear. In 2D experiments, the ridges appear as “f2 ridges.” In 3D experiments, the ridges appear as “f3 ridges.” These ridges can clearly be seen in the noise region on the top and bottom of a 2D spectrum (when trace='f1') as a low-intensity profile of the diagonal. The sign and intensity of the ridges is controlled by the magnitude of fpmult.

It has been recognized that the first point of a FID that is sampled at exactly time equal to zero must be multiplied by 0.5 for the Fourier transform to function properly. The fpmult parameter gives you a method to fine-tune the actual correction factor.

Values: Default is 1.0, except that if the processing involves backward extension of the time-domain data with linear prediction, the default changes to 0.5. If fpmult is set to 'n', fpmult takes on its default value.

See also: *NMR Spectroscopy User Guide*

Related:
- fpmult1 First point multiplier for ni interferogram data (P)
- fpmult2 First point multiplier for ni2 interferogram data (P)
- np Number of data points (P)
- trace Mode for n-dimensional data display (P)
- wft2da Weight and Fourier transform phase-sensitive data (M)
\textbf{fpmult1} \hspace{1cm} \textbf{First point multiplier for ni interferogram data (P)}

\textbf{Description:} Operates on \textit{ni} hypercomplex or complex interferogram data in a manner analogous to \textit{fpmult}. In many 2D experiments, the t_1 values are adjusted so there is no first-order phasing in the f_1 and f_2 dimensions. In this case, \textit{fpmult1} should be 0.5. If the t_1 value is adjusted so that there is a 180° first-order phase correction, \textit{fpmult1} should be 1.0.

\textbf{Values:} Default value is 0.5. If \textit{fpmult1} is set to 'n', it takes on its default value.

\textbf{See also:} \textit{NMR Spectroscopy User Guide}

\textbf{Related:} \textit{fpmult} \hspace{0.5cm} First point multiplier for \textit{np} FID data (P)

\textit{fpmult2} \hspace{0.5cm} First point multiplier for \textit{ni2} interferogram data (P)

\textit{ni} \hspace{0.5cm} Number of increments in 1st indirectly detected dimension (P)

\textbf{fpmult2} \hspace{1cm} \textbf{First point multiplier for ni2 interferogram data (P)}

\textbf{Description:} Operates on \textit{ni2} hypercomplex or complex interferogram data in a manner analogous to \textit{fpmult}. In many 3D experiments, the t_2 value is adjusted so that there is no first-order phasing in the f_1 and f_2 dimensions. In this case, \textit{fpmult2} should be 0.5. If the t_2 value is adjusted so that there is a 180° first-order phase correction, \textit{fpmult2} should be 1.0.

\textbf{Values:} Default value is 0.5. If \textit{fpmult2} is set to 'n', it takes on its default value.

\textbf{See also:} \textit{NMR Spectroscopy User Guide}

\textbf{Related:} \textit{fpmult} \hspace{0.5cm} First point multiplier for \textit{np} FID data (P)

\textit{fpmult1} \hspace{0.5cm} First point multiplier for \textit{ni} interferogram data (P)

\textit{ni2} \hspace{0.5cm} Number of increments in 2nd indirectly detected dimension (P)

\textbf{fr} \hspace{1cm} \textbf{Full recall of a display parameter set (M)}

\textbf{Applicability:} All

\textbf{Syntax:} \textit{fr(n<,noupdate>)}

\textbf{Description:} Recall all the parameters of the specified display parameter set and set the current display parameters to those values.

\textbf{Arguments:} \textit{n=1 to 9}

\textit{noupdate} as second argument prevents the automatic update of interactive programs.

\textbf{Related:} \textit{r} \hspace{0.5cm} Recall display parameter set (M)

\textit{s} \hspace{0.5cm} Save display parameters as a set (M)

\textbf{fread} \hspace{1cm} \textbf{Read parameters from file and load them into a tree (C)}

\textbf{Syntax:} \textit{fread(file<,tree<,'reset'|'value'|'newonly'>>)}

\textbf{Description:} Reads parameters from a file and loads the parameters into a tree. The tree can be global, current, processed, or system global. \textit{fread} can read from any file that has parameters stored in the correct VnmrJ format. Note that if parameters are read into the global tree, certain important system parameters are not loaded because these parameters should not be changed. The parameters that are not loaded are \textit{userdir}, \textit{systemdir}, \textit{curexp}, \textit{autodir}, \textit{auto}, \textit{vmnraddr}, and \textit{acqaddr}.

\textbf{Arguments:} \textit{file} is the name of the file containing parameters stored in VnmrJ format.

\textit{tree} is one of the keywords 'global', 'current', 'processed', or 'systemglobal'. The default is 'current'. This argument specifies the
type of tree into which the parameters are loaded. Refer to the `create` command for more information on types of trees.

'reset' is a keyword that causes the parameter tree to be cleared before the new parameter file is read. Without this option, parameters read from a file are added to the existing preloaded parameters. To use this option, `tree` must also be specified.

'value' is a keyword that causes only the values of the parameters in the file to be loaded. If a preloaded variable does not already exist, a new one is not created. Parameter attributes are not changed, and enumerated values are not changed. To use this option, `tree` must also be specified.

'newonly' is a keyword that causes those variables in the file which do not already exist in the tree to be loaded. In order to use the 'newonly' option, the `tree` must also be specified.

Examples:
```plaintext
fread('/vnmr/stdpar/H1.par/procpar')
fread('sampvar','global')
fread('setvar','current','reset')
fread('var1','processed','value')
```

See also: "User Programming"

Related:
- auto: Automation mode active (P)
- autodir: Automation directory absolute path (P)
- create: Create new parameter in a parameter tree (C)
- curexp: Current experiment directory (P)
- destroy: Destroy a parameter (C)
- display: Display parameters and their attributes (C)
- fsave: Save parameters from a tree to a file (C)
- rtp: Retrieve parameters (C)
- systemdir: System directory (P)
- userdir: User directory (P)

fsave

Save parameters from a tree to a file (C)

Syntax:
fsave(file<,tree>)

Description: Writes parameters from a parameter tree to a file.

Arguments:
- file is the name of the file, which can be any valid file for which the user has write permission. If the file already exists, it will be overwritten.
- tree is one of the keywords 'global', 'current', 'processed', or 'systemglobal'. The default is 'current'. Refer to the `create` command for more information on types of trees.

Examples:
```plaintext
fsave('var1')
fsave('sampvar','global')
```

See also: "User Programming"

Related:
- create: Create new parameter in a parameter tree (C)
- destroy: Destroy a parameter (C)
- display: Display parameters and their attributes (C)
- fread: Read parameters from file and load them into a tree (C)
- svp: Save parameters from current experiment (C)

fsq

Frequency-shifted quadrature detection (P)

Applicability: Inova and MERCURYplus/-Vx systems

Description: Selects whether to use frequency-shifted quadrature detection. When `fsq` is turned on, if `dasp` is on, the observe frequency is offset by `oslsfrq`, and the
The digital filter is also offset by \texttt{oslsfrq}. The default value of \texttt{oslsfrq} is $1.25 \times \texttt{sw}$.

The effect of \texttt{fsq} is to offset only the digital filter by \texttt{oslsfrq}. The observe frequency must be offset by \texttt{oslsfrq} by modifying the pulse sequence as described in the manual \textit{NMR Spectroscopy User Guide}.

Values: 'n' turns frequency-shifted quadrature detection off. 'y' turns it on.

See also: \textit{NMR Spectroscopy User Guide}

Related:
- \texttt{dspl} Type of DSP for data acquisition (P)
- \texttt{oslsfrq} Bandpass filter offset for oversampling (P)
- \texttt{oversamp} Oversampling factor for acquisition (P)
- \texttt{sw} Spectral width in directly detected dimension (P)

\textbf{\texttt{ft}}

\textbf{Fourier transform 1D data (C)}

\textbf{Syntax:}

1. \texttt{ft(<options,>,<nf>,<start>,<finish>,<step>)}
2. \texttt{ft('inverse',exp_number,expansion_factor)}

\textbf{Description:}

In syntax 1, performs a Fourier transform on one or more 1D FIDs without weighting applied to the FID. \texttt{ft} executes a left-shift, zero-order phase rotation, and a frequency shift (first-order phase rotation) according to the parameters \texttt{lsfid}, \texttt{phfid}, and \texttt{lsfrq}, respectively, on the time-domain data, prior to Fourier transformation. The type of Fourier transform to be performed is determined by the parameter \texttt{proc}. Solvent suppression is turned on or off with the parameters \texttt{ssfilter} and \texttt{ssorder}. For arrayed data sets, \texttt{ft} Fourier transforms all of the array elements. To Fourier transform selected array elements, \texttt{ft} can be passed numeric arguments.

In syntax 2, \texttt{ft} performs an inverse Fourier transform of the entire spectrum. (VnmrJ does not currently support inverse Fourier transformation of arrayed 1D or 2D data sets.)

\textbf{Arguments:}

\texttt{options} can be any of the following (all string arguments must precede the numeric arguments):

- '\texttt{acq}' is a keyword to check if any elements of a multi-FID experiment have already been transformed. If so, these previously transformed elements will not be retransformed.
- '\texttt{dodc}' is a keyword for all spectra to be dc corrected independently.
- '\texttt{nodc}' is a keyword to not perform the usual dc drift correction.
- '\texttt{nods}' is a keyword to prevent an automatic spectral display (\texttt{ds}) from occurring. This outcome is useful for various plotting macros.
- '\texttt{noft}' is a keyword to skip the Fourier transform, thereby allowing use of all spectral manipulation and plotting commands on FIDs.
- '\texttt{zero}' is a keyword to zero the imaginary channel of the FID prior to the Fourier transform. This zeroing occurs after any FID phasing. Its use is generally limited to wideline solids applications.

'\texttt{nf}' is a keyword that makes a single FID element containing \texttt{nf} traces to be transformed as if it were \texttt{nf} separate FID elements. If '\texttt{nf}' precedes the list of numeric arguments, the rules for interpreting the numeric arguments change slightly. Passing no numeric arguments results in the transformation of all \texttt{nf} traces in the first FID element. Passing a single numeric argument results in the transformation of all \texttt{nf} traces in the requested FID element (e.g., \texttt{ft('nf',3)} transforms all \texttt{nf} traces for element 3). Regardless of the requested FID element, the resulting spectra are labeled as 1 to \texttt{nf} because multiple elements cannot be transformed using \texttt{ft('nf')}. Subsequent numeric arguments are interpreted as previously described.
start is the index of a particular element to be transformed. For an array, start is the index of the first element to be transformed.

finish is the index of the last element to be transformed for an array.

step specifies the increment between successive elements that are to be transformed for an array. The default is 1.

'inverse' is a keyword specifying an inverse Fourier transform.

exp_number is the number of the experiment, from 1 to 9, for storing the resulting FID from the inverse Fourier transform.

expansion_factor defines the expansion of the spectrum before the inverse Fourier transform is performed. This argument is equivalent to a multiplier for the fn parameter. The multiplier is restricted to between 1 and 32 and is rounded up internally to the nearest power of 2.

Examples:

ft
ft(1)
ft(3,7)
ft(2,10,2)
ft('nf',3)

See also: NMR Spectroscopy User Guide

Related:
dcrmvRemove dc offsets from FIDs in special cases (P)
fnFourier number in directly detected dimension (P)
lsfidNumber of points to left-shift the np FID (P)
lsfrqFrequency shift of the fn spectrum in Hz (P)
nfNumber of FIDs (P)
phfidZero-order phasing constant for np FID (P)
procType of processing on the np FID (P)
ssfilterFull bandwidth of digital filter to yield a filtered FID (P)
ssorderOrder of polynomial to fit digitally filtered FID (P)
wftWeight and Fourier transform 1D data (C)

fft1d Fourier transform along f2 dimension (C)

Syntax:
(1) fft1d(element_number)
(2) fft1d<('nf',element_number)
(3) fft1d<(<options,><coefficients>)>

Description: Performs the first Fourier transformation along the f2 dimension, without weighting, and matrix transposition. fft1d allows the display of f1 interferograms with the dcon and dconi commands. For arrayed 2D FID data, a single array element can be weighted and transformed using syntax 1 or 2. The keyword 'nf' is used in syntax 2 to specify that the 2D data is collected in the compressed form using 'nf'. Complex and hypercomplex interferograms can be constructed explicitly by supplying a series of options and coefficients using syntax 3.

For information on real as opposed to complex Fourier transforms, see the descriptions of the proc, procl, and proc2 parameters. For information about Hadamard transforms, see the description of the procl parameter and the VnmrJ NMR Liquids user guide. For information on left-shifting, zero-order phase rotation, and frequency shifting of the FID and interferogram time-domain data during the 2D Fourier transformation, see the descriptions of the parameters lsfid, lsfid1, lsfid2, phfid, phfid1, phfid2, lsfrq, lsfrq1, and lsfrq2, as appropriate. For information on the I1s (low-frequency suppression) and Izs (zero-frequency suppression) solvent suppression options, see the description of the parameters ssfilter and ssorder, and the macro parfidss.
Arguments: element_number is a single array element to be weighted and transformed. options can be the keywords 'ptype' or 'ntype' but neither serve a useful function because the differential effect of these arguments is applied only during the course of the second Fourier transformation. The default is 'ntype'.

coefficients are a series of coefficients according to the following scheme: RR1 is the coefficient used to multiply the real part (first R) of spectra set 1 before it is added to the real part (second R) of the interferogram. IR2 would thus represent the contribution from the imaginary part of spectra set 2 to the real part of the interferogram, and so on. The scheme is depicted below.

\[
\text{ft1d}(RR1, IR1, RR2, IR2, \ldots, RI1, II1, RI2, II2, \ldots)
\]

where:

\[
\begin{align*}
RR1*\text{REAL}(w2, \text{element}=1) & \rightarrow \text{REAL}(t1) \\
IR1*\text{IMAG}(w2, \text{element}=1) & \rightarrow + \text{REAL}(t1) \\
RR2*\text{REAL}(w2, \text{element}=2) & \rightarrow + \text{REAL}(t1) \\
IR2*\text{IMAG}(w2, \text{element}=2) & \rightarrow + \text{REAL}(t1) \\
\vdots \\
RI1*\text{REAL}(w2, \text{element}=1) & \rightarrow \text{IMAG}(t1) \\
II1*\text{IMAG}(w2, \text{element}=1) & \rightarrow + \text{IMAG}(t1) \\
RI2*\text{REAL}(w2, \text{element}=2) & \rightarrow + \text{IMAG}(t1) \\
II2*\text{IMAG}(w2, \text{element}=2) & \rightarrow + \text{IMAG}(t1) \\
\end{align*}
\]

See also: *NMR Spectroscopy User Guide*

Related: dconi Interactive 2D data display (C)
ft2d Fourier transform 2D data (C)
lssf id Number of complex points to left-shift np FID (P)
lssf id1 Number of complex points to left-shift ni interferogram (P)
lssf id2 Number of complex points to left-shift ni2 interferogram (P)
lssf q Frequency shift of the fn spectrum (P)
lssf q1 Frequency shift of the fn1 spectrum (P)
lssf q2 Frequency shift of the fn2 spectrum (P)
par fidss Create parameters for time-domain solvent subtraction (M)
phfid Zero-order phasing constant for np FID (P)
phfid1 Zero-order phasing constant for ni interferogram (P)
phfid2 Zero-order phasing constant for ni interferogram (P)
proc Type of processing on np FID (P)
proc1 Type of processing on ni interferogram (P)
proc2 Type of processing on ni2 interferogram (P)
pmode Processing mode for 2D data (P)
ssorder Order of polynomial to fit digitally filtered FID (P)
ssf q Filter Full bandwidth of digital filter to yield a filtered FID (P)
wft2d Weight and Fourier transform 2D data (C)

ft1da

Fourier transform phase-sensitive data (M)

Syntax: ft1da< (options) >

Description: Performs the first (\(f_2\)) transform of a 2D transform or the first part of a 3D transform. Otherwise, ft1da has the same functionality as the ft2da command. See the description of ft2da for further information. For information about Hadamard transforms, see the description of the procl parameter and the VnmrJ NMR Liquids user guide.

Arguments: options are the same as used with ft2da. See ft2da for details.
See also: *NMR Spectroscopy User Guide*

ft1dac
Combine arrayed 2D FID matrices (M)

Syntax:
`ft1dac<(<mult1>,<mult2>,...<,multn>)>`

Description: Allows ready combination of 2D FID matrices within the framework of the 2D Fourier transformation program. No weighting is performed. *ft1dac* requires that the data be acquired either without \(f_1 \) quadrature or with \(f_1 \) quadrature using the TPPI method. This macro is used for TOCSY (with multiple mixing times).

Arguments: `mult1,mult2,...,multn` are multiplicative coefficients. The \(n \)th argument is a real number and specifies the multiplicative coefficient for the \(n \)th 2D FID matrix.

Related:
- *ft2d*
- *ft2da*
- *wft1da*
- *wft2da*

ft2d
Fourier transform 2D data (C)

Syntax:
1. `ft2d(array_element)`
2. `ft2d('nf'<array_element>)`
3. `ft2d<(<options,><plane_number,><coefficients>)>`
4. `ft2d('ni'|'ni2',element_number,increment)`
5. `ft2d('ni'|'ni2',increment,<coefficients>)`

Description: Performs the complete 2D Fourier transformation, without weighting, in both dimensions. If the first Fourier transformation has already been done using *ft1d*, *wft1d*, *ft1da*, or *wft1da*, the *ft2d* command performs only the second \((t_1) \) transform.

For arrayed 2D FID data, a single array element can be weighted and transformed using syntax 1. If the data is collected in “compressed” form using ‘nf’, syntax 2 must be used. Complex and hypercomplex interferograms can be constructed explicitly by supplying a series of coefficients using syntax 3. If an arrayed 3D data set is to be selectively processed, the format of the arguments to *ft2d* changes to syntax 4. For example, *ft2d('ni',1,2)* performs a 2D transform along \(np \) and \(ni \) of the second \(ni2 \) increment and the first element within the explicit array. This command yields a 2D \(np-ni \) frequency plane.

Arrayed 3D data sets can also be subjected to 2D processing to yield 2D absorptive spectra. If the States-Haberkorn method is used along both \(f_1 \) (\(ni \) dimension) and \(f_2 \) (\(ni2 \) dimension), there are generally 4 spectra per \((ni,ni2) \) 3D element. In this case, using syntax 5, entering `ft2d('ni2',2,<16 coefficients>)` performs a 2D transform along \(np \) and \(ni2 \) of the second \(ni \) increment using the 16 coefficients to construct the 2D \(t_1 \)-interferogram from appropriate combinations of the 4 spectra per \((ni,ni2) \) 3D element.

If there are \(n \) data sets to be transformed, as in typical phase-sensitive experiments, \(4*n \) coefficients must be supplied. The first \(2*n \) coefficients are the contributions to the real part of the interferogram, alternating between absorptive and dispersive parts of the successive data sets. The next \(2*n \) coefficients are the contributions to the imaginary part of the interferogram, in the same order. Thus, using the definition that the first letter refers to the source
data set, the second letter refers to the interferogram, and the number identifies the source data set, we have the following cases:

<table>
<thead>
<tr>
<th>Data sets</th>
<th>Coefficient order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RR1, IR1, RI1, II1</td>
</tr>
<tr>
<td>2</td>
<td>RR1, IR1, RR2, IR2, RI1, II1, RI2, II2</td>
</tr>
<tr>
<td>3</td>
<td>RR1, IR1, RR2, IR2, RR3, IR3, RI1, II1,</td>
</tr>
<tr>
<td></td>
<td>RI2, II2, RI3, II3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

The coefficients are often 1, 0, or -1, but this is not always the case. Any non-integral coefficient can be used, and as many coefficients can be nonzero as is desired. Up to 32 coefficients can be supplied, which at 4 per data set allows the addition, subtraction, etc., of eight 2D data sets (e.g., 8 different phase cycles).

For information on real as opposed to complex Fourier transforms, see the descriptions of the proc, proc1, and proc2 parameters. For information about Hadamard transforms, see the description of the proc1 parameter and the VnmrJ NMR Liquids user guide. For information on left-shifting, zero-order phase rotation, and frequency shifting of the FID and interferogram time-domain data during the 2D Fourier transformation, see the descriptions of the parameters lsfid, lsfid1, lsfid2, phfid, phfid1, phfid2, lsfreq, lsfreq1, and lsfreq2, as appropriate. For information on the lfs (low-frequency suppression) and zfs (zero-frequency suppression) solvent suppression options, see the description of parameters ssfilter and ssorder, and macro parfidss.

Arguments: array_element is a single array element to be transformed.

options can be any of the following (all string arguments must precede the numeric arguments):

- 'ptype' is a keyword to transform P-type data to yield a P-type contour display.
- 'ntype' is a keyword to transform N-type data to yield a P-type contour display. This is the default.
- 't2dc' is a keyword to apply a dc correction to each t2 FID prior to the first Fourier transform. The last 1/16-th of the time domain data is used to calculate the dc level.
- 't1dc' is a keyword to apply a dc correction to each t1 interferogram prior to the second Fourier transform. The last 1/16-th of the time domain data is used to calculate the dc level.
- 'f2sel' is a keyword to allow only preselected f2 regions to be transformed along t1. The t1 interferograms in the non-selected f2 regions are zeroed but not transformed. The same mechanism used to select baseline regions for baseline correction (bc) is used to select the f2 regions to be transformed along t1. Set intmod='partial' and partition the integral of the spectrum into several regions. The even numbered f2 regions (e.g., 2, 4, 6) are transformed along t1; the odd numbered regions are not transformed along t1.
- 'nf' is a keyword to transform arrayed or multi-slice 2D data that has been collected in the compressed form as single 2D FIDs with multiple (nf) traces.
- 'ni2' is a keyword to transform non-arrayed 2D data that have been collected with ni2 and sw2 (instead of ni and sw1). addpar('3d') creates the necessary processing parameters for the 'ni2' operation.
'noop' is a keyword to not perform any operation on the FID data. This option is used mainly to allow macros, such as \texttt{wft2da}, to have the same flexibility as commands.

Coefficients are a series of coefficients according to the following scheme: RR1 is the coefficient used to multiply the real part (first R) of spectra set 1 before it is added to the real part (second R) of the interferogram. IR2 would thus represent the contribution from the imaginary part of spectra set 2 to the real part of the interferogram, and so forth. The scheme is depicted below.

\begin{verbatim}
ft2d(RR1,IR1,RR2,IR2,...,RI1,II1,RI2,II2,...)
\end{verbatim}

where:

\begin{align*}
RR1 \times \text{REAL}(w2, element=1) & \rightarrow \text{REAL}(t1) \\
IR1 \times \text{IMAG}(w2, element=1) & \rightarrow + \text{REAL}(t1) \\
RR2 \times \text{REAL}(w2, element=2) & \rightarrow + \text{REAL}(t1) \\
IR2 \times \text{IMAG}(w2, element=2) & \rightarrow + \text{REAL}(t1) \\
& \ldots \\
RI1 \times \text{REAL}(w2, element=1) & \rightarrow \text{IMAG}(t1) \\
II1 \times \text{IMAG}(w2, element=1) & \rightarrow + \text{IMAG}(t1) \\
RI2 \times \text{REAL}(w2, element=2) & \rightarrow + \text{IMAG}(t1) \\
II2 \times \text{IMAG}(w2, element=2) & \rightarrow + \text{IMAG}(t1)
\end{align*}

'ni' is a keyword to selectively transform a particular np–ni 2D plane within a non-arrayed 3D data set. To identify the plane, 'ni' is followed by the \texttt{plane} _\texttt{number} argument, an integer from 1 through \texttt{ni2}.

'ni2' is a keyword to selectively transform a particular np–ni2 2D plane within a non-arrayed 3D data set. To identify the plane, 'ni2' is followed by the \texttt{plane} _\texttt{number} argument, an integer from 1 through \texttt{ni}.

\texttt{element} _\texttt{number} is the number of an element within the explicit array when selectively processing an arrayed 3D data set; it ranges from 1 to \texttt{ni2}.

\texttt{increment} is the increment within the explicit array when selectively processing an arrayed 3D data set; it ranges 1 to \texttt{arraydim}/(\texttt{ni} \times \texttt{ni2}).

Examples:

\begin{verbatim}
ft2d(1,0,0,0,0,1,0)
ft2d(1)
ft2d('nf',3)
ft2d('ptype',...)
\end{verbatim}

See also: \textit{NMR Spectroscopy User Guide}

Related:

- \texttt{dconi} Interactive 2D data display (C)
- \texttt{dcrmv} Remove dc offsets from FIDs in special cases (P)
- \texttt{fpmult} First point multiplier for np FID data (P)
- \texttt{fpmult1} First point multiplier for ni interferogram data (P)
- \texttt{ft1d} Fourier transform along _\texttt{l2} dimension (C)
- \texttt{lsfid} Number of complex points to left-shift np FID (P)
- \texttt{lsfid1} Number of complex points to left-shift ni interferogram (P)
- \texttt{lsfid2} Number of complex points to left-shift ni2 interferogram (P)
- \texttt{lsfrq} Frequency shift of the fn spectrum (P)
- \texttt{lsfrql} Frequency shift of the fn1 spectrum (P)
- \texttt{lsfrq2} Frequency shift of the fn2 spectrum (P)
- \texttt{parfidss} Create parameters for time-domain solvent subtraction (M)
- \texttt{phfid} Zero-order phasing constant for np FID (P)
- \texttt{phfid1} Zero-order phasing constant for ni interferogram (P)
- \texttt{phfid2} Zero-order phasing constant for ni2 interferogram (P)
- \texttt{proc} Type of processing on np FID (P)
- \texttt{proc1} Type of processing on ni interferogram (P)
- \texttt{proc2} Type of processing on ni2 interferogram (P)
- \texttt{pmode} Processing mode for 2D data (P)
Fourier transform phase-sensitive data (M)

Syntax: ft2da<(options)>

Description: Processes 2D FID data and 2D planes at particular t₁ or t₂ times from a 3D data set for a pure absorptive display. ft2da differs from wft2da only in that, in the case of wft1 da, weighting of the time-domain data is performed prior to the FT. ft2da functions analogously to ft1da and wft1da, except that ft2da and wft2da perform only the f₂ Fourier transform. For information about Hadamard transforms, see the description of the proc1 parameter and the VnmrJ NMR Liquids user guide.

Macros ft1da, wft1da, ft2da, and wft2da function for hypercomplex 2D FID data (phase=1,2) and for TPPI 2D FID data (phase=3 or phase=1,4) acquired either with ni or ni2. If the data were acquired with ni, no additional arguments need be used with the macros. If the data were acquired with ni2, the keyword 'ni2' must be used.

For phase=1,2:

wft2da=wft2d('ptype',1,0,0,0,0,1,0,1,0)

For phase=3:

wft2da=wft2d(1,0,0,0)

For phase=1,4:

wft2da=wft2d('ptype',1,0,0,0,0,1,0,1,0)

Macros ft1da, wft1da, ft2da, and wft2da support selective 2D processing within a 3D FID data set. All permutations of hypercomplex and TPPI modes of data acquisition in t₁ and t₂ can be handled. For selective f₂f₃ processing, the numeric argument immediately following the 'ni2' keyword is interpreted to be the t₁ increment number, which specifies the particular f₂f₃ plane (plane_number, see below) to be processed. For selective f₁f₃ processing, the t₂ increment number either follows the keyword 'ni', which is optional, or is associated with the first numeric argument that does not immediately follow a 'bc' keyword.

For information on real as compared to complex Fourier transformation, see the description of proc or proc1. For information on the lfs (low-frequency suppression) and zfs (zero-frequency suppression) solvent suppression options, see the description of parameters ssfilter and ssorder, and the macro parfidss.

Arguments: options can be any of the following (the order is not important):

- 'ntype', 't2dc', 't1dc', and 'f2sel' are keywords that function the same as when supplied to the ft2d and wft2d commands. Refer to the ft2d command for a description of these options.
- 'bc' is a keyword for a baseline correction of the phase-corrected f₂ spectra prior to the f₁ Fourier transform. The baseline regions must have been previously determined. A polynomial order of 1 (a spline fit) or a higher polynomial order must be specified by inserting a numerical argument following 'bc'.
- 'dc' is a keyword for a drift correction (dc) of the f₂ spectra prior to the f₁ Fourier transformation.
- 'ni' is a keyword to selectively transform a particular np–ni 2D plane within a non-arrayed 3D data set. To identify the plane, 'ni' is followed by plane_number, an integer from 1 through ni2.
'ni2' is a keyword to selectively transform a particular np–ni2 2D plane within a non-arrayed 3D data set. To identify the plane, 'ni2' is followed by plane_number, an integer from 1 through ni.

'old' is a keyword to allow data acquired before the February 25, 1988, software release to be processed correctly. 'old' does not function for selective 2D processing within 3D data sets. If no ni2 or ni plane_number is given, it is assumed that the data set is only 2D in either ni2 or ni, respectively.

See also: NMR Spectroscopy User Guide

Related: f1coef Coefficient to construct F1 interferogram (P)
f2coef Coefficient to construct F2 interferogram (P)
ft1da Fourier transform phase-sensitive data (M)
parfidss Create parameters for time-domain solvent subtraction (M)
phase Phase selection (P)
proc Type of processing on the np FID (P)
proc1 Type of processing on the ni interferogram (P)
ssorder Order of polynomial to fit digitally filtered FID (P)
ssfilter Full bandwidth of digital filter to yield a filtered FID (P)
wft1da Weight and Fourier transform phase-sensitive data (M)
wft2da Weight and Fourier transform phase-sensitive data (M)

ft2dac Combine arrayed 2D FID matrices (M)

Syntax: ft2dac<(<mult1>,<mult2>,...<,multn)>

Description: Allows ready combination of 2D FID matrices within the framework of the 2D FT program. No weighting is performed. Data must be acquired either without f1 quadrature or with f1 quadrature using the TPPI method. ft2dac is used with TOCSY (with multiple mixing times).

Arguments: mult1,mult2,...,multn are multiplicative coefficients. The nth argument is a real number and specifies the coefficient for the nth 2D FID matrix.

Related: ft1dac Combine arrayed 2D FID matrices (M)
Tocsy Set up parameters for a TOCSY pulse sequence (M)
wft1dac Combine arrayed 2D FID matrices (M)
wft2dac Combine arrayed 2D FID matrices (M)

ft3d Perform a 3D Fourier transform on a 3D FID data set (M,U)

Syntax: (From VnmrJ) ft3d<(<data_directory>,<,number_files>,<,'nocoef'>,<,'tlt2'|'t2tl'>,<,'fdf'|<,'nofdf'>,<,plane_type>)>

Description: Transforms 3D FID data into 3D spectral data. ft3d can be entered from a macro or directly from UNIX. Each type of entry is described below. A final section explains the ft3d coefficient file.

Additional parameter control for the operation of ft3d is available. This allows drift corrections and partial Fourier transformation. See the descriptions of specdc3d, fiddc3d, and ptpspec3d for information.

The 3D FID data must be loaded into the experiment in which the ft3d macro is to be run. ft3d is started up in background mode by this macro so that VnmrJ remains free for interactive processing. You can start a 3D transform from within exp4 and, at the same time, continue with any 1D or 2D processing of the 3D FID data within the same experiment using VnmrJ.

Distributed f1f2 processing has the following system and network requirements:
The system on which the macro ft3d is executed from within VnmrJ must define the names of the networked computers that are to participate in the distributed processing. The file /etc/hosts.3D must contain these names in the following format:

```
unity1
unity2
datastation1
datastation2
```

Each participating computer must recognize the name of the user that started up the master ft3d program as a valid user name on its system. For example, if user steve issues the ft3d command within VnmrJ running on computer unity0, steve must be a valid user on all other computer systems that are to be used in the distributed f1f2 processing.

Each computer system must have NFS access to the 3D data directory.

Arguments: The order of the arguments is not important.

data_directory (without the /data subdirectory appended) specifies the output directory for the 3D spectral data file(s). The default directory for the 3D spectral data is curexp/datadir3d.

number_files sets the number of 3D data files (data1, data2, ... dataN, where N is number_files) used to store the transformed 3D data. number_files must be an integer and be 32 or less. When number_files is entered, distributed f1f2 processing is performed by ft3d if possible.

'nocoef' is a keyword for the set3dproc command within the ft3d macro to not create a 3D coefficient file prior to invoking the ft3d program. This option is useful if you have modified an existing 3D coefficient file and do not want it to be overwritten prior to the 3D transform. See below for information on coefficient files. By default, ft3d calls the make3dcoef macro to create a coefficient file using the f1coef and f2coef string parameter values.

't1t2' and 't2t1' are keywords to explicitly define the order of the t1 and t2 arrays (other than ni and ni2). By default, ft3d looks at the array parameter and if any parameter other than phase and phase2 are arrayed, the macro aborts.

'fdf' indicates that the output of ft3d is to be an FDF (Flexible Data Format) file named data.fdf. This is the default if the parameter appmode is set to 'imaging'. Distributed processing can still be performed if number_files is set appropriately. 3D FDF files can be viewed with the ImageBrowser.

'nofdf' indicates that the final output is the group of data1, data2, ... files, and that no FDF format file should be produced. This is the default if the parameter appmode is not set to 'imaging'.

plane_type sets plane extraction following the complete 3D FT with the following keywords:

- 'xall' indicates that all three 2D plane types, f1f3, f2f3, and f1f2, are to be automatically extracted at the end of the 3D Fourier transform.
- 'f1f3', 'f2f3', and 'f1f2' can be used to select any combination of plane types to be extracted.

Any of these options can be submitted more than once to the ft3d program, but the getplane program will display an error and abort if any one plane type is defined for extraction more than once.

Examples: ft3d
tf3d('nocoef','f1f3','f2f3')
F

ft3d Entered from UNIX
(From UNIX) ft3d -e exp_number -f -r <options>

The ft3d program can also be run directly from the UNIX environment on the host computer. An information file must be present before ft3d can execute successfully but it need contain only valid processing information for the t3 dimension and valid Fourier numbers for the t1 and t2 transforms. Valid weighting and phasing parameters for the f1 and f2 dimension do not need to be set while wftt3 executes. After several FIDs have been collected, you can determine acceptable ft1 weighting and phasing parameters. After setting fn1 and fn2 to the desired values, the 3D processing information file can be created by typing set3dproc in the VnmrJ command line. At that point, the next invocation of ft3d by the macro wftt3 causes all (t1,t2) increment sets up to and including the current increment in t3 to be processed.

To start ft3d on a remote computer running as a data station for the system, log in as root and enter one of the following commands so that the master ft3d program can properly communicate with the computer:

- Enter /vnmr/acqbin/Infoprc &

With the Infoprc or acqinfo_svc program running, enter ft3d with the -h option and the necessary arguments. The ft3d program invoked with the -h option is considered to be the master program and is responsible for spawning additional remote ft3d processes.

Each remote computer must be able to access the 3D data directory as if it were stored on a local disk, must recognize the user name under which the master ft3d program is being run, and must also have permission to read from and write to that directory. If the 3D data directory contains four f1 transformed data files (data1–data4), the master ft3d program uses the first three remote computer systems listed in file hosts.3D that respond.

If the multihost processing option is selected, the number of computers involved will be no more than the number of sets the f1 spectral data is partitioned into. This number is selected with the -m option (see below).

If you are unsure of whether to use Infoprc or acqinfo_svc on the remote computer, change directories to /vnmr/acqbin, enter lf, and check which program is present.

Note that if the host computer is rebooted, the background command (Infoprc or acqinfo_svc) has to be entered again.

Arguments: Note that entering ft3d with an ampersand (&) after the arguments makes the command execute in the background. As a result, the UNIX prompt reappears after the command is entered and further commands can be entered and executed while the ft3d command is processing.

- -e exp_number is the experiment number where 3D processing is to occur. This argument is required. It must be written as a minus sign, the letter e, a space, and a valid experiment number from 1 to 9 (e.g., -e 3 sets experiment 3). The experiment must already exist.

The following two options should always be set for reliable operation:
- -f specifies that any existing 3D data sets in the experiment should be deleted. This option requires no additional value.
- -r calls for explicit data reduction after the 3D Fourier transform. Data reduction consists of retaining only the “real-real-real” part of the completely transformed 3D data set. The -r option is mandatory and is enforced within ft3d regardless of the user command line input.

options can be any of the following:
- -F header_file indicates that an FDF (Flexible Data Format) output file should be produced, using the FDF header found in header_file.
The output file will be named data.fdf, and the data1, data2, ... files will not be produced.

- \texttt{-h} selects the multihost processing option. The /etc/hosts.3D file
 must exist and contain the names of the remote hosts, one host name per line. Each remote host
 must also have either the program Infoprc or the program acqinfo_svc running in the background
 (one of these programs is already running on any computer being used as a spectrometer
 host).

- \texttt{-l} specifies that a log file be generated in the data subdirectory of the
 datadir3d directory.

- \texttt{-m} partitions the f3 transformed spectral data over more than one data file.
 This partitioning is necessary if the distributed processing capability of ft3d is to be used in
 performing the remaining f1 and f2 transforms. The syntax \texttt{-m nfiles} is used to specify
 \texttt{nfiles}, the number of data files into which the 3D spectral data is to be divided (e.g.,
 \texttt{-m4} specifies 4 data files). Each such data file contains an f3 subset of the f1f2 spectral
 planes.
 If \texttt{nfiles} is not specified, \texttt{ft3d} reports an error and aborts. If \texttt{nfiles}
 is less than an internally calculated value (based on memsize and the
 maximum size for a single 2D transform), the number of data files is set to
 the internally calculated value; otherwise, \texttt{nfiles} determines the number
 of data files to be used. The maximum number of such files is currently
 defined to be 32. These 3D data files are labeled
 data1, data2, ..., datan.

- \texttt{-o} specifies an alternative output directory for the processed 3D data. The
 default directory is datadir3d within the current experiment. A full UNIX path must follow the \texttt{-o} option.

- \texttt{-p} specifies the time-domain dimensions to be processed. If \texttt{-p} is used, the
 processed dimensions can be specified as \texttt{f3f2f1}, \texttt{f3f2}, \texttt{f2f3}, \texttt{f2f1},
 \texttt{f1f2}, \texttt{f3}, \texttt{f2}, and \texttt{f1}. The values \texttt{f3f1} and \texttt{f1f3} are not allowed
 because processing must be done sequentially in the order f3, then f2, and
 then f1. If the \texttt{-p} option is not invoked, \texttt{ft3d} defaults to \texttt{f3f2f1},
 resulting in a completely transformed 3D data set.

- \texttt{-s} specifies processing of the f3 dimension of the 3D FID data
 concurrently with data acquisition. In practice, concurrent f3 processing
 is realized by setting \texttt{wnt='wftt3'} in the VnmrJ parameter set and starting
 the 3D acquisition by entering \texttt{au}. The macro \texttt{wftt3} handles the call to
 \texttt{ft3d} at the appropriate times during data collection.

- \texttt{-x} specifies that plane extractions be performed at the end of 3D
 processing. The available planes are defined as \texttt{f1f2}, \texttt{f1f3}, and \texttt{f2f3}. If
 more than one plane extraction is desired, the planes are separated by a
 colon. For example, \texttt{-x f1f2:f1f3:f2f3} would extract all three
 planes. The planes are placed in the \texttt{extr} subdirectory of datadir3d.

Examples: (From UNIX) \texttt{ft3d -r -f -l -e 2 \\
(From UNIX) \texttt{ft3d -r -f -l -e 2 -x f1f2:f1f3:f2f3 \\
See also: \textit{NMR Spectroscopy User Guide}
Related: appmode Application mode (P)
dconi Interactive 2D data display (C)
fiddc3d 3D time-domain dc correction (P)
ficof Coefficient to construct F1 interferogram (P)
f2coef Coefficient to construct F2 interferogram (P)
getplane Extract planes from a 3D spectral data set (M)
killft3d Terminate any ft3d process started in an experiment (M,U)
full

Set display limits for a full screen (C)

Description: Sets the horizontal control parameters (sc and wc) and the vertical control parameters (sc2 and wc2) to produce a display (and subsequent plot) on the entire screen (and page). For 2D data, space is left for the scales.

Related:
- center: Set display limits for center of screen (C)
- fullt: Set display limits for full screen with room for traces (C)
- left: Set display limits for left half of screen (C)
- right: Set display limits for right half of screen (C)
- sc: Start of chart (P)
- sc2: Start of chart in second direction (P)
- wc: Width of chart (P)
- wc2: Width of chart in second direction (P)

fullsq

Display largest square 2D display (M)

Description: Adjusts sc, sc2, wc, and wc2 parameters to show the largest possible square 2D display.

Related:
- full: Set display limits for a full screen (C)
- fullt: Set display limits for a full screen with room for traces (C)
- sc: Start of chart (P)
- sc2: Start of chart in second direction (P)
- wc: Width of chart (P)
- wc2: Width of chart in second direction (P)

fullt

Set display limits for a full screen with room for traces (C)

Description: Sets the horizontal control parameters (sc and wc) and the vertical control parameters (sc2 and wc2) to produce a display (and subsequent plot) in the entire screen (and page) with room for traces (dconi). For 2D data, space is left for the scales.

Related:
- center: Set display limits for center of screen (C)
- full: Set display limits for a full screen (C)
- left: Set display limits for left half of screen (C)
- right: Set display limits for right half of screen (C)
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>g2pul_ecc</td>
<td>Setup macro for eddy current compensation parameters (M)</td>
</tr>
<tr>
<td>ga</td>
<td>Submit experiment to acquisition and FT the result (M)</td>
</tr>
<tr>
<td>gain</td>
<td>Receiver gain (P)</td>
</tr>
<tr>
<td>gap</td>
<td>Find gap in the current spectrum (M)</td>
</tr>
<tr>
<td>gaussian</td>
<td>Set up unshifted Gaussian window function (M)</td>
</tr>
<tr>
<td>gcal</td>
<td>Gradient calibration constant (P)</td>
</tr>
<tr>
<td>gcoil</td>
<td>Current gradient coil (P)</td>
</tr>
<tr>
<td>Gcosy</td>
<td>Convert the parameter to a gradient COSY experiment (M)</td>
</tr>
<tr>
<td>gdiff</td>
<td>Diffusion gradient level (P)</td>
</tr>
<tr>
<td>Gdqcpsy</td>
<td>Convert the parameter to a gradient DQCOSY experiment (M)</td>
</tr>
<tr>
<td>getid</td>
<td>Select a 1D experiment for processing (M)</td>
</tr>
<tr>
<td>get2d</td>
<td>Select a 2D experiment for processing (M)</td>
</tr>
<tr>
<td>getdim</td>
<td>Return dimensionality of experiment (M)</td>
</tr>
<tr>
<td>getfile</td>
<td>Get information about directories and files (C)</td>
</tr>
<tr>
<td>getlimit</td>
<td>Get the limits of a variable in a tree (C)</td>
</tr>
<tr>
<td>get1l</td>
<td>Get intensity and line frequency of line (C)</td>
</tr>
<tr>
<td>getparam</td>
<td>Retrieve parameter from probe file (M)</td>
</tr>
<tr>
<td>getplane</td>
<td>Extract planes from a 3D spectral data set (M)</td>
</tr>
<tr>
<td>getreg</td>
<td>Get frequency limits of a specified region (C)</td>
</tr>
<tr>
<td>getsn</td>
<td>Get signal-to-noise estimate of a spectrum (M)</td>
</tr>
<tr>
<td>gettoken</td>
<td>Utility macro to separate a string into tokens (M)</td>
</tr>
<tr>
<td>gettxt</td>
<td>Get text file from VnmrJ data file (C)</td>
</tr>
<tr>
<td>gettype</td>
<td>Get the type of a variable (C)</td>
</tr>
<tr>
<td>getvalue</td>
<td>Get value of parameter in a tree (C)</td>
</tr>
<tr>
<td>gf</td>
<td>Prepare parameters for FID/spectrum display in acqi (M)</td>
</tr>
<tr>
<td>gf</td>
<td>Gaussian function in directly detected dimension (P)</td>
</tr>
<tr>
<td>gf1</td>
<td>Gaussian function in 1st indirectly detected dimension (P)</td>
</tr>
<tr>
<td>gf2</td>
<td>Gaussian function in 2nd indirectly detected dimension (P)</td>
</tr>
<tr>
<td>gflow</td>
<td>Flow encoding gradient level (P)</td>
</tr>
<tr>
<td>gfs</td>
<td>Gaussian shift const. in directly detected dimension (P)</td>
</tr>
<tr>
<td>gsl</td>
<td>Gaussian shift const. in 1st indirectly detected dimension (P)</td>
</tr>
<tr>
<td>gfs2</td>
<td>Gaussian shift const. in 2nd indirectly detected dimension (P)</td>
</tr>
<tr>
<td>Ghmbc</td>
<td>Convert the parameter to a gradient HMBC experiment (M)</td>
</tr>
<tr>
<td>ghmqc</td>
<td>Set up a PFG HMQC pulse sequence (M)</td>
</tr>
<tr>
<td>Ghmqc</td>
<td>Convert the parameter to a gradient HMQC experiment (M)</td>
</tr>
<tr>
<td>gHMQCl5</td>
<td>Set up parameters for 15N gHMQC experiment (M)</td>
</tr>
<tr>
<td>gHMQCl2</td>
<td>Set up parameters for 15N gHMQC experiment using dec. 2 (M)</td>
</tr>
<tr>
<td>gHMQCl213</td>
<td>Set up parameters for 13C gHMQC experiment using dec. 2 (M)</td>
</tr>
<tr>
<td>ghmqcps</td>
<td>Set up a PFG HMQC phase-sensitive pulse sequence (M)</td>
</tr>
<tr>
<td>ghscq</td>
<td>Set up a PFG HSQC pulse sequence (M)</td>
</tr>
<tr>
<td>Ghscq</td>
<td>Convert the parameter to a gradient HSQC experiment (M)</td>
</tr>
<tr>
<td>gHSQCl5</td>
<td>Set up parameters for 15N gHSQC experiment (M)</td>
</tr>
<tr>
<td>gHSQCl2</td>
<td>Set up parameters for 15N gHSQC experiment using dec. 2 (M)</td>
</tr>
</tbody>
</table>
g2pul_ecc
Setup macro for eddy current compensation parameters (M)

Applicability: Systems with Varian, Inc. Cold Probes

Description: Setup macro for pulse sequence used to determine the eddy current compensation parameters.
ga

Submit experiment to acquisition and FT the result (M)

Syntax: ga(<'nocheck'>,<,'next'>,<,'wait'>)

Description: Performs experiment described by the current acquisition parameters, checking parameters loc, spin, gain, wshim, load, and method to determine the necessity to perform various actions in addition to simple data acquisition. This may involve a single FID or multiple FIDs, as in the case of arrays or 2D experiments. ga causes the data to be automatically weighted and Fourier transformed (wft) at the end of each FID data acquisition.

Before starting the experiment, ga executes two user-created macros if they exist. The first is usergo, a macro that allows the user to set up general conditions for the experiment. The second is a macro whose name is formed by go_ followed by the name of the pulse sequence (from seqfil) to be used (e.g., go_s2pul, go_dept). The second macro allows a user to set up experiment conditions suited to a particular sequence.

Arguments: 'nocheck' is a keyword to override checking if there is insufficient free disk space for the complete 1D or 2D FID data set to be acquired.

'next' is a keyword to put the experiment started with ga('next') at the head of the queue of experiments to be submitted to acquisition.

'wait' is a keyword to stop submission of experiments to acquisition until wexp processing of the experiment, started with ga('wait'), is finished.

See also: NMR Spectroscopy User Guide

Related: au Submit experiment to acquisition and process data (M)
change Submit a change sample experiment to acquisition (M)
gain Receiver gain (P)
go Submit experiment to acquisition (M)
go_ Pulse sequence setup macro called by go, ga, and au (M)
load Load status of displayed shims (P)
loc Location of sample in tray (P)
lock Submit an Autolock experiment to acquisition (C)
method Autoshim method (P)
sample Submit change sample, Autoshim experiment to acquisition (M)
seqfil Pulse sequence name (P)
shim Submit an Autoshim experiment to acquisition (C)
spin Submit a spin setup experiment to acquisition (C)
spin Sample spin rate (P)
su Submit a setup experiment to acquisition (M)
usergo Experiment setup macro called by go, ga, and au (M)
wft Weight and Fourier transform 1D data (C)
wshim Conditions when shimming is performed (P)

gain

Receiver gain (P)

Description: Sets receiver gain or, by setting gain='n', enables Autogain for automatic adjustment of gain. Low gain in multiline, high-dynamic-range samples can cause a number of problems, including intermodulation distortions and extra lines in the spectrum. Too high a gain, on the other hand, can cause receiver overload and consequent baseline distortions. Autogain capability allows the observe channel to be set optimally for detecting and digitizing NMR signals from a wide variety of samples.

Autogain adjusts the observe channel gain such that the NMR signal takes about 50 percent of the maximum range of the ADC. This setting allows a comfortable leeway for variations in signal. The program begins acquisition in the normal manner but the first transient (after any requested steady state transients) is
examined for signal level. If the intensity is too low or too high, the gain is changed and the process is repeated until the intensity is within the proper range, and then normal acquisition commences. The final gain value used for the experiment is stored and when the experiment is finished, setting `gain='y'` results in the value being displayed in the `dgs` parameter group.

If the gain is reduced by the Autogain procedure such that the noise does not trigger the least significant 1 or 2 bits in the ADC and the signal still overloads either the receiver or ADC, the system stops and displays a message indicating Autogain failure.

Values: 0 to 60, in steps of 2 dB (60 represents highest possible receiver gain and 0 lowest). On 500-750-MHz systems, low-band gain is limited from 18 to 60.

'n' enables Autogain, in which the gain is automatically adjusted at the start of acquisition for an optimum value. After the acquisition is finished, setting `gain='y'` then allows the value of gain to be read. `gain='n'` may not be used for arrayed experiments.

See also: *NMR Spectroscopy User Guide*

Related: `dgs` Display group of special/automation parameters (M)
`gf` Prepare parameters for FID/spectrum display in `acqi` (M)

gap

Find gap in the current spectrum (M)

Syntax: `gap(gap,height):found,position,width`

Description: Looks for a gap between the lines of the currently displayed spectrum. It can be used to automatically place inserts, parameter printouts, trace labels, etc. The search starts on the left side (low-field end) of the spectrum.

Arguments: `gap` is the width of the desired gap.
`height` is the starting height (same as the lower limit for the insert).
`found` is a return value that is set to 1 if the search is successful, or set to 0 if unsuccessful.
`position` is a return value that is set to the distance from the left edge of the chart (not the plot) to the left end of the gap (3 mm from the nearest peak to the left, positioning with “left gravity”) if the search is successful, or set to the position (no spacing to the nearest line) of the largest gap found if unsuccessful.
`width` is a return value set to the total width of the first gap if the search is successful, or set to the width of largest gap found if unsuccessful.

Examples: `gap(120,80);$1,$2,$3`

See also: *User Programming*

gaussian

Set up unshifted Gaussian window function (M)

Syntax: `gaussian<(<t1_inc>,<t2_inc>)>`

Description: Sets up an unshifted Gaussian window function in 1, 2, or 3 dimensions. The macro checks whether the data is 1D, 2D, and 3D.

Arguments: `t1_inc` is the number of `t1` increments. The default is `ni`.
`t2_inc` is the number of `t2` increments. The default is `ni2`.

See also: *NMR Spectroscopy User Guide*

Related: `ni` Number of increments in 1st indirectly detected dimension (P)
`ni2` Number of increments in 2nd indirectly detected dimension (P)
`pi3ssbsq` Set up pi/3 shifted sinebell-squared window function (M)
`pi4ssbsq` Set up pi/4 shifted sinebell-squared window function (M)
gcal
Gradient calibration constant (P)

- **Applicability:** Systems with the pulsed field gradient or the imaging module.
- **Description:** Stores the proportionality constant between the parameter values (DAC units) controlling the desired gradient and the intensity of the gradient expressed in gauss/cm. The gradients generated in the magnet require calibration of the gain on the gradient compensation board so that coordinate data, slice positions, and the field of view can be set up accurately. gcal should be located in each user’s vnmrsys/global file.
- **Values:** Number that is probe dependent, in gauss/cm-DAC unit. On the Performa I PFG module, 0.00028 to 0.00055 gauss/cm-DAC unit is nominal; On the Performa II, 0.0014 to 0.0025 gauss/cm-DAC unit is nominal.
- **See also:** VnmrJ Imaging NMR
- **Related** setgcal Set gradient calibration constant (M)

gcoil
Current gradient coil (P)

- **Description:** Reserved parameter that specifies which physical gradient set is currently installed. This allows convenient updating of important gradient characteristics when one gradient set is interchanged for another. When set, gcoil reads the gradient table file of the same name in /vnmr/imaging/gradtables and sets the gradient calibration parameters.

- gcoil is local to each individual experiment. It is normally set the same as sysgcoil for acquiring new data, but can be set to other gradient names when working with saved data or data from another instrument. Each possible gradient name should have an associated file of that name located in the directory /vnmr/imaging/gradtables. Look at any file in this directory for an example of the proper gradtable format, or use the macro creategtable to make new gradtables entries.

- If the parameter gcoil does not exist in a parameter set and a user wants to create it, you must set the protection bit that causes the macro _gcoil to be executed when the value for gcoil is changed. There are two ways to create gcoil:
 - Use the macro updtgcoil, which will create the gcoil parameter if it does not exist and set the correct protection bits.
 - Enter the following commands:
    ```
    create('gcoil','string')
    setprotect('gcoil','set',9)
    ```

- gcoil and the associated gradient calibration parameter gmax is updated with the values listed in the table on the right each time a parameter set is retrieved, or when an experiment is joined. In the rare case that a gradtables file is modified, but the value of gcoil is not changed, manually force an update of the calibration parameters. Updating may be accomplished either by setting gcoil to itself, for example, gcoil=gcoil, or by using the macro _gcoil.

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>boresize</td>
<td>22.50 cm</td>
</tr>
<tr>
<td>gmax</td>
<td>5.00 gauss/cm</td>
</tr>
<tr>
<td>trise</td>
<td>0.000500 sec</td>
</tr>
</tbody>
</table>
Be aware that if an old dataset is returned and processed, gradient parameters associated with that dataset will replace any new gcoil parameters.

The table is a gradient table (gradient coil name: asg33) for a horizontal imaging system with all three axes set to the same maximum gradient strength.

On the right is a gradient table (gradient coil name: tc203) for a three-axis gradient set with unequal maximum gradient strength.

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>boresize</td>
<td>5.10 cm</td>
</tr>
<tr>
<td>trise</td>
<td>0.000200 sec</td>
</tr>
<tr>
<td>gxmax</td>
<td>29.00 gauss/cm</td>
</tr>
<tr>
<td>gymin</td>
<td>27.00 gauss/cm</td>
</tr>
<tr>
<td>gmax</td>
<td>70.00 gauss/cm</td>
</tr>
</tbody>
</table>

See also: User Programming

Related:
- **gmax** Maximum gradient strength (P)
- **setgcoil** Assign sysgcoil configuration parameter (M)
- **sysgcoil** System gradient coil (P)
- **updtgcoil** Update gradient coil (M)

Gcosy

Convert the parameter to a gradient COSY experiment (M)

Applicability: Systems with the pulsed field gradient or the imaging module.

Description: Converts a 1D standard two-pulse sequence parameter set into a set ready to run a PFG (pulsed field gradient) absolute-value COSY experiment.

See also: *NMR Spectroscopy User Guide*

gdiff

Diffusion gradient level (P)

Description: Predefined parameter available for use in setting a diffusion gradient level, often paired with the timing parameters tdiff or tdelta.

Gdqcsoy

Convert the parameter to a gradient DQCOSY experiment (M)

Description: Convert the parameter to a gradient Dqcsoy experiment

get1d

Select a 1D experiment for processing (M)

Syntax: `get1d(experiment)`

Description: In nonautomation mode, the macros hcosy, hcapt, capt, hcdept, and cdept all acquire two or more data sets in the experiment in which the macro was executed. These data sets are stored, complete with Fourier transformed data. The data sets are also stored directly in the experiment. The get1d macro is used to select which data set should be active for processing in that experiment. After get1d is executed, data can be stored in the conventional way with the svf command (e.g., when hcosy completes, get1d can be used to process the 1D data set).

Arguments: experiment is the 1D data set to be used for processing. The default is the 'H1' experiment.

Examples:
- `get1d`
- `get1d('apt')`

See also: *NMR Spectroscopy User Guide*

Related:
- **capt** Automated carbon and APT acquisition (M)
- **cdept** Automated carbon and DEPT acquisition (M)
- **get2d** Select a 2D experiment for processing (M)
- **hcapt** Automated proton, carbon, and APT acquisition (M)
- **hcdept** Automated proton, carbon, and DEPT acquisition (M)
get2d

Select a 2D experiment for processing (M)

Syntax:

```
get2d<(experiment)>
```

Description: In non-automation mode, the macros `hcosy`, `hcapt`, `capt`, `hcdept`, and `cdept` all acquire two or more data sets in the experiment in which the macro was executed. These data sets are stored complete with Fourier transformed data. The data sets are also stored directly in the experiment. The `get2d` macro is used to select which data set should be active for processing in that experiment. After entering `get2d`, data may be stored in the conventional way with the `svf` command. For example, following completion of `hcosy`, `get2d` can be used to process the 2D data set.

Arguments:

- `experiment` is the 2D data set that should be used for processing. The default is the 'relayh' experiment.

Examples:

`get2d('hetcor')`

See also: *NMR Spectroscopy User Guide*

Related:

- `get1d` Select a 1D experiment for processing (M)
- `svf` Save FIDs in current experiment (C)

getdim

Return dimensionality of experiment (M)

Syntax:

```
getdim:dimensions
```

Description:

Used in other macros to determine the number of dimensions of the current data set. Many macros make decisions based on whether a data set is multidimensional or 1D. `getdim` makes it easier to access this information.

Arguments:

- `dimensions` is a return variable giving the number of dimensions of the data. If `ni3` is 2 or greater, `dimensions` is set to 4; if `ni2` is 2 or greater, `dimensions` is set to 3; if `ni` is 2 or greater, `dimensions` is set to 2; and if `ni` is less than 2 or undefined, `dimensions` is 1.

Examples:

`getdim:r1`

See also: *NMR Spectroscopy User Guide*

Related:

- `ni` Number of increments in 1st indirectly detected dimension (P)
- `ni2` Number of increments in 2nd indirectly detected dimension (P)
- `ni3` Number of increments in 3rd indirectly detected dimension (P)

getfile

Get information about directories and files (C)

Syntax:

1. `getfile(directory):$number_files`
2. `getfile(directory,file_index):$file,$extension`

Description: Returns information about the number of files in a directory or about a particular file in a directory.

Arguments:

- `directory` is the name of the directory for which information is desired.
- `number_files` is the number of files in the directory, with dot files (e.g., `.login`) ignored.
- `file_index` is the number of file for which information is desired (the order is UNIX-dependent).
- `file` is the name of the file, excluding any extension, identified by the `index` (see examples below).
extension is the extension of the file name identified by the file_index. For example, if file_index points to the file named s2pul.fid, getfile returns the string s2pul to $file and the string fid to $extension. If the file name pointed to has no extension (e.g., dummy), no value is returned to $extension. If the file name has more than one extension, only the last extension is returned to $extension (e.g., the file fid.tmp.par returns fid.tmp to $file and par to $extension).

Complete paths (full file names) can be reconstructed like this:

```
getfile('dir',i):$filename,$ext
if ($ext='') then $path='dir'+'/'+$filename
else $path='dir'+'/'+$filename.'+'+$ext
endif
```

Paths for the rt command can be reconstructed like this:

```
$path='dir'+'/'+$filename.
```

Examples:

```
getfile('dir'):$entries
$temp = 0
while ($temp < $entries)
    $temp = $temp + 1
    getfile('dir',$temp):$filename,$ext
...
endwhile
```

See also: User Programming

getlimit

get the limits of a variable in a tree (C)

Syntax:

```
getlimit(name[,tree]):$max,$min,$step,$index
```

Description:

getlimit displays or returns the limits of a variable in a tree.

The returned values are the max value, min. value, step size, and index. The fourth argument will return a 0 if the parameter is not using an indexed table lookup for the maximum, minimum, and step size. If the parameter is using the table lookup mechanism, the fourth argument will be set to the index for that table.

The variable trees are current (the default), global, processed, or systemglobal.

Arguments:

- name — the name of the variable
- tree — the variable tree: current (the default), global, processed, or systemglobal.

Examples:

- `getlimit('np'):$max,$min,$step,$index`
 sets $max to 128000, $min to 32, $step to 2 and $index to 0
- `getlimit('lockfreq','systemglobal'):$max`
 sets $max to 160
- `getlimit('dpwr'):$max,$min,$step,$index`
 sets $max to 49, $min to 0 $step to 1 and $index to 9

Related:

- setlimit
 Set limits of a parameter in a tree (C)
- setprotect
 Set protection mode of a parameter (C)

getll

Get intensity and line frequency of line (C)

Syntax:

```
getll(line_number)<:height,frequency>
```

Related:

- setlimit
 Set limits of a parameter in a tree (C)
- setprotect
 Set protection mode of a parameter (C)
Description: Finds the height and frequency of line from a line listing. It assumes a previous
line list using dll.

Arguments: line_number is the number of the line in the line list.
height is the intensity of the specified line.
frequency is the line frequency with units defined by the parameter axis.

See also: User Programming

Related: axis Axis label for displays and plots (P)
dll Display listed line frequencies and intensities (C)
fp Find peak heights (C)
nll Find line frequencies and intensities (C)

getparam Retrieve parameter from probe file (M)

Syntax: getparam(param<,nucleus>):$value

Description: Retrieves the value of a parameter from the current probe file. The name of the
probe file is referenced from the parameter probe.

Arguments: param is the name of the parameter to be retrieved.
nucleus is the nucleus to be retrieved from the probe file. The default is the
current value of the parameter tn
value is a return variable with the value of the retrieved parameter.

Examples: getparam('tpwr'):tpwr
getparam('dmf','H1'):$dmf

See also: NMR Spectroscopy User Guide

Related: addnucleus Add new nucleus to existing probe file (M)
addparams Add parameter to current probe file (M)
addprobe Create new probe directory and probe file (M)
probe Probe type (P)
setparams Write parameter to current probe file (M)
 tn Nucleus for the observe transmitter (P)
updateprobe Update probe file (M)

getplane Extract planes from a 3D spectral data set (M)

Syntax: getplane(<data_dir><,plane_dir><,plane_type>)>

Description: Executes the program getplane in the VnmrJ system bin directory
($vnmr$system/bin). getplane checks whether there is sufficient file
space on the disk partition to accommodate the extracted planes. If space is
insufficient, getplane writes an error to the VnmrJ text window and aborts.
getplane does not delete the output plane directory if it is run multiple times
to individually extract different plane types.

Arguments: data_dir specifies the directory (without the /data subdirectory)
containing the input 3D spectral data. The first non-keyword argument to
getplane is always taken to be data_dir.

plane_dir specifies the directory (without the /extr subdirectory) in
which the extracted planes are to be stored. The second non-keyword argument
to getplane is always taken to be plane_dir. If plane_dir is not
specified, data_dir also specifies the output plane directory. If both
data_dir and plane_dir are not specified, the input data directory and the
output plane directory are set to curexp/datadir3d. The parameter
plane is always set equal to the output plane directory.

plane_type can be any of the following keywords:
• ‘xall’ is a keyword to extract all three 2D plane types: f1f3, f2f3, f1f2.
• ‘f1f3’, ‘f2f3’, ‘f1f2’ are keywords to extract their respective 2D planes.
• Any of these keywords can be submitted more than once to the getplane macro, but the getplane program displays an error and aborts if any one plane type is defined for extraction more than once.

Examples: getplane
getplane('data3d.inp,'data3d.planes','f1f3','f2f3')

See also: NMR Spectroscopy User Guide

getreg

Get frequency limits of a specified region (C)

Syntax: getreg(region_number)<:minimum,maximum>

Description: Returns the frequency limits of a region. The spectrum should have been previously divided into regions with the region command.

Arguments: region_number specifies the number of the region.
minimum,maximum are return values set to the frequency limits, in Hz, of the specified region.

Examples: getreg(1):$a,$b
getreg($4):cr,$lo
getreg(R1–1):r2,r3

See also: User Programming

Related:
cz Clear integral reset points (C)
ds Display a spectrum (C)
umreg Return the number of regions in a spectrum (C)
region Divide spectrum into regions (C)

getsn

Get signal-to-noise estimate of a spectrum (M)

Syntax: getsn:current_sn,predicted_sn

Description: Estimates spectrum signal-to-noise using the following algorithm:

• Measures four adjacent 5-percent portions at the left edge of the spectrum, finding the root-mean-square noise, and taking the smallest of the four values. By measuring four different values and finding root-mean-square noise instead of peak noise, the result should be reliable even if several signals are present in the selected regions.

• Next, estimates the signal level using the vertical scale adjustment macros: vsadjh for proton, vsadjc for carbon, and vsadj for other nuclei. For carbon spectra, this algorithm ignores solvent lines and TMS. For proton spectra, in addition to ignoring the largest line in the spectrum, if the tallest line is greater than three times the height of the second tallest line, the
second highest line is be used instead. For other nuclei, getsn uses the tallest line in the spectrum.

- Finally, estimates the signal-to-noise at the end of the experiment by a simple extrapolation (multiplying by the square root of nt/ct).

Arguments: current_sn is a return value set to the current signal-to-noise level.

predicted_sn is a return value set to the predicted signal-to-noise level at the end of the experiment.

See also: NMR Spectroscopy User Guide

Related:

cnth
Completed transients (P)
nt
Number of transients (P)
testsn
Test signal-to-noise ratio (M)
vsadj
Adjust vertical scale (M)
vsadjc
Adjust vertical scale for carbon spectra (M)
vsadjh
Adjust vertical scale for proton spectra (M)

gettoken
Utility macro to separate a string into tokens (M)

Syntax: gettoken(input_string<,delimiter>):output_string,
next_location

Description: Gets the first occurrence of a substring in input_string which is delimited by delimiter, or by the default delimiter '[$]'. The substring is returned in output_string. The next location in the string after the second delimiter is returned as a real in next_location. If there are not both one occurrence of each of the beginning delimiter and the second delimiter - in other words, if the delimiters are not paired - an empty string is returned in output_string, and -1 is returned in next_location. If the delimited substring is the last substring in input_string, then the substring is returned as expected, but next_location returns -1.

Arguments: input_string

The string to be tokenized delimiter is the delimiter for the tokens (default is $)

Examples:
gettoken($mydirname):$mytoken, $next_location
gettoken($mydirname,'%'):$mytoken, $next_location

Related: reqpartest Tests whether required parameters are set (M)

gettext
Get text file from VnmrJ data file (C)

Syntax: gettext(file)

Description: Copies text from a data file to the current experiment.

Arguments: file is the name of a VnmrJ data file saved from an experiment (i.e., a directory with a .fid or .par suffix). Do not include the file name suffix.

Examples: gettext('/vnmr/fidlib/fid1d')

See also: NMR Spectroscopy User Guide

Related: puttxt Put text file into another file (C)

gettype
Get the type of a variable (C)

Syntax: gettype(name[, tree])<:index, name>

Description: Displays or returns the type of an existing variable.
Arguments: A “string” variable can return type 'string' or 'flag'. A “real” variable can return type 'real', 'delay', 'frequency', 'pulse', or 'integer'. `gettype` returns one or two values to a macro. The first value is an integer corresponding to the parameter type. The second value is the name of the parameter type. `name` can be used in commands such as `settype` and `create`.

An optional tree argument can be given. Variables are 'current', 'global', 'processed', and 'systemglobal'. The default is to search for the parameter in the 'current', 'global', and 'systemglobal' trees, in that order.

Examples: `gettype('dmm')`: $int, $name sets $int to 4 and $name to 'flag'.

See also: `gettype('pw')`: $int, $name sets $int to 6 and $name to 'pulse'.

`getvalue` Get value of parameter in a tree (C)

Syntax: `getvalue(parameter<,index><,tree>)`

Description: Gets the value of any parameter in a tree. The value of most parameters can be accessed simply by using their name in an expression. For example, `sw?` or `r1=np` accesses the value of `sw` and `np`, respectively. However, parameters in the processed tree cannot be accessed that way; `getvalue` can be used to get the value of a parameter in the processed tree.

Arguments: `parameter` is the name of an existing parameter.

`index` is the number of a single element in an arrayed parameter. Default is 1.

`tree` is one of the keywords 'global', 'current', 'processed', or 'systemglobal'. The default is 'processed'. Refer to the `create` command for more information on the types of parameter trees.

Examples: `getvalue('arraydim')`

See also: User Programming

Related: `create` Create new parameter in a parameter tree (C)
`display` Display parameters and their attributes (C)
`setgroup` Set group of a parameter in a tree (C)
`setlimit` Set limits of a parameter in a tree (C)
`setprotect` Set protection mode of a parameter (C)
`settype` Change type of a parameter (C)
`setvalue` Set value of any parameter in a tree (C)

`gf` Prepare parameters for FID/spectrum display in acqi (M)

Description: Provided as a model for preparing parameters for the FID and spectrum display in `acqi`. The unmodified version of this macro turns off phase cycling, autoshimming, autolocking, spin control, temperature control, sample changer control, and autogain. It also selects the current pulse sequence and parameter set by issuing the command `go('acqi')` and the command `acqi('par')`. The automation parameters `cp, wshim, alock, spin, temp, loc, and gain` are then reset to their original values. Users can customize `gf` by copying it into their private `maclib` directory and editing that version to suit their needs.

See also: NMR Spectroscopy User Guide

Related: `acqi` Interactive acquisition display process (C)
`alock` Automatic lock status (P)
`cp` Cycle phase (P)
`dmgf` Absolute-value display of FID data and spectrum in `acqi` (P)
`gain` Receiver gain (P)
G

Gaussian function in directly detected dimension (P)

Description: Defines a Gaussian time constant of the form \(\exp\left(-\left(\frac{t}{gf}\right)^2\right) \) along the directly detected dimension. This dimension is referred to as the \(f_2 \) dimension in 2D data sets, the \(f_3 \) dimension in 3D data sets, etc.

Values: Number, in seconds. Typical value is \(gf='n' \).

See also: NMR Spectroscopy User Guide

Related:
gf1 Gaussian function in 1st indirectly detected dimension (P)
gf2 Gaussian function in 2nd indirectly detected dimension (P)
gfs Gaussian shift constant in directly detected dimension (P)

Gaussian function in 1st indirectly detected dimension (P)

Description: Defines a Gaussian time constant of the form \(\exp\left(-\left(\frac{t}{gf1}\right)^2\right) \) along the first indirectly detected dimension. This dimension is referred to as the \(f_1 \) dimension of a multidimensional data set. \(gf1 \) works analogously to the parameter \(gf \). The “conventional” parameters, such as \(lb \) and \(gf \), operate on the detected FIDs, while this “2D” parameter is used during processing of the interferograms.

Values: Number, in seconds.

See also: NMR Spectroscopy User Guide

Related:
gf Gaussian function in directly detected dimension (P)

Gaussian function in 2nd indirectly detected dimension (P)

Description: Defines a Gaussian time constant of the form \(\exp\left(-\left(\frac{t}{gf2}\right)^2\right) \) along the second indirectly detected dimension. This dimension is referred to as the \(f_2 \) dimension of a multidimensional data set. \(gf2 \) works analogously to the parameter \(gf \). The \(wti \) program can be used to set \(gf2 \) on the 2D interferogram data.

Values: Number, in seconds.

See also: NMR Spectroscopy User Guide

Related:
gf Gaussian function in directly detected dimension (P)
wti Interactive weighting (C)

Flow encoding gradient level (P)

Description: Predefined parameter available for use in setting a flow encoding gradient level, often paired with the timing parameter \(tflow \).

See also: VnmrJ Imaging NMR

Gaussian shift const. in directly detected dimension (P)

Description: Working in combination with the \(gf \) parameter, \(gfs \) allows shifting the center of the Gaussian function \(\exp\left(-\left(\frac{t-gfs}{gf}\right)^2\right) \) along the directly
detected dimension. This dimension is referred to as the f_2 dimension in 2D data sets, the f_1 dimension in 3D data sets, etc. Typical value is gfs='n'.

See also: NMR Spectroscopy User Guide

Related:
gf Gaussian function in directly detected dimension (P)
gfs1 Gaussian shift const. in 1st indirectly detected dimension (P)
gfs2 Gaussian shift const. in 2nd indirectly detected dimension (P)

gfs1

Gaussian shift const. in 1st indirectly detected dimension (P)

Description: Working in combination with the gf_1 parameter, gfs1 allows shifting the center of the Gaussian function $\exp(-((t-gfs1)/gf1)^2)$ along the first indirectly detected dimension. This dimension is referred to as the f_1 dimension in multidimensional data sets. gfs1 works analogously to the parameter gfs. The “conventional” parameters (i.e., lb, gf, etc.) operate on the detected FIDs, while this “2D” parameter is used during processing of the interferograms.

See also: NMR Spectroscopy User Guide

Related:
gf Gaussian function in directly detected dimension (P)
gf1 Gaussian function in 1st indirectly detected dimension (P)
gfs Gaussian shift const. in directly detected dimension (P)

gfs2

Gaussian shift const. in 2nd indirectly detected dimension (P)

Description: Working in combination with the gf_2 parameter, gfs2 allows shifting the center of the Gaussian function $\exp(-((t-gfs2)/gf2)^2)$ along the second indirectly detected dimension. This dimension is referred to as the f_2 dimension in multidimensional data sets. gfs2 works analogously to the parameter gfs. The wti program can be used to set gfs2 on the 2D interferogram data.

See also: NMR Spectroscopy User Guide

Related:
gf Gaussian function in directly detected dimension (P)
gf2 Gaussian function in 2nd indirectly detected dimension (P)
gfs Gaussian shift const. in directly detected dimension (P)
wti Interactive weighting (C)

Ghmhc

Convert the parameter to a gradient HMBC experiment (M)

Applicability: Systems with a pulsed field gradient module.

Description: Prepares an experiment for a PFG (pulsed field gradient) HMQC.

Arguments: NMR Spectroscopy User Guide

ghmqc

Set up a PFG HMQC pulse sequence (M)

Applicability: Systems with a pulsed field gradient module.

Description: Prepares an experiment for a PFG (pulsed field gradient) HMQC using the sequence GHMQC. The sequence sets three gradients, all separately.

Arguments: NMR Spectroscopy User Guide

Ghmqc

Convert the parameter to a gradient HMQC experiment (M)

Description: Convert the parameter to a gradient HMQC experiment
gHMQC15

Set up parameters for 15N gHMQC experiment (M)

Description: Converts the current parameter set to a gHMQC experiment for 15N.

gHMQC_d2

Set up parameters for 15N gHMQC experiment using dec. 2 (M)

Description: Converts the current parameter set to a gHMQC experiment for 15N with decoupler 2 as 15N.

gHMQC_d213

Set up parameters for 13C gHMQC experiment using dec. 2 (M)

Description: Converts the current parameter set to a gHMQC experiment for 13C with decoupler 2 as 13C.

ghmqcps

Set up a PFG HMQC phase-sensitive pulse sequence (M)

Applicability: Systems with a pulsed field gradient module.

Description: Prepares an experiment for a PFG (pulsed field gradient) HMQC, phase-sensitive version.

See also: *NMR Spectroscopy User Guide*

ghsqc

Set up a PFG HSQC pulse sequence (M)

Applicability: Systems with a pulsed field gradient module.

Syntax: `ghsqc<nucleus>`

Description: Converts a 1D standard two-pulse sequence parameter set into a parameter set ready to run a PFG (pulsed field gradient) HSQC experiment, either absolute value or phase sensitive.

Arguments: `nucleus` is 13C or 15N. The default is 13C.

See also: *NMR Spectroscopy User Guide*

Ghsqc

Convert the parameter to a gradient HSQC experiment (M)

Description: Convert the parameter to a gradient HSQC experiment.

gHSQC15

Set up parameters for 15N gHSQC experiment (M)

Description: Converts the current parameter set to a gHSQC experiment for 15N.

gHSQC_d2

Set up parameters for 15N gHSQC experiment using dec. 2 (M)

Description: Converts the current parameter set to a gHSQC experiment for 15N with decoupler 2 as 15N.

gHSQC_d213

Set up parameters for 13C gHSQC experiment using dec. 2 (M)

Description: Converts the current parameter set to a gHSQC experiment for 13C with decoupler 2 as 13C.

Ghsqctoxy

Convert parameters for gradient HSQCTOXY experiment (M)

Description: Convert the parameter to a gradient HSQCTOXY experiment.
gilson Open the Gilson Liquid Handler window (C)
Syntax: gilson
Description: Opens the Gilson Liquid Handler window, which enables setup, configuration, and operation of the VAST automatic sampler changer accessory.
See also: NMR Spectroscopy User Guide

gin Return current mouse position and button values (C)
Applicability: All
Syntax: gin<(Bn_<press><release>)>:$x,$y,$b1,$b2,$b3
Description: The gin command reports the pointer position in relationship to the graphics window and is often used with the move and draw commands. The variables $x and $y are the x and y positions held the pointer in millimeters. The variables $b1, $b2, and $b3 hold the values for the state of the left, middle, and right mouse buttons.
Values: $x is the value in the x direction, in millimeters, of the pointer. The range of x is 0 at the left edge of the chart and wcmax at the right edge. A value of -1 is returned if the pointer position is outside the graphics window along the x axis.
$y is the position of the pointer along the y axis. The range of y is -20 at the bottom of the chart to wc2max at the top. A value of 10000 is returned if the pointer position is outside the graphics window along the y axis.
$b1 is the state of left button; returns the value 0 if released and 1 if pressed.
$b2 is the of middle button; returns the value 0 if released and 1 if pressed.
$b3 is the of right button; returns the value 0 if released and 1 if pressed.
Arguments: no argument, returns current mouse positions and button values.
Bn_press, n=a,1,2, or 3. Wait for mouse button (any, 1, 2, or 3) or any key to be pressed.
Bn_release, n=a,1,2, or 3. Wait for mouse button (any, 1, 2, or 3) to be released or any key to be pressed.
Examples: gin('B3_press'):$x,$y,$b1,$b2,$b3 wait until button 3or any key is pressed
gin('Ba_press'):$x,$y,$b1,$b2,$b3 wait until any button or any key is pressed
gin('B1_release'):$x,$y,$b1,$b2,$b3 wait until button 1 is released or any key pressed
gin('B2_release'):$x,$y,$b1,$b2,$b3 wait until button 2 is released or any key pressed
See also: User Programming
Related: box Draw a box on a plotter or graphics display (C)
draw Draw line from current location to another location (C)
move Move to an absolute location to start a line (C)

globalauto Automation directory name (P)
Applicability: VnmrJ Walkup and systems with automation such as sample handling.
Description: A global parameter that specifies the name of a directory in which the daily automation directories or study directories are saved. This parameter is created and used by the walkup macro and the VnmrJ Walkup interface.
See also: *NMR Spectroscopy User Guide; VnmrJ Walkup*

Related: cqinit Initialize liquids study queue (M)
walkup Walkup automation (M)

glue

Create a pseudo-2D dataset (M)

Applicability: Systems with the LC-NMR accessory.

Syntax: `glue<(num_scans)>`

Description: Steps through the series of FIDs, putting them into \texttt{exp5} one by one as an array, and then jumps to \texttt{exp5} and changes the parameters \texttt{arraydim}, \texttt{ni}, and \texttt{fn1}, so that the data appear to the user to be a 2D experiment, which can then be processed and displayed with standard 2D commands (\texttt{wft2d, dconi}, etc.). The parameter \texttt{savefile} should exist and should contain the base file name to which a series of FIDs have been saved as \texttt{savefile.001}, \texttt{savefile.002}, etc.

Arguments: \texttt{num_scans} is the number of FIDs copied into the \texttt{exp5} array. Typically, \texttt{num_scans} is used if the experiment was aborted prematurely, so that the complete \texttt{num_scans} worth of FIDs were not actually acquired.

See also: *NMR Spectroscopy User Guide*

Related: \texttt{savefile} Base file name for saving FIDs or data sets (P)

gmapshim

Start gradient autoshimming (M)

Applicability: Systems with gradient shimming installed.

Syntax: `gmapshim<('files'|'mapname'|'quit')>`

Description: Starts gradient autoshimming if no arguments are used. It can also retrieve a shimmap file or quit gradient autoshimming. When the \texttt{gmapshim} macro is done, it automatically exits, and the previous data set is retrieved.

Arguments: 'files' is a keyword to enter the gradient autoshimming files menu. 'mapname' is a keyword to display the current mapname. 'quit' is a keyword to exit from gradient autoshimming and retrieve the previous data set.

See also: *NMR Spectroscopy User Guide*

Related: \texttt{gmapsyst} Run gradient autoshimming, set parameters, map shims (M)

gmapshim_au

Start acquisition with gradient shimming (M)

Applicability: Systems with gradient shimming installed.

Description: If \texttt{wshim} is not set to 'n', \texttt{gmapshim_au} checks the probe file for a lock gradient map name. If the name exists, \texttt{gmapshim_au} executes \texttt{gmapshim('glideau')} to start gradient shimming followed by acquisition. If the map name does not exist, \texttt{gmapshim_au} starts acquisition by running \texttt{au('wait')}.

gmapspin

Enable or disable spinning during gradient shimming (P)

Description: Specifies whether or not sample spinning during gradient shimming is enabled. If spinning is enabled during gradient shimming, the pulses and delays \textit{must} also be synchronized with the rotor period.
Values: 'n' disable spinning during gradient shimming.
'y' enable spinning during gradient shimming.

Related: gmapz Get parameters and files for gmapz pulse sequence (M)
gmapsyst Run gradient autoshimming, set parameters, map shims (M)
gzsize Number of z-axis shims used by gradient shimming (P)
spin Sample spin rate (P)

gmapsyst Run gradient autoshimming, set parameters, map shims (M)

Applicability: Systems with gradient shimming installed.

Syntax: (1) gmapsyst <option>
(2) gmapsyst ('shimmap'<,shimmap_option>)

Description: Enters the Gradient Shimming Setup panel for setting parameters, mapping the
 shims, and performing autoshimming. This is the only entry point to the
 gradient shimming Setup panel.

If the gmapz pulse sequence is not loaded, retrieve parameters from the last
shimmap used (or current mapname) or from gmapz.par if no shimmap
exists.

Arguments: option is one of the following keywords:

- 'addpar' adds gradient shimming parameters to the current parameter
 set.
- 'findgzvl' runs an experiment to calibrate gzvl, gzwin, and tof
to optimize the spectral window.
- 'findgzwin' runs an experiment to calibrate gzwin and tof to
 optimize the spectral window.
- 'findtof' runs an experiment to center tof to optimize the spectral
 window.
- 'rec' displays the record of shim adjustments from the previous gradient
 shimming run.
- 'shim' start autoshimming (same as Gradient Autoshim on Z button).
- 'vi' edits the file gshim.list, which is used for editing shim offsets,
 mapname, or selecting coarse and fine shims.
- 'writeb0' displays the b0 plot calculated from the first two array
elements.

'shimmap' is a keyword to run a shim mapping experiment and save the
results (same as Make Shimmap button).

shimmap_option is one of the following values:

- 'auto' is a keyword to calibrate gzwin and then make a shimmap (same
 as Automake Shimmap button).
- 'manual' is a keyword to use shim offset values set manually from the
 file gshim.list and not the default values to make a shimmap.
- 'overwrite' is a keyword to make a shimmap and overwrite the current
 mapname if it exists.
- mapname is the prefix of the shimmap file name. The default is the user is
 queried for mapname before running the experiment.

See also: NMR Spectroscopy User Guide

Related: gmapshim Start gradient autoshimming (M)
gmapz Get parameters and files for gmapz pulse sequence (M)
gmapz

Get parameters and files for gmapz pulse sequence (M)

Applicability: Systems with gradient shimming installed.

Syntax:

\[\text{gmapz} < (\text{mapname}) >\]

Description: Retrieves gradient shimming parameters to set up a gradient shimming experiment.

Arguments:

- \textit{mapname} is the name of a gradient shimmap file that must exist in the Shimmaps directory. gmapz retrieves parameters and loads the shimmap file from \textit{mapname}. The default is to retrieve standard gradient shimming parameters from the file \textit{gmapz.par}.

See also: *NMR Spectroscopy User Guide*

Related:

- \textit{gmapshim} Start gradient autoshimming (M)
- \textit{gmapsys} Run gradient autoshimming, set parameters, map shims (M)
- \textit{gmap_z1z4} Gradient shimming flag to first shim z1-z4 (P)

gmap_findtof

Gradient shimming flag to first find tof (P)

Applicability: Systems with gradient shimming installed.

Description: When the flag is set to 'y', gradient shimming first performs a calibration to find \textit{tof} before the start of shimming. This action is recommended for only homospoil deuterium gradient shimming with different solvents. The default value is 'n'.

Values:

- 'y' turns on the flag.
- 'n' turns off the flag.

See also: *NMR Spectroscopy User Guide*

Related:

- \textit{gmapshim} Start gradient autoshimming (M)
- \textit{gmapsys} Run gradient autoshimming, set parameters, map shims (M)
- \textit{gmap_z1z4} Gradient shimming flag to first shim z1-z4 (P)

gmap_z1z4

Gradient shimming flag to first shim z1-z4 (P)

Applicability: Systems with gradient shimming installed.

Description: When the flag is set to 'y', if \textit{gzsize} is greater than 4, gradient shimming first shims on z1-z4, and then uses all shims specified by \textit{gzsize}. When the flag is set to 'n' (default), all shims specified by \textit{gzsize} are used.

Values:

- 'y' turns on the flag.
- 'n' turns off the flag.

See also: *NMR Spectroscopy User Guide*

Related:

- \textit{gmapshim} Start gradient autoshimming (M)
- \textit{gmapsys} Run gradient autoshimming, set parameters, map shims (M)
- \textit{gmap_z1z4} Gradient shimming flag to first shim z1-z4 (P)
- \textit{gmapz} Get parameters and files for gmapz pulse sequence (M)
- \textit{tof} Frequency offset for observe transmitter (P)
gmax | **Maximum gradient strength (P)**
Description: The allowed maximum gradient level (absolute value) in gauss/cm. gmax is one of the calibration entries in a gradtables file. gxmax, gymax, and gzmax are used when the maximum gradient level is different for each axis in gauss/cm, which is the case for triple-axis PFG coils.

See also: VnmrJ Installation and Administration; VnmrJ Imaging NMR
Related:
- gcoil | Current gradient coil (P)
- gxmax, gymax, gzmax | Maximum gradient strength for each axis (P)
- sygcocil | System gradient coil (P)

gmqcosy | **Set up PFG absolute-value MQF COSY parameter set (M)**
Applicability: Systems with the pulsed field gradient module.
Description: Converts a 1D standard two-pulse sequence parameter set into a parameter set ready to run a PFG (pulsed field gradient) absolute-value MQF COSY experiment.

See also: NMR Spectroscopy User Guide

gnoesy | **Set up a PFG NOESY parameter set (M)**
Applicability: Systems with the pulsed field gradient module.
Description: Converts a 1D standard two-pulse sequence parameter set into a parameter set ready to run a PFG (pulsed field gradient) NOESY experiment, either absolute value or phase sensitive.

See also: NMR Spectroscopy User Guide

go | **Submit experiment to acquisition (M)**
Syntax:
```  
g<('acqi'<,'ncheck'<,'nosafe'<,'next'>  
<,'sync'<,'wait'>)>
```

Description: Performs the experiment described by the current acquisition parameters, checking parameters loc, spin, gain, wshim, load, and method to determine the necessity to perform various actions in addition to data acquisition. This may involve a single FID or multiple FIDs, as in the case of arrays or 2D experiments. go acquires the FID and performs no processing. If free disk space is insufficient for the complete 1D or 2D FID data set to be acquired, go prompts the user with an appropriate message and aborts the acquisition initiation process.

Before starting the experiment, go executes two user-created macros if they exist. The first is usergo, a macro that allows the user to set up general conditions for the experiment. The second is a macro whose name is formed by go_ followed by the name of the pulse sequence (from seqfil) to be used (e.g., go_s2pul, go_dept). The second macro allows a user to set up experiment conditions suited to a particular sequence.

Arguments:
- 'acqi' is a keyword to submit an experiment for display by the acqi program. All operations explained above are performed, except acquisition of data is not initiated. The instructions to control data acquisition are stored so that acqi can acquire the data when the FID button is clicked. The gf macro is recommended instead of running go ('acqi') directly. Using gf prevents certain acquisition events from occurring, such as spin control and temperature change. See the description of gf for more information.
'nocheck' is a keyword to override checking if there is not enough free disk space for the complete 1D or 2D FID data set to be acquired.

'nosafe' is a keyword to disable probe protection during the experiment.

'next' is a keyword to put the experiment started with go('next') at the head of the queue of experiments to be submitted to the acquisition system. If go('next') is entered, the go macro remains active until the experiment is submitted to the acquisition system, and no other VnmrJ commands are processed until the go macro finishes.

'sync' is a keyword in nonautomation mode that accomplishes the same effect as go('next') in synchronizing VnmrJ command execution with the submission of experiments to the acquisition system. The difference is that 'sync' does not put the experiment at the head of the queue.

'wait' is a keyword to stop submission of experiments to acquisition until wexp processing of the experiment, started with go('wait'), is finished.

Examples:
go
go('nosafe')
go('next')

See also:
NMR Spectroscopy User Guide

Related:
acqi Interactive acquisition display process (C)
au Submit experiment to acquisition and process data
change Submit a change sample experiment to acquisition (M)
gain Receiver gain (P)
ga Submit experiment to acquisition and FT the result (C)
gf Prepare parameters for FID/spectrum display in acqi (M)
go Pulse sequence setup macro called by go, ga, and au (M)
load Load status of displayed shims (P)
loc Location of sample in tray (P)
lock Submit an Autolock experiment to acquisition (C)
method Autoshim method (P)
probe_protection Probe protection control (P)
sample Submit change sample, Autoshim exp. to acquisition (M)
seqfil Pulse sequence name (P)
shim Submit an Autoshim experiment to acquisition (C)
spin Submit a spin setup experiment to acquisition (C)
spin Sample spin rate (P)
su Submit a setup experiment to acquisition (M)
usergo Experiment setup macro called by go, ga, and au (M)
vnmrjcmd() Commands to invoke the GUI popup (C)
wshim Conditions when shimming is performed (P)

go_

Pulse sequence setup macro called by go, ga, and au (M)

Syntax:
go_macro

Description: Called by the macros go, ga, or au before starting an experiment. The user typically creates this macro to set up general experiment conditions. The name of the macro is formed by combining go_ with the name of the pulse sequence macro (from seqfil) to be used.

Examples:
go_dept
/go_noesy
/go_s2pul

See also:
NMR Spectroscopy User Guide

Related:
au Submit experiment to acquisition and process data (M)
ga Submit experiment to acquisition and FT the result (M)
Gradient shape (P)

Description: Predefined string parameters available to specify gradient shapes.

See also: *VnmrJ Imaging NMR*

Start interactive image planning (C)

Syntax: `gplan(function_name, arg1, arg2,...)`

Description: In VnmrJ, starts an image planning session.

Arguments: `function_name`, `path` is the name of an image planning function surrounded by single quotation marks.

`arg1, arg2,...` are arguments for the function, if relevant.

Examples: `gplan 'clearStacks()'`

`get 'PrevStacks()'`

See also: *NMR Spectroscopy User Guide*

Disable PFG gradients (P)

Description: `gradientdisable` is an optional global parameter for disabling the gradient pulses. If `gradientdisable` parameter is set to 'y', the PSG software sets the gradient dac values to 0. The gradient parameters in VnmrJ and pulse sequence are not altered. This feature works in both C PSG and SpinCAD JPSG.

To use this feature, create `gradientdisable` as a global parameter of type 'flag'. If `gradientdisable` is set to 'y', the gradient amplitude values will be set to 0; if set to 'n' the gradient amplitudes will be the expected values determined by the gradient parameters and pulse sequence calculations. This feature is typically used in experiments involving Cold Probes. This feature is only effective for gradient configurations, `gradtypes` of 'l', 'p', and 't'.

Related: `pfgon` Pulsed field gradient amplifiers on/off control (P)

Gradients for X, Y, and Z axes (P)

Activate shaping on the gradient pulses (P)

Applicability: Systems with Varian, Inc. Cold Probes

Description: Activate shaping on the gradient pulses in the pulse sequence without changing the pulse sequence source program. This feature works only the Z gradient pulses, specified using the `zgradpulse(.,)` PSG statement. `gradientshaping` is a global parameter.

Values: `gradientshaping='y'` enables this feature and produces a WURST shaping of gradient amplitudes.

`gradientshaping='n'` or destroy the parameter disables this feature and produces rectangular gradients amplitudes.

Gradient step size (P)

Description: The maximum gradient DAC value. `gradstepsz` determines the type of gradient DAC board used in the system: 12-bit or 16-bit. It is used internally to convert gauss/cm gradient levels to the proper hardware DAC level.
Values: Systems with 12-bit DACs (older SISCO spectrometers without gradient waveform capabilities): –2047 to +2047 units, in integer steps.

Systems with 16-bit DACs (SISCO spectrometers with gradient waveform capabilities): –32767 to +32767 units, in integer steps.

See also: VnmrJ Installation and Administration; Vnmr Imaging NMR

gradtype Gradients for X, Y, and Z axes (P)

Applicability: Systems with pulsed field gradient (PFG) or imaging capability.

Description: Configuration parameter for systems with optional gradients for axes. The value is set using the label X Axis, Y Axis, Z Axis in the Spectrometer Configuration window (opened from config). The values available for each axis are None, WFG + GCU, Performa I, Performa II/III, Performa II/III + WFG, Performa XYZ, Performa XYZ + WFG, SIS (12 bit), Homospoil, and Shim DAC. WFG stands for the waveform generator; GCU stands for the gradient compensation unit; and Performa I, II, III, and XYZ are types of PFG modules.

Values: String of three characters (e.g., 'nnn'). The first character is the gradient for the X axis, second for the Y axis, and third for the Z axis. Each axis has value 'n' (None choice in Spectrometer Configuration window), 'w' (WFG+GCU), 'l' (Performa I), 'p' (Performa II/III), 'q' (Performa II/III + WFG), 't' (Performa XYZ), 'u' (Performa XYZ + WFG), 's' (SIS (12 bit), or 'h' (Homospoil). Homospoil is functional only for the Z axis.

See also: VnmrJ Installation and Administration; NMR Spectroscopy User Guide

Related: config Display current configuration and possibly change it (M)
pfgon PFG amplifiers on/off control (P)

graphis Return the current graphics display status (C)

Syntax: (1) graphis:$display_command
(2) graphis(command):$yes_no

Description: Determines what command currently controls the graphics window.

Arguments: $display_command is a return value set to the name of the currently controlling command.

command is the name of a command to be checked.

$yes_no is a return value set to 1 if the command name given by the command argument is controlling the graphics window, or set to 0 if it is not controlling the window.

Examples: graphis:$display
if ($display='ds') then
...
endif

graphis('ds'):$ds_on
if ($ds_on) then
...
endif

See also: User Programming

Related: textis Return the current text display status (C)
Gray level window adjustment (P)

Description: Controls the grayscale display available in dcon. In the dconi program, the center mouse button controls the grayscale bar, which changes the mean gray level and hence the value of grayctr. The grayctr parameter (along with the parameter graysl) records the current settings of the gray bar as the interaction changes; the value can also be set directly. The right mouse button controls the data level of the maximum data intensity. To create grayctr, enter `create('grayctr','real') setgroup('grayctr','display') setlimit('grayctr',64,0,1)`.

To create the set of imaging parameters grayctr, dcrmv and graysl, and in the current experiment, enter `addpar('image')`.

Values: 0 to 64 (typically 32)

See also: NMR Spectroscopy User Guide

Related: addpar Add selected parameters to the current experiment (M) dcon Display noninteractive color intensity map (C) dconi Interactive 2D contour display (C) graysl Gray level slope (contrast) adjustment (P)

Gray level slope (contrast) adjustment (P)

Description: Controls the grayscale display available in dcon. In the dconi program, the center mouse button controls the grayscale slope as applied to the data changes and hence the value of graysl. Negative values of graysl will invert black and white; however, negative values can be set only from the keyboard. graysl (along with the parameter grayctr) records the current settings of the gray bar as the interaction changes; the value can also be set directly. The right mouse button controls the data level of the maximum data intensity. To create graysl, enter the following command:

```
create('graysl','real') setgroup('graysl','display') setlimit('graysl',10,–10,0.1)
```

To create the set of imaging parameters graysl, dcrmv, and grayctr in the current experiment, enter `addpar('image')`.

Values: –10 to +10 (–100 to +100, typically 1)

See also: NMR Spectroscopy User Guide

Related: addpar Add selected parameters to the current experiment (M) dcon Display noninteractive color intensity map (C) dconi Interactive 2D contour display (C) grayctr Gray level window adjustment (P)

Eddy current testing (M)

Applicability: Systems with pulsed field gradient.

Description: Conditions an experiment for eddy current testing so that it is compatible with standard installation procedures.

See also: Pulsed Field Gradient Modules Installation, NMR Spectroscopy User Guide

Draw a grid on a 2D display (M)

Syntax: (1) `grid<(<spacing>,<,><color>)>`
(2) `grid<(start_f2,incr_f2,start_f1,incr_f1<,,color>)>`
Description: Draws grid lines over a 2D display. Grid lines are drawn on the graphics screen in the XOR mode—entering a second \texttt{grid} command with identical arguments erases (not redraws) the grid displayed by the first command.

Arguments: \texttt{spacing} specifies the approximate spacing of the grid lines, in cm. The default is intervals of approximately 1 cm, rounded so that the intervals fall at a multiple of 1, 2, or 5 (in Hz), or 1p, 2p, or 5p (in ppm).

\texttt{color} specifies the color of the grid lines and is one of the following keywords: \texttt{'red'}, \texttt{'green'}, \texttt{'blue'}, \texttt{'cyan'}, \texttt{'magenta'}, \texttt{'yellow'}, \texttt{'black'}, or \texttt{'white'}. The default is \texttt{'blue'}.

\texttt{start_f2,incr_f2,start_f1,incr_f1} define a grid by supplying the starting and increment frequencies for \texttt{f2} and \texttt{f1}. Add the \texttt{p} suffix to a value to enter it in ppm (see third example below).

Examples:
\begin{verbatim}
grids
grid
grid(1.5,'red')
grid(1p,0.5p,3p,0.5p)
\end{verbatim}

See also: \textit{NMR Spectroscopy User Guide}
Related: \texttt{plgrid} Plot a grid on a 2D plot (M)

\textbf{groupcopy} \hspace{0.7cm} \textit{Copy parameters of group from one tree to another (C)}

\textbf{Syntax:} groupcopy\texttt{(from_tree, to_tree, group)}

Description: Copies a set of parameters of a group from one parameter tree to another.

Arguments: \texttt{from_tree, to_tree} are two different parameter trees, each given by the one of the keywords \texttt{'global'}, \texttt{'current'}, or \texttt{'processed'}. Refer to the \texttt{create} command for more information on trees.

\texttt{group} is the set of parameters to be copied and is one of the keywords 'all', 'sample', 'acquisition', 'processing', and 'display'.

Examples:
\begin{verbatim}
groupcopy('processed','current','acquisition')
\end{verbatim}

See also: \textit{User Programming}
Related: \texttt{create} Create new parameter in a parameter tree (C)
\texttt{destroy} Destroy a parameter (C)
\texttt{destroygroup} Destroy parameters of a group in a tree (C)
\texttt{display} Display parameters and their attributes (C)
\texttt{setgroup} Set group of a parameter in a tree (C)

\textbf{gspoil} \hspace{0.7cm} \textit{Spoiler gradient level (P)}

Description: Predefined parameter to set a spoiler gradient level.

\textbf{gsspat} \hspace{0.7cm} \textit{Slice-select gradient shape (P)}

Description: Predefined string parameter to specify a slice-select gradient shape.

\textbf{gtnnoesy} \hspace{0.7cm} \textit{Set up a PFG TNNOESY parameter set (M)}

Applicability: Systems with the pulsed field gradient (PFG) module.

Description: Converts a 1D standard two-pulse sequence parameter set into a parameter set ready to run a PFG NOESY experiment (either absolute value or phase sensitive) or a \texttt{gtnnoesy} experiment.
gtnroesy Set up a PFG absolute-value ROESY parameter set (M)
Applicability: Systems with the pulsed field gradient (PFG) module.
Description: Converts a 1D standard two-pulse sequence parameter set into a parameter set ready to run a PFG absolute-value ROESY experiment or a gtnroesy experiment.

gtotlimit Gradient total limit (P)
Applicability: Systems with three-axis gradients
Description: Sets the gradient limit, in gauss/cm, of the x, y, and z axes, summed together. This parameter is taken from an entry of the same name in a gradient table and should only exist if a gradient amplifier limits the combined output of all three gradient axis.

Related: gcoil Read data from gradient calibration tables (P)

gtrim Trim gradient level (P)
Description: Predefined parameter to set a trim gradient level.

gxmax, gymax, gzmax Maximum gradient strength for each axis (P)
Applicability: Systems with three-axis gradients.
Description: Defines the maximum gradient strength, in gauss/cm, for each gradient axis. These values are read in from the selected system gradient table whenever the parameter set is retrieved or the gradient coil defined by gcoil has changed. When the values are read in, gmax is set to the lowest value of the three.

The parameters gxmax, gymax, and gzmax are used instead of gmax when the gradients strengths are not equal for each axis. Unequal gradient strengths per axis are generally true for systems with three-axis PFG coils, which have a strong z gradient, and can be true for microimaging systems. Horizontal-bore imaging systems usually have gradients set to the same maximum value, and gmax can be used.

See also: NMR Spectroscopy User Guide; User Programming, VnmrJ Imaging NMR
Related: gcoil Read data from gradient calibration tables (P)
gmax Maximum gradient strength (P)

gzlvl Pulsed field gradient strength (P)
Applicability: Systems with gradient shimming installed.
Description: Specifies the pulsed field gradient DAC value.
Values: Range from +2047 to –2048 for 12-bit gradient module, and from +32767 to –32768 for a 16-bit gradient module.

Related: gzsize Number of z-axis shims used by gradient shimming (P)
gzwin Spectral window percentage used for gradient shimming (P)

gzsize Number of z-axis shims used by gradient shimming (P)
Applicability: Systems with gradient shimming installed.
Description: Specifies the number of z-axis shims used by gradient shimming. For example, \texttt{gzsize} set to 4 means that gradient shimming uses shims z1 to z4. By default, coarse shims are used if present, as determined by the \texttt{shimset} value.

Values: Integer from 1 to 8.

Related:
- \texttt{gmapshim} \hspace{1em} Start gradient autoshimming (M)
- \texttt{gmaps} \hspace{1em} Run gradient autoshimming, set parameters, map shims (M)
- \texttt{gmapz} \hspace{1em} Get parameters and files for gmapz pulse sequence (M)
- \texttt{gzlvl} \hspace{1em} Pulsed field gradient strength (P)
- \texttt{gzwin} \hspace{1em} Spectral width percentage used by gradient shimming (P)
- \texttt{shimset} \hspace{1em} Type of shimset (P)
- \texttt{gmap_z1z4} \hspace{1em} Gradient shimming flag to first shim z1-z4 (P)

\textbf{gzwin}

\textit{Spectral width percentage used for gradient shimming (P)}

Applicability: Systems with gradient shimming installed.

Description: Specifies the percentage of the spectral width \texttt{sw} used by gradient shimming for shimmap calculations. The value is set automatically with the buttons Find \texttt{gzlvl/gzwin} and Find \texttt{gzwin} in the gradient shimming system menu opened by \texttt{gmaps}.

Values: A real number between 0 and 100. The typical value is 50.

Related:
- \texttt{gmapshim} \hspace{1em} Start gradient autoshimming (M)
- \texttt{gmaps} \hspace{1em} Run gradient autoshimming, set parameters, map shims (M)
- \texttt{gmapz} \hspace{1em} Get parameters and files for gmapz pulse sequence (M)
- \texttt{gzlvl} \hspace{1em} Pulsed field gradient strength (P)
- \texttt{gzwin} \hspace{1em} Spectral width percentage used by gradient shimming (P)
- \texttt{sw} \hspace{1em} Spectral width in directly detected dimension (P)
- \texttt{tof} \hspace{1em} Frequency offset for observe transmitter (P)
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>h1</td>
<td>Automated proton acquisition (M)</td>
</tr>
<tr>
<td>h1freq</td>
<td>Proton frequency of spectrometer (P)</td>
</tr>
<tr>
<td>hlp</td>
<td>Process 1D proton spectra (M)</td>
</tr>
<tr>
<td>h2cal</td>
<td>Calculate strength of the decoupler field (C)</td>
</tr>
<tr>
<td>halt</td>
<td>Abort acquisition with no error (C)</td>
</tr>
<tr>
<td>hc</td>
<td>Automated proton and carbon acquisition (M)</td>
</tr>
<tr>
<td>hcapt</td>
<td>Automated proton, carbon, and APT acquisition (M)</td>
</tr>
<tr>
<td>hcchtocsy</td>
<td>Set up parameters for HCCHTOCSY pulse sequence (M)</td>
</tr>
<tr>
<td>hccorr</td>
<td>Automated proton, carbon, and HETCOR acquisition (M)</td>
</tr>
<tr>
<td>hcdept</td>
<td>Automated proton, carbon, and DEPT acquisition (M)</td>
</tr>
<tr>
<td>hcosy</td>
<td>Automated proton and COSY acquisition (M)</td>
</tr>
<tr>
<td>hdmf</td>
<td>Modulation frequency for the band selective homonuclear decoupling (P)</td>
</tr>
<tr>
<td>hcmult</td>
<td>Execute protocol actions of apptype hcmult (M)</td>
</tr>
<tr>
<td>hdof</td>
<td>Frequency offset for homodecoupling (P)</td>
</tr>
<tr>
<td>hdprw</td>
<td>Power level for homodecoupling (P)</td>
</tr>
<tr>
<td>hdprwf</td>
<td>Homodecoupling fine power (optional) (P)</td>
</tr>
<tr>
<td>hdres</td>
<td>Sets the tip angle resolution (P)</td>
</tr>
<tr>
<td>hdseq</td>
<td>Sets the decoupler waveform filename (P)</td>
</tr>
<tr>
<td>hdwshim</td>
<td>Hardware shimming (P)</td>
</tr>
<tr>
<td>hdwshimlist</td>
<td>List of shims for hardware shimming (P)</td>
</tr>
<tr>
<td>het2dj</td>
<td>Set up parameters for HET2DJ pulse sequence (M)</td>
</tr>
<tr>
<td>HETCOR</td>
<td>Change parameters for HETCOR experiment (M)</td>
</tr>
<tr>
<td>hetcor</td>
<td>Set up parameters for HETCOR pulse sequence (M)</td>
</tr>
<tr>
<td>hetcorcp1</td>
<td>Set up parameters for solids HETCOR pulse sequence (M)</td>
</tr>
<tr>
<td>hetcorps</td>
<td>Set up parameters for HETCORPS pulse sequence (M)</td>
</tr>
<tr>
<td>hetero2d</td>
<td>Execute protocol actions of apptype hetero2d (M)</td>
</tr>
<tr>
<td>hidecommand</td>
<td>Execute macro instead of command with same name (C)</td>
</tr>
<tr>
<td>hipwrampenable</td>
<td>High Power Amplifier Enable (P)</td>
</tr>
<tr>
<td>Hmhc</td>
<td>Convert the parameter to a HMBC experiment (M)</td>
</tr>
<tr>
<td>Hmqc</td>
<td>Convert the parameter to a HMQC experiment (M)</td>
</tr>
<tr>
<td>HMQC15</td>
<td>Set up parameters for 15N HMQC experiment (M)</td>
</tr>
<tr>
<td>HMQC_d2</td>
<td>Set up parameters for 15N HMQC experiment using dec. 2 (M)</td>
</tr>
<tr>
<td>HMQC_d213</td>
<td>Set up parameters for 13C HMQC experiment using dec. 2 (M)</td>
</tr>
<tr>
<td>hmqcr</td>
<td>Set up parameters for HMQCR pulse sequence (M)</td>
</tr>
<tr>
<td>Hmqctoxy</td>
<td>Convert the parameter to a HMQCTOXY experiment (M)</td>
</tr>
<tr>
<td>HMQCTOXY15</td>
<td>Set up parameters for 15N HMQCTOXY experiment (M)</td>
</tr>
<tr>
<td>HMQCTOXY_d2</td>
<td>Set up parameters for 15N HMQCTOXY using decoupler 2 (M)</td>
</tr>
<tr>
<td>HMQCTOXY_d213</td>
<td>Set up parameters for 13C HMQCTOXY using decoupler 2 (M)</td>
</tr>
<tr>
<td>hmqctoxy3d</td>
<td>Set up parameters for HMQC-TOCSY 3D pulse sequence (M)</td>
</tr>
<tr>
<td>ho</td>
<td>Horizontal offset (P)</td>
</tr>
<tr>
<td>hom2dj</td>
<td>Set up parameters for HOM2DJ pulse sequence (M)</td>
</tr>
<tr>
<td>homo</td>
<td>Homodecoupling control for the observe channel (P)</td>
</tr>
</tbody>
</table>
Automated proton acquisition (M)

Syntax: \(h1<\text{(solvent)}> \)

Description: Prepares parameters for automatically acquiring a standard \(^1\text{H} \) spectrum. The parameter \texttt{wexp} is set to \texttt{proplot} for standard processing. If \(h1 \) is used as the command for automation via the \texttt{enter} command, then \texttt{au} is supplied automatically and should not be entered on the MACRO line of the \texttt{enter} program. However, it is possible to customize \(h1 \) on the MACRO line by following it with additional commands and parameters. (e.g., entering \(h1\text{nt}=1 \) uses the standard \(h1 \) setup but with only one transient).

Arguments: \texttt{solvent} is the name of the solvent. In automation mode, the solvent is supplied by the \texttt{enter} program. The default is \texttt{‘CDCl3’}.

Examples: \(h1 \)
\(h1\text{('DMSO')} \)
See also: *NMR Spectroscopy User Guide*

Related:
- **au** Submit experiment to acquisition and process data (M)
- **enter** Enter sample information for automation run (C)
- **h1p** Process 1D proton spectra (M)
- **procplot** Automatically process FIDs (M)
- **wexp** When experiment completes (P)

h1freq
Proton frequency of spectrometer (P)

Description: Configuration parameter for the resonance frequency of 1H as determined by the field strength of the magnet. The value is set using the label Proton Frequency in the Spectrometer Configuration window.

Values: 085, 100, 200, 300, 400, 500, 600, 700, 750, 800, 900 (in MHz); 3T, 4T.

See also: *VnmrJ Installation and Administration*

Related:
- **config** Display current configuration and possibly change it (M)

h1p
Process 1D proton spectra (M)

Description: Processes non-arrayed 1D proton spectra using standard macros. **h1p** is called by **proc1d**, but can also be used directly. Fully automatic processing (up to a point where a spectrum could be plotted) is provided: Fourier transformation (using preset weighting functions), automatic phasing (**aphx** macro), select integral regions (**hregions** macro), adjust integral size (**integrate** macro), vertical scale adjustment (**vsadj** macro), avoiding excessive noise (**noiselm** macro), threshold adjustment (if required, **thadj** macro), and referencing to the TMS signal if present (**setref** macro, then **tmsref** macro).

See also: *NMR Spectroscopy User Guide*

Related:
- **aphx** Perform optimized automatic phasing (M)
- **h1** Automated proton acquisition (M)
- **hregions** Select integral regions for proton spectra (M)
- **integrate** Automatically integrate 1D spectrum (M)
- **noiselm** Avoids excessive noise (M)
- **proc1d** Processing macro for simple (non-arrayed) spectra (M)
- **setref** Set frequency referencing for proton spectra (M)
- **thadj** Adjust threshold (M)
- **tmsref** Reference spectrum to TMS line (M)
- **vsadj** Adjust vertical scale for proton spectra (M)

h2cal
Calculate strength of the decoupler field (C)

Syntax:
$h2cal<(j1r,j2r,j0)><:\gamma _{2},pw90,frequency>$

Description: Calculates the strength of the decoupler field. It uses the results from two experiments: one with the decoupler off-resonance at a lower frequency and the other with the decoupler off-resonance at a higher frequency than the frequency of the peak being decoupled.

Arguments:
- $j1r$ is the frequency of the decoupler during these two experiments. The default is that **h2cal** prompts for a value. If the parameter **dof** is arrayed and has two values, **h2cal** assumes these two values represent the decoupler frequencies; if **dof** is arrayed and has more than two values, **h2cal** prompts for the two decoupler frequencies.
j2r is the reduced coupling constants from the two experiments. The default is that \(h_{2cal} \) prompts for a value.

\(j_0 \) is the full coupling constant that results when no decoupling is done. The default is a value of 142 Hz, the constant for the standard sample dioxane, or 15 Hz for the methyl iodide sample.

gamma_h2 is a return value set to the strength of the decoupler field.

\(pw_{90} \) is a return value set to the pulse width of a 90° pulse from the decoupler. It is related to the value of parameter \(dmf \) through the equation \(dmf = 1 / pw_{90} \).

\(frequency \) is a return value set to the coalescence point (i.e., frequency at which single-frequency decoupling would collapse the dioxane to a singlet).

See also: *NMR Spectroscopy User Guide*

Related:
- \(dmf \): Decoupler modulation frequency for first decoupler (P)
- \(dof \): Frequency offset for first decoupler (P)

halt

Abort acquisition with no error (C)

Syntax: `halt`

Description: Aborts an experiment that has been submitted to acquisition. If the experiment is active, it is aborted immediately, all data is discarded, and the experiment is interpreted as complete. Any data collected from an earlier block size transfer is retained. If any \(wexp \) processing is defined, that processing then occurs, followed by any queued experiments. The login name, and the FID directory path in \(\text{file} \) are used as keys to find the proper experiment to abort.

Under some circumstances, there is a delay between the time \(go \) is entered and the acquisition is started. During this time, instructions based on the selected pulse sequence are being generated. This is signified by the letters “PSG” appearing in the upper left corner of the status window. A `halt` command issued under these circumstances reports that no acquisition is active but it instead stops the instruction generation process and displays “PSG aborted”.

See also: *NMR Spectroscopy User Guide*

Related:
- \(aa \): Abort acquisition with error (C)
- \(file \): File name of parameter set (P)
- \(go \): Submit experiment to acquisition (C)
- \(wexp \): Specify action when experiment completes (C)
- \(wexp \): When experiment completes (P)

hc

Automated proton and carbon acquisition (M)

Syntax: `hc<solvent>`

Description: Combines the operation of the \(h_1 \) and \(c_{13} \) macros. In non-automation mode, both spectra are acquired in the experiment in which the \(hc \) macro was entered. After the completion of the acquisition, \(rttmp \) can be used for further processing of the two spectra.

Arguments: \(solvent \) is the solvent name In automation mode, the \(enter \) program supplies the value. In non-automation mode, the default is \('cdcl3' \).

Examples:

- `hc`
- `hc('dmso')`

See also: *NMR Spectroscopy User Guide*

Related:
- \(c_{13} \): Automatic carbon acquisition (M)
- \(enter \): Enter sample information for automation run (M,U)
- \(h_1 \): Automated proton acquisition (M)
- \(rttmp \): Retrieve experiment data from experiment subfile (M)
hcapt
Automated proton, carbon, and APT acquisition (M)

Syntax:
`hcapt<(solvent)>

Description: Combines the operation of the `h1` and `c13` macros and the APT experiment. In non-automation mode, all spectra are acquired in the experiment in which the `hcapt` macro was entered. After acquisition completes, `rttmp` can be used for further processing of the three spectra.

Arguments:
solvent is the solvent name. In automation mode, the `enter` program supplies the value. In non-automation mode, the default is `'cdcl3'`.

Examples:
`hcapt`
`hcapt('dmso')`

See also: *NMR Spectroscopy User Guide*

Related:
- **Apt**
 Set up parameters for APT experiment (M)
- **c13**
 Automatic carbon acquisition (M)
- **enter**
 Enter sample information for automation run (M,U)
- **h1**
 Automated proton acquisition (M)
- **rttmp**
 Retrieve experiment data from experiment subfile (M)

hcchtocsy
Set up parameters for HCCHTOCSY pulse sequence (M)

Description: Used for sidechain assignments in fully 13C-enriched molecules.

See also: *NMR Spectroscopy User Guide*

hccorr
Automated proton, carbon, and HETCOR acquisition (M)

Syntax:
`hccorr<(solvent)>

Description: Combines the operation of the `h1` and `c13` macros and the HETCOR experiment. In non-automation mode, all spectra are acquired in the experiment in which `hccorr` is entered. After the completion of the acquisition, `rttmp` can be used for further processing of the three spectra.

Arguments:
solvent is the solvent name. In automation mode, the `enter` program supplies the value. In non-automation mode, the default is `'cdcl3`.

Examples:
`hccorr`
`hccorr('dmso')`

See also: *NMR Spectroscopy User Guide*

Related:
- **c13**
 Automated carbon acquisition (M)
- **enter**
 Enter sample information for automation run (M,U)
- **h1**
 Automated proton acquisition (M)
- **hetcor**
 Set up parameters for HETCOR experiment (M)
- **rttmp**
 Retrieve experiment data from experiment subfile (M)

hcdept
Automated proton, carbon, and DEPT acquisition (M)

Syntax:
`hcdept<(solvent)>

Description: Combines the operation of the `h1` and `c13` macros and the DEPT experiment. In non-automation mode, all spectra are acquired in the experiment in which `hcdept` was entered. After the completion of the acquisition, `rttmp` can be used for further processing of the three spectra.

Arguments:
solvent is the solvent name. In automation mode, the `enter` program supplies the value. In non-automation mode, the default is `'cdcl3`.

Related:
- **c13**
 Automated carbon acquisition (M)
- **enter**
 Enter sample information for automation run (M,U)
- **h1**
 Automated proton acquisition (M)
- **rttmp**
 Retrieve experiment data from experiment subfile (M)
Examples: hcdept
hcdept('dmso')

See also: NMR Spectroscopy User Guide

Related: c13 Automatic carbon acquisition (M)
Dept Set up parameters for DEPT experiment (M)
enter Enter sample information for automation run (M,U)
h1 Automated proton acquisition (M)
rttmp Retrieve experiment data from experiment subfile (M)

hcossy
Automated proton and COSY acquisition (M)

Syntax: hcossy<(solvent)>

Description: Combines the operation of the h1 macro and the COSY experiment. In non-automation mode, both spectra are acquired in the experiment in which hcossy is entered. After acquisition completes, rttmp can be used for further processing of the two spectra.

Arguments: solvent is the solvent name. In automation mode, the enter program supplies the value. In non-automation mode, the default is 'cdcl3'.

Examples: hcossy
hcossy('dmso')

See also: NMR Spectroscopy User Guide

Related: enter Enter sample information for automation run (C)
h1 Automated proton acquisition (M)
rttmp Retrieve experiment data from experiment subfile (M)

hdmf
Modulation frequency for homonuclear decoupling (P)

Applicability: DirectDrive liquids, 400 MR

Syntax: hdmf=<value>

Description: Sets the modulation frequency for the band selective homonuclear decoupling. The parameter specifies $1/\mathrm{pw90}$ at the power value, hdpwr, used for homonuclear decoupling. The parameter is not used with single frequency homonuclear decoupling.

Related: dutyc The rf duty cycle fraction for homonuclear decoupling (P)
hdof Frequency offset for homodecoupling (P)
hdpwr Sets the rf attenuator to control the power for homonuclear decoupling (P)
hdpwrf Sets the rf linear modulator fine power for homonuclear decoupling (P)
hdres Sets the tip angle resolution (P)
hdseq Sets the decoupler waveform filename (P)
homo Homodecoupling control for observe channel (P)
homorof1 Delay before turning on homo decoupling rf (P)
homorof2 Delay after blanking the amplifier and setting T/R switch to receive (P)
homorof3 Delay between setting T/R switch to receive gating on the receiver (P)
tn Nucleus for observe transmitter (P)

hcmult
Execute protocol actions of apptype hcmult (M)

Description: This macro is used to execute the protocol actions of the hcmult apptype.
Examples:

- `hcmult('setup')` – execute hcmult experimental setup
- `hcmult('process')` – execute hcmult processing
- `hcmult('plot')` – execute hcmult plotting

See also: *NMR Spectroscopy User Guide, VnmrJ Walkup*

Related:
- `apptype` Application type (P)
- `execpars` Set up the exec parameters (M)

hdof

Frequency offset for homodecoupling (P)

Applicability: DirectDrive systems

Syntax: `hdof=<value>`

Description: Sets the irradiation frequency offset for homonuclear decoupling and similar to how `tof`, and `dof` determine the frequency. The parameter is not used if `hdseq` is set to a filename.

Values: –100000 to 100000 Hz in steps of 0.1 Hz.

Related:
- `dutyc` The rf duty cycle fraction for homonuclear decoupling (P)
- `hdmf` Modulation frequency for the band selective homonuclear decoupling (P)
- `hdpwr` Sets the rf attenuator to control the power for homonuclear decoupling (P)
- `hdpwrf` Homodecoupling fine power (optional) (P)
- `hdres` Sets the tip angle resolution (P)
- `hdseq` Sets the decoupler waveform filename (P)
- `homo` Homodecoupling control for observe channel (P)
- `homorof1` Delay before turning on homo decoupling rf (P)
- `homorof2` Delay after blanking the amplifier and setting T/R switch to receive (P)
- `homorof3` Delay between setting T/R switch to receive gating on the receiver (P)
- `tn` Nucleus for observe transmitter (P)

hdpwr

Power level for homodecoupling (P)

Applicability: DirectDrive systems

Syntax: `hdpwr=<value>`

Description: Sets the rf attenuator to control the power for homonuclear decoupling. The `dutyc` parameter must be accounted for when setting `hdpwr`.

Values: -16 to 50 dB

CAUTION: Homodecoupling power greater than 2 watts in a switchable probe will damage the probe. Always carefully calibrate homodecoupling to avoid exceeding 2 watts. The maximum value for `hdpwr` is set to 49, corresponding to about 2 watts of power. The actual power delivered depends on the CW duty cycle. Before using close to the maximum value of power or duty cycle, ensure safe operation by measuring the output power.

Related:
- `dutyc` The rf duty cycle fraction for homonuclear decoupling (P)
- `hdmf` Modulation frequency for the band selective homonuclear decoupling (P)
- `hdof` Frequency offset for homodecoupling (P)
- `hdpwrf` Homodecoupling fine power (optional) (P)
- `hdres` Sets the tip angle resolution (P)
- `hdseq` Sets the decoupler waveform filename (P)
hdpwr

Homodecoupling fine power (optional) (P)

Applicability: DirectDrive systems

Syntax: `hdpwr=<value>`

Description: Sets the rf linear modulator fine power for homonuclear decoupling. The default is 4095 if the variable does not exist. Attenuation is added to the attenuation set by `hdpwr`.

Values: 0-4095

Related: `dutyc` The rf duty cycle fraction for homonuclear decoupling (P)
`hdmf` Modulation frequency for the band selective homonuclear decoupling (P)
`hdof` Frequency offset for homodecoupling (P)
`hdpwr` Sets the rf attenuator to control the power for homonuclear decoupling (P)
`hdres` Sets the tip angle resolution (P)
`hdseq` Sets the decoupler waveform filename (P)
`homo` Homodecoupling control for observe channel (P)
`homorof1` Delay before turning on homo decoupling rf (P)
`homorof2` Delay after blanking the amplifier and setting T/R switch to receive (P)
`homorof3` Delay between setting T/R switch to receive gating on the receiver (P)
`tn` Nucleus for observe transmitter (P)

hdres

Sets the tip angle resolution (P)

Applicability: DirectDrive liquids systems

Syntax: `hdres=<value>`

Description: Sets the tip angle resolution to be used for the band selective waveform mode of homonuclear decoupling. The parameter is not used with single frequency homonuclear decoupling.

Values: 1 to 90 in units of degrees with 1 degree resolution

Related: `dutyc` The rf duty cycle fraction for homonuclear decoupling (P)
`hdmf` Modulation frequency for the band selective homonuclear decoupling (P)
`hdof` Frequency offset for homodecoupling (P)
`hdpwr` Sets the rf attenuator to control the power for homonuclear decoupling (P)
`hdpwr` Sets the rf linear modulator fine power for homonuclear decoupling (P)
`hdseq` Sets the decoupler waveform filename (P)
`homo` Homodecoupling control for observe channel (P)
`homorof1` Delay before turning on homo decoupling rf (P)
`homorof2` Delay after blanking the amplifier and setting T/R switch to receive (P)
`homorof3` Delay between setting T/R switch to receive gating on the receiver (P)
`tn` Nucleus for observe transmitter (P)
hdseq

Waveform filename for band selective decoupling (P)

Applicability: DirectDrive systems

Syntax: `hdseq='filename'` — the file must have a .DEC extension.

Description: Sets the decoupler waveform filename (.DEC extension) for the band selective waveform mode. The irradiation frequency is determined by the transmitter offset last applied to the observe channel in the pulse sequence (typically `tof`) and any additional frequency offset from any phase modulation programmed implicitly into the waveform .DEC file.

Examples: `hdseq=''` or does not exist — single frequency decoupling is used.

Related: `dutyc`, `hdmf`, `hdoe`, `hdpwr`, `hdpwrf`, `hdres`, `homo`, `homo1`, `homo2`, `homo3`, `tn`

hdwshim

Hardware shimming (P)

Applicability: Systems with additional Z1 shimming hardware.

Description: Allows `go`, `su`, `au`, etc., to turn on and off shimming hardware. Hardware shimming is automatically suspended during software autoshimming. Hardware shimming is only active during acquisition (`go`, `ga`, `au`). `hdwshim` is a global parameter, so it affects all experiments.

Values: 'y' turns hardware shimming on.
'p' turns hardware shimming on during presaturation pulse (power level change followed by pulse).
'n' turns shimming off.

See also: *NMR Spectroscopy User Guide*

Related: `au`, `go`, `su`, `ga`

hdwshimlist

List of shims for hardware shimming (P)

Description: A global parameter that sets the shims to use during hardware shimming. If it does not exist, hardware shimming uses `z1` by default. To create the parameter, use `create('hdwshimlist','string','global')`.

Values: Any string composed of `z1`, `z1c`, `z2`, `z2c`, `x1`, `y1`. Commas and blank space are ignored. Shimming is done in the order `z1`, `z2`, `x1`, `y1`, regardless of the order in the string.
Examples:
hdwshimlist='z1'
hdwshimlist='z1z2x1y1'

See also:
NMR Spectroscopy User Guide

Related:
create Create new parameter in a parameter tree (C)
hdwshim Hardware shimming (P)

het2dj
Set up parameters for HET2DJ pulse sequence (M)
Description:
Sets up a HET2DJ (heteronuclear 2D-J) experiment.

See also:
NMR Spectroscopy User Guide

Related:
foldj Fold J-resolved 2D spectrum about f1=0 axis (C)

HETCOR
Change parameters for HETCOR experiment (M)
Description:
Converts the current parameter set to a HETCOR experiment. This is a phase-sensitive, multiplicity-selected experiment.

hetcor
Set up parameters for HETCOR pulse sequence (M)
Syntax:
hetcor<(exp_number)>
Description:
Sets up a HETCOR (heteronuclear chemical shift correlation) experiment.
Arguments:
exp_number is the number of the experiment, from 1 to 9, in which a proton spectrum of the sample already exists.

See also:
NMR Spectroscopy User Guide
Related:
plhxcor Plot X,H-correlation 2D spectrum (M)
ppcal Proton decoupler pulse calibration (M)

hetcorcp1
Set up parameters for solids HETCOR pulse sequence (M)
Applicability:
Systems with the solids module.
Description:
Sets up a parameter set, obtained withXPOLAR1, for HETCORCP1, the solid-state heteronuclear correlation experiment.

See also:
User Guide: Solid-State NMR
Related:
xpolar1 Set up parameters for XPOLAR1 pulse sequence (M)

hetcorps
Set up parameters for HETCORPS pulse sequence (M)
Description:
Sets up parameters for a heteronuclear chemical shift correlation experiment (absolute value and phase sensitive).

See also:
NMR Spectroscopy User Guide

hetero2d
Execute protocol actions of apptype hetero2d (M)
Applicability:
Liquids
Description:
Perform the actions for Homonuclear 2D protocols to set up, process, and plot experiments.

Examples:
hetero2d('setup') execute hetero2d experimental setup
hetero2d('process') execute hetero2d processing
hetero2d('plot') execute hetero2d plotting
See also: *NMR Spectroscopy User Guide, VnmrJ Walkup*

Related: `apptype` Application type (P)
 `execpars` Set up the exec parameters (M)

hidecommand Execute macro instead of command with same name (C)

Syntax:
1. `hidecommand(command_name):$new_name`
2. `hidecommand('?')`

Description: Renames (or hides) a built-in VnmrJ command so that a macro with the same name as the built-in command is executed instead of the built-in command.

Arguments:
- `command_name` is the name of the command to be renamed. To reset the built-in command back to its original name, enter `hidecommand` with the hidden name as the argument.
- `$new_name` returns the new name of the built-in command. By using this new name, access is still available to the built-in command.
- `'? ' is a keyword to display a list of all of the renamed built-in commands and their original names.

Examples:
- `hidecommand('sys'):$newname`
- `hidecommand('Sys')`
- `hidecommand('?')`

See also: *System Administration; User Programming*

Related: `which` Display which macro or command is used (M)

hipwrampenable High Power Amplifier Enable (P)

Applicability: DirectDrive solids and systems with high power amplifiers.

Description: This parameter controls the High/Low Power Relay. If the parameter does not exist low power is used. If the parameter exists and the field corresponding to the physical channel is 'n' then low power is used. If the parameter exists and the field corresponding to the physical channel is 'y' then high power is used. The parameter is created in the current tree as a flag with `create('hipwrampenable','flag')`.

Values:
- 'y' Enable high power
- 'n' Enable low power and disable high power

Examples:
- `hipwrampenable='yny'`
 Physical channel 1 and 3 are high power enabled. Physical channel 2 is low power.

Hmbc Convert the parameter to a HMBC experiment (M)

Description: Convert the parameter to a HMBC experiment.

See also: *NMR Spectroscopy User Guide*

Hmqc Convert the parameter to a HMQC experiment (M)

Description: Convert the parameter to a HMQC experiment.

HMQC15 Set up parameters for 15N HMQC experiment (M)

Description: Converts the current parameter set to a HMQC experiment for 15N.
HMQC_d2 Set up parameters for 15N HMQC experiment using dec. 2 (M)
Description: Converts the current parameter set to a HMQC experiment for 15N with decoupler 2 as 15N.

HMQC_d213 Set up parameters for 13C HMQC experiment using dec. 2 (M)
Description: Converts the current parameter set to a HMQC experiment for 13C with decoupler 2 as 13C.

hmqcr Set up parameters for HMQCR pulse sequence (M)
Applicability: Not needed in current systems. Normally was used in systems with a 1H only decoupler.
Description: Sets up a HMQC (heteronuclear multiple-quantum coherence) experiment with “reverse” configuration.
See also: *NMR Spectroscopy User Guide*

Hmqctoxy Convert the parameter to a HMQCTOXY experiment (M)
Description: Convert the parameter to a HMQCTOXY experiment.

HMQCTOXY15 Set up parameters for 15N HMQCTOXY experiment (M)
Description: Converts the current parameter set to a HMQCTOXY experiment for 15N.

HMQCTOXY_d2 Set up parameters for 15N HMQCTOXY using decoupler 2 (M)
Description: Converts the current parameter set to a HMQCTOXY experiment for 15N with decoupler 2 as 15N.

HMQCTOXY_d213 Set up parameters for 13C HMQCTOXY using decoupler 2 (M)
Description: Converts the current parameter set to a HMQCTOXY experiment for 13C with decoupler 2 as 13C.

hmqctoxy3d Set up parameters for HMQC-TOCSY 3D pulse sequence (M)
Description: Sets up parameters for a HMQC-TOCSY 3D experiment with a presaturation option.

ho Horizontal offset (P)
Description: Horizontal offset of the each spectrum in a “stacked display” with respect to the previous spectrum. For 1D data sets, the parameter vo sets the vertical offset. For 2D data sets, the parameter wc2 sets the vertical distance (in mm) between the first and last traces.
Values: Number, in mm, for offset size. For a “left-to-right” presentation, ho is typically negative; for “bottom-to-top” presentation, vo or wc2 is positive.

hom2dj Set up parameters for HOM2DJ pulse sequence (M)
Description: Sets up a HOM2DJ (homonuclear J-resolved 2D) experiment.
See also: *NMR Spectroscopy User Guide*
homo

Homodecoupling control for the observe channel (P)

Applicability: Inova systems

Description: Enables time-shared decoupling. Unlike the `dm`, `dmm`, and `hs` parameters, `homo` is not under “status” control. On systems with type 2 or 3 interface board (apinterface=2 or apinterface=3), `homo` does not control any signal routing; the position of the relevant relays is controlled by whether homonuclear decoupling (\(tn\) equals \(dn\)) or heteronuclear decoupling (\(tn\) not equal to \(dn\)) is in effect.

Syntax: `homo=<'y' or 'n'>`

Values: 'y' specifies that the receiver is gated, which is done by controlling the observe L.O. (local oscillator) line. If `dm='y'`, first decoupler rf, amplifier (blanked/unblanked), and preamplifier are gated. If `dm='n'`, no gating of these signals takes place. When `homo` is set to 'y', `dmm` should be set to 'c' for continuous wave (CW) modulation.

'n' homonuclear decoupling rf and receiver gating is turned off.

Related: `hdof` Frequency offset for homodecoupling (P)
`hdpwr` Power level for homodecoupling (P)
`hdwpwr` Homodecoupling fine power (P)
`dutyc` Duty cycle for homodecoupling (optional) (P)
`tn` Nucleus for observe transmitter (P)
`homo2` Homodecoupling control for second decoupler (P)
`homo3` Homodecoupling control for third decoupler (P)
`homo4` Homodecoupling control for fourth decoupler (P)
`homorof1` Delay before turning on homo decoupling rf (P)
`homorof2` Delay after blanking the amplifier and setting T/R switch to receive (P)
`homorof3` Delay between setting T/R switch to receive gating on the receiver (P)

homo2

Homodecoupling control for second decoupler (P)

Applicability: Systems with a second decoupler.

Description: Equivalent to the parameter `homo`. It works in conjunction with the parameters `dm2` and `dmm2`.

Values: 'n', 'y'

Related: `dm2` Decoupler mode for second decoupler (P)
`dmm2` Decoupler modulation mode for second decoupler (P)
`dn2` Nucleus for second decoupler (P)
`homo` Homodecoupling control for first decoupler (P)
`homo3` Homodecoupling control for third decoupler (P)
`homo4` Homodecoupling control for fourth decoupler (P)

homo3

Homodecoupling control for third decoupler (P)

Applicability: Systems with a third decoupler.

Description: Equivalent to the parameter `homo`. It works in conjunction with the parameters `dm3` and `dmm3`.

Values: 'n', 'y'
homo4

Homodecoupling control for fourth decoupler (P)

Applicability: Systems with a deuterium decoupler channel as the fourth decoupler.

Description: Equivalent to the parameter `homo`. It works in conjunction with the parameters `dm4` and `dmm4`.

Values: 'n', 'y'

Related:
- `dm4` Decoupler mode for fourth decoupler (P)
- `dmm4` Decoupler modulation mode for fourth decoupler (P)
- `dn4` Nucleus for fourth decoupler (P)
- `homo` Homodecoupling control for first decoupler (P)
- `homo2` Homodecoupling control for second decoupler (P)
- `homo3` Homodecoupling control for third decoupler (P)

HOMODEC

Change parameters for HOMODEC experiment (M)

Description: Converts the current parameter set to a HOMODEC experiment. A 1D proton spectrum is displayed to do peak selection.

homo2d

Execute protocol actions of apptype homo2d (M)

Applicability: Inova

Description: Perform the actions for Heteronuclear 2D protocols to set up, process, and plot experiments.

Examples:
- `homo2d('setup')` execute homo2d experimental setup
- `homo2d('process')` execute homo2d processing
- `homo2d('plot')` execute homo2d plotting

See also: *NMR Spectroscopy User Guide, VnmrJ Walkup*

Related:
- `apptype` Application type (P)
- `execpars` Set up the exec parameters (M)

homorof1

Delay before turning on homo decoupling rf (P)

Applicability: DirectDrive systems

Description: Optional parameter for delay before turning on homonuclear decoupling after gating the receiver off. The amplifier is un-blanked and T/R switch set to transmit mode during homorof1 delay (in μsec. units). A default delay of 2 μsec. is used if the parameter does not exist.

Values: 2 to 5 μsec. are typical.

Related:
- `dutyc` The rf duty cycle fraction for homonuclear decoupling (P)
- `hdmf` Modulation frequency for the band selective homonuclear decoupling (P)
homorof2
Delay after blanking the amp and setting T/R switch to recv (P)

Applicability: DirectDrive systems
Description: Optional parameter for delay after the transmitter is gated off, the amplifier is blanked, and before the T/R switch is set to receive. A default delay of 2 μsec. is used if the parameter does not exist.

Values: 2 to 5 μsec. are typical.

Related:
- **dutyc** The rf duty cycle fraction for homonuclear decoupling (P)
- **hdmf** Modulation frequency for the band selective homonuclear decoupling (P)
- **hdofo** Frequency offset for homodecoupling (P)
- **hdpwr** Sets the rf attenuator to control the power for homonuclear decoupling (P)
- **hdpwrf** Sets the rf linear modulator fine power for homonuclear decoupling (P)
- **hseq** Sets the decoupler waveform filename (P)
- **hreso** Sets the tip angle resolution (P)
- **homo** Homodecoupling control for observe channel (P)
- **homorof1** Delay before turning on homo decoupling rf (P)
- **homorof3** Delay between setting T/R switch to receive gating on the receiver (P)
- **tn** Nucleus for observe transmitter (P)

homorof3
Delay between setting T/R to receive and gating the recvr on (P)

Applicability: DirectDrive systems
Description: Optional parameter for delay after the T/R switch is set to receive and before the receiver gate is gated on. A default delay of 2 μsec. is used if the parameter does not exist.

Values: 2 to 5 μsec. are typical

Related:
- **dutyc** The rf duty cycle fraction for homonuclear decoupling (P)
- **hdmf** Modulation frequency for the band selective homonuclear decoupling (P)
- **hdofo** Frequency offset for homodecoupling (P)
- **hdpwr** Sets the rf attenuator to control the power for homonuclear decoupling (P)
- **hdpwrf** Sets the rf linear modulator fine power for homonuclear decoupling (P)
- **hseq** Sets the decoupler waveform filename (P)
- **hreso** Sets the tip angle resolution (P)
- **homo** Homodecoupling control for observe channel (P)
- **homorof1** Delay before turning on homo decoupling rf (P)
- **homorof3** Delay between setting T/R switch to receive gating on the receiver (P)
- **tn** Nucleus for observe transmitter (P)
hoult

Set parameters alfa and rof2 according to Hoult (M)

Description: Sets the values of alfa and rof2 according to a prescription advanced by D. I. Hoult (*J. Magn. Reson.* 51, 110 (1983)). These parameters set the times that follow the final pulse, which can be important where the flatness of the baseline is of concern.

See also: *NMR Spectroscopy User Guide*

Related: alfa Set alfa delay before acquisition (P)
calfa Recalculate alfa so that first-order phase is zero (M)
rof2 Receiver gating time following pulse (P)

hpa

Plot parameters on special preprinted chart paper (C)

Description: Plots a predetermined list of parameters by “filling in the blanks” at the bottom of the preprinted chart paper available for Hewlett-Packard 7475- and 7550-series plotters.

See also: *NMR Spectroscopy User Guide*

Related: apa Plot parameters automatically (M)
x0 X-zero position of HP plotter or Postscript device (P)
y0 Y-zero position of HP plotter or Postscript device (P)

Hprescan

Proton prescan (P))

Applicability: *VnmrJ Walkup*

Description: This parameter is used to keep track of the type and status of the Proton prescan. It is used for Proton, Presat, Wet1d, and Minsw protocols.

See also: *VnmrJ Walkup*

Related: xmplprescan Set up and process Proton prescans (M)

hregions

Select integral regions in proton spectrum (M)

Description: Selects integral regions, a critical step in automatic processing of proton spectra. It is critical not only because of aesthetic reasons (some people like many small integrals, others prefer a few large regions), but also because other commands, such as bc, depend on the correct integration: bc can either fail or it can make broad, unintegrated lines disappear from the spectrum. hregions was specifically designed for proton spectra and should not be used for other types of spectra. The result of hregions also depends on the lineshape and the signal-to-noise ratio of a spectrum.

See also: *NMR Spectroscopy User Guide*

Related: bc 1D and 2D baseline correction (C)
integrate Automatically integrate 1D spectrum (M)

hs

Homospoil pulses (P)

Description: Turns on homospoil pulses at various times in different pulse sequences. Homospoil is a process by which the homogeneity is temporarily made very bad (“spoiled”) to cause any transverse magnetizations present at that time to decay rapidly to zero. hs controls the length of any homospoil pulse.

Values: In a standard two-pulse sequence, homospoil pulses can be inserted during periods A and B (delays d1 and d2): hs='yn' gives a homospoil pulse at the beginning of d1, hs='ny' gives a pulse during d2, and hs='yy' gives
homospoil pulses during both d_1 and d_2. The desired value is generally $hs='nn'$.

See also: NMR Spectroscopy User Guide

Related:
- d_1 First delay (P)
- d_2 Incremented delay in 1st indirectly detected dimension (P)
- hst Homospoil time (P)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hsqc</td>
<td>Convert the parameter to a HSQC experiment (M)</td>
</tr>
<tr>
<td>Description:</td>
<td>Convert the parameter to a HSQC experiment.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>HSQC15</td>
<td>Set up parameters for 15N HSQC experiment (M)</td>
</tr>
<tr>
<td>Description:</td>
<td>Converts the current parameter set to a HSQC experiment for 15N.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>HSQC_d2</td>
<td>Set up parameters for 15N HSQC experiment using dec. 2 (M)</td>
</tr>
<tr>
<td>Description:</td>
<td>Converts the current parameter set to a HSQC experiment for 15N with</td>
</tr>
<tr>
<td></td>
<td>decoupler 2 as 15N.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>HSQC_d213</td>
<td>Set up parameters for 13C HSQC experiment using dec. 2 (M)</td>
</tr>
<tr>
<td>Description:</td>
<td>Converts the current parameter set to a HSQC experiment for 13C with</td>
</tr>
<tr>
<td></td>
<td>decoupler 2 as 13C.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>HsqcHT</td>
<td>Set up the HsqcHT experiment (M)</td>
</tr>
<tr>
<td>Description:</td>
<td>Sets up parameters for a Hadamard-encoded hsqc experiment.</td>
</tr>
<tr>
<td>See also:</td>
<td>NMR Spectroscopy User Guide</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Related:</td>
</tr>
<tr>
<td></td>
<td>htofs1 Hadamard frequency list in ni (P)</td>
</tr>
<tr>
<td></td>
<td>htfrq1 Hadamard offset in ni (P)</td>
</tr>
<tr>
<td></td>
<td>fn1 Fourier number in 1st indirectly detected dimension (P)</td>
</tr>
<tr>
<td></td>
<td>ni Number of increments in 1st indirectly detected dimension (P)</td>
</tr>
<tr>
<td></td>
<td>ft2d Fourier transform 2D data (C)</td>
</tr>
<tr>
<td></td>
<td>sethtfrq1 Set a Hadamard frequency list from a line list (M)</td>
</tr>
<tr>
<td></td>
<td>Hsqc Set up parameters for HSQC experiment (M)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Hsqctoxy</td>
<td>Convert parameters to a HSQCTOXY experiment (M)</td>
</tr>
<tr>
<td>Description:</td>
<td>Convert the parameter to a HSQCTOXY experiment.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>HSQCTOXY15</td>
<td>Set up parameters for 15N HSQCTOXY experiment (M)</td>
</tr>
<tr>
<td>Description:</td>
<td>Converts the current parameter set to a HSQCTOXY experiment for 15N.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>HSQCTOXY_d2</td>
<td>Set up parameters for 15N HSQCTOXY using decoupler 2 (M)</td>
</tr>
<tr>
<td>Description:</td>
<td>Converts the current parameter set to a HSQCTOXY experiment for 15N with</td>
</tr>
<tr>
<td></td>
<td>decoupler 2 as 15N.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>HSQCTOXY_d213</td>
<td>Set up parameters for 13C HSQCTOXY using decoupler 2 (M)</td>
</tr>
<tr>
<td>Description:</td>
<td>Converts the current parameter set to a HSQCTOXY experiment for 13C with</td>
</tr>
<tr>
<td></td>
<td>decoupler 2 as 13C.</td>
</tr>
</tbody>
</table>
hsqctoxy

Set up parameters for HSQC-TOCSY 3D pulse sequence (M)

Description: Sets up parameters for a HSQC-TOCSY 3D experiment.

hsrotor

Display rotor speed for solids operation (P)

Applicability: Systems equipped with the rotor synchronization module.

Description: Controls display of rotor speed. Depending on whether the rotor synchronization module is present (set by the Rotor Synchronization label in the Spectrometer Configuration window, parameter `rotsync` is set to 1 or 0. The `xpolar1` macro in turn uses this to create `hsrotor`, which is set to 'y' if rotor synchronization is present. If the parameter `srate` exists, it is updated to the spin speed of the rotor at the end of the experiment. The interlock function specified by parameter `in` also changes. If `hsrotor='y'` and `in='y'`, the experiment is terminated if rotor speed deviates more than 100 Hz.

hst

Homospoil time (P)

Description: Controls pulse length if homospoil is activated by the `hs` parameter.

Values: 0 to 20 ms (limited by hardware).

Values: 'n' makes `srate` unmodified by acquisition and turns off the rotor speed display in `Acqstat`.

'y' makes the hardware information from the rotor synchronization board update `srate` and displays the rotor speed in the `Acqstat` status display.

See also: *User Guide: Solid-State NMR*

Related: `Acqstat` Bring up the acquisition status display (U)
`config` Display current configuration and possibly change it (M)
`in` Interlock (P)
`rotsync` Rotor synchronization (P)
`srate` Spinning speed (P)
`xpolar1` Set up parameters for XPOLAR1 pulse sequence (M)

htbitrev

Hadamard bit reversal flag (P)

Description: A flag to enable or disable bit reversal of the Hadamard matrix. The flag should be the same for both acquisition and processing for the Hadamard transform to be successful.

Values: 'y' enable Hadamard bit reversal

'N' disable Hadamard bit reversal

Default value is 'n'.

See also: *NMR Spectroscopy User Guide*

Related: `htfrq1` Hadamard frequency list in ni (P)

htbw1

Hadamard pulse excitation bandwidth in ni (P)

Description: The excitation bandwidth used to generate the frequencies contained in the shaped pulses used by the Hadamard matrix. If a single value is specified, the same bandwidth is used for all frequencies. If the parameter is arrayed, the bandwidth array element is used by the corresponding array element in `htfrq1`.

Values: Default value is 20.0 if the parameter does not exist.
See also: *NMR Spectroscopy User Guide*

htcall
RF calibration flag for Hadamard waveforms in ni (P)

Description: A flag to allow power optimization of Hadamard waveforms in the 1st indirect dimension.

Values:
- 0: power optimization using htpwr1 is disallowed
- >0: power optimization using htpwr1 is allowed

Default value is 0.

See also: *NMR Spectroscopy User Guide*

Related:
- **htfrq1**: Hadamard frequency list in ni (P)
- **htofsl**: Hadamard offset in ni (P)
- **fn1**: Fourier number in 1st indirectly detected dimension (P)
- **ni**: Number of increments in 1st indirectly detected dimension (P)
- **sethtfrql**: Set Hadamard frequency list from a line list (M)
- **pro1**: Type of processing on ni interferogram (P)
- **sw1**: Spectral width in 1st indirectly detected dimension (P)

htfrq1
Hadamard frequency list in ni (P)

Description: A list of frequencies used in Hadamard spectroscopy, used for creating the Hadamard pulse shapes, and for placing the transformed traces at the correct frequencies in the indirect dimension.

Values: Typical values are an arrayed set of frequencies between $-sw1/2$ and $sw1/2$.

See also: *NMR Spectroscopy User Guide*

Related:
- **htfrq1**: Hadamard frequency list in ni (P)
- **htofsl**: Hadamard offset in ni (P)
- **fn1**: Fourier number in 1st indirectly detected dimension (P)
- **ni**: Number of increments in 1st indirectly detected dimension (P)
- **sethtfrq1**: Set Hadamard frequency list from a line list (M)
- **pro1**: Type of processing on ni interferogram (P)
- **sw1**: Spectral width in 1st indirectly detected dimension (P)

htofsl
Hadamard offset in ni (P)

Description: The number of array elements to skip in ni when doing the Hadamard transform. The first element of the Hadamard matrix typically has all positive values (+++), and is usually not useful in constructing the Hadamard data.

Values: Default value is 0. Typical values are 1 or 2.

See also: *NMR Spectroscopy User Guide*

Related:
- **htfrq1**: Hadamard frequency list in ni (P)
- **fn1**: Fourier number in 1st indirectly detected dimension (P)
- **ni**: Number of increments in 1st indirectly detected dimension (P)
- **sethtfrq1**: Set Hadamard frequency list from a line list (M)
- **pro1**: Type of processing on ni interferogram (P)

htpwr1
Power level for RF calibration of Hadamard waveforms in ni (P)

Description: Power level for optimizing Hadamard waveforms in the 1st indirect dimension.

Values: -16 to 63 dB in steps of 1 dB.

See also: *NMR Spectroscopy User Guide*

Related:
- **htfrq1**: Hadamard frequency list in ni (P)
- **htcall**: RF calibration flag for Hadamard waveforms in ni (P)
- **ni**: Number of increments in 1st indirectly detected dimension (P)
htss1 Stepsize for Hadamard waveforms in ni (P)
Description: Sets the stepsize during Hadamard waveform creation. Typically, this parameter is not needed, and a default stepsize is used.
Values: Does not exist - default stepsize is used.
 0 default stepsize is used.
 >0 stepsize in microseconds.
See also: NMR Spectroscopy User Guide
Related: htfreq1 Hadamard frequency list in ni (P)
 ni Number of increments in 1st indirectly detected dimension (P)

hzmm Scaling factor for plots (P)
Description: Contains the quotient of wp divided by wc, a scaling factor useful for plotting. hzmm applies to 1D only.
See also: NMR Spectroscopy User Guide
Related: wc Width of chart (P)
 wp Width of plot (P)

hztomm Convert locations from Hz or ppm to plotter units (C)
Syntax: (1) hztomm(x_position):xmm
 (2) hztomm(x_position,y_position):xmm,ymm
 (3) hztomm('<box','<plotter'|'graphics',>x_left,
 x_right,y_bottom,y_top):<x1mm,x2mm,y1mm,y2mm>
Description: Converts locations from Hz, or ppm, to plotter units.
Arguments: x_position in syntax 1 is a location along the 1D axis, in Hz or ppm, to be converted to plotter units using the current values of parameters sp and wp. Plotter units are mm on most plots and are scaled for graphics display. For ppm entries, use the p suffix following numerical values (see first example below).
 x_position,y_position in syntax 2 is a coordinate, in Hz or ppm, on a 2D plot to be converted to plotter units, using the parameters sp and wp to convert the horizontal position and the parameters sp1 and wp1 to convert the vertical position.
 x_left,x_right,y_bottom,y_top in syntax 3 are box edges, in Hz or ppm, on a 2D plot to be converted to plotter units, using the parameters sp and wp to convert the left and right edges, and parameters sp1 and wp1 to convert the top and bottom edges.
 'box' is a keyword to draw a box and to make the first two return arguments, if supplied, give the location of the upper left corner of the box, in plotter units.
 'plotter' is a keyword to select the plotter. The default is 'graphics'.
 'graphics' is a keyword to select the graphics screen. This is the default.
 x1mm,x2mm,y1mm,y2mm are return arguments giving values in plotter units. If return arguments are not supplied, the results are displayed instead.
Examples: hztomm(20p)
 hztomm(xpos,ypos):xmm,ymm
 hztomm('box','plotter',20,50,10,30)
See also: NMR Spectroscopy User Guide
Related: box Draw a box on a plotter or graphics display (C)
 sp Start of plot in directly detected dimension (P)
 sp1 Start of plot in 1st indirectly detected dimension (P)
wp Width of plot in directly detected dimension (P)
wp1 Width of plot in 1st indirectly detected dimension (P)
i
Insert sample (M)

ihwinfo
Hardware status of console (U)

il
Interleave arrayed and 2D experiments (P)

ilfid
Interleave FIDs during data processing (C)

imagefile
Display an image file (M)

imagemath
Fit images to an specified function (M)

imageprint
Plot non interactive gray scale image (M)

imcon1
Display 2D data in interactive grayscale mode (M)

in
Lock and spin interlock (P)

inadqt
Set up parameters for INADEQUATE pulse sequence (M)

index2
Projection or 3D plane index selected (P)

inept
Set up parameters for INEPT pulse sequence (M)

initialize_iterate
Set iterate string to contain relevant parameters (M)

input
Receive input from keyboard (C)

ins
Integral normalization scale (P)

ins2
2D volume value (P)

insref
Fourier number scaled value of an integral (P)

ins2ref
Fourier number scaled volume of a peak (P)

insert
Insert sample (M)

inset
Display an inset spectrum (C)

integ
Find largest integral in a specified region (C)

integrate
Automatically integrate 1D spectrum (M)

intmod
Integral display mode (P)

intvast
Produces a text file of integral regions (M)

io
Integral offset (P)

is
Integral scale (P)

isadj
Automatic integral scale adjustment (M)

isadj2
Automatic integral scale adjustment by powers of two (M)

isreal
Utility macro to determine a parameter type (M)

isstring
Utility macro to determine a parameter type (M)

iterate
Parameters to be iterated (P)

i

Insert sample (M)

Description: Turns off the eject air, waits for sample to slowly drop, and then turns off the slow drop air. The macro `insert` functions the same as `i`.

See also: *NMR Spectroscopy User Guide*

Related: e
Eject sample (M)

eject
Eject sample (M)

insert
Insert sample (M)
ihwinfo Hardware status of console (U)
Syntax: (From UNIX) ihwinfo('startup'|'abort')
Description: Displays status of digital hardware in the console. The output is intended for service personnel and probably not meaningful to users.
Arguments: 'startup' is a keyword to display the status at the conclusion of the last console startup (powerup, reboot, etc.).
'abort' is a keyword to display the status the last time an acquisition was aborted or the console rebooted from the host computer (abortallacqs). In this context, exiting from either the FID display or lock display of acqi counts as an abort. Only the status from the last abort can be displayed.
Examples: ihwinfo('startup')
 ihwinfo('abort')
See also: NMR Spectroscopy User Guide
Related: abortallacqs Reset acquisition computer in a drastic situation (C)
 showconsole Show console configuration parameters (U)

il Interleave arrayed and 2D experiments (P)
Applicability: Interleaving is not currently supported for the DirectDrive or MR400 systems.

ilfid Interleave FIDs during data processing (C)
Description: Converts a multiple FID element into a single FID. It is possible to effectively extend the Nyquist frequency (i.e., increase the effective spectral width sw) by acquiring a number of FIDs with different tau2 values and then reprocessing the data. ilfid does the necessary processing of time-domain data to achieve this extension, assuming that a pulse sequence (not supplied) has been written to generate the required data.
When invoked in an experiment of nf FIDs, each of np points, ilfid sorts the data into a single FID of np*nf points that can then be transformed. The interleaving takes the first complex point of each of the nf FIDs and places them in sequential order in the new FID. It then takes the second complex point from each of the nf FIDs and appends them sequentially to the new FID. This operation is repeated for all complex points. Although ilfid adjusts np and nf, it does not alter other parameters such as sw.
CAUTION: Because ilfid alters the data irrevocably, it is strongly recommended that you save the FID before using ilfid.
Examples: Illustrated below is the interleaving of an FID with nf=3 and np=4. Each point is represented by two digits. The first digit is the nf number and the second digit is the sequential point for that nf value. Data before the ilfid command:
 11, 12, 13, 14; 21, 22, 23, 24; 31, 32, 33, 34
Data after the ilfid command:
 11, 21, 31, 12, 22, 32, 13, 23, 33, 14, 24, 34
See also: NMR Spectroscopy User Guide
Related: nf Number of FIDs (P)
 np Number of data points (P)
 sw Spectral width in directly detected dimension (P)

imagefile Display an image file (M)
Applicability: Imaging
Syntax: imagefile('output_option','imagefile'\,<,x,y,w,h,'mol'>)
Description: Display or plot an image file at default location and size or, optionally, at location and size specified by:

- x (x-position),
- y (y-position),
- w (width),
- h (height), and
- mol if it is an image file of a molecular structure.

Display all, plot all, or clear all images for the current experiment.

Arguments: output_option choices are:
- clear, clear all images for the current experiment
- display, display imagefile
- displayall, displays all images for the current experiment
- plot, plot imagefile
- plotall, plot all images for the current experiment

imagefile, name of image file to display or plot

- x, x position
- y, y position
- w, width
- h, height
- mol molecular structure image file

Examples:
- imagefile('clear') clear all images for the current experiment.
- imagefile('displayall') display all images for the current experiment.

imagemath Fit images to an specified function (M)

Applicability: Imaging Systems

Syntax: imagemath(fit_type,fit_var,dir_flag)

Description: Calls standalone Linux program to fit data to the specified function (fit_type), either T2, or DIFF for a T2 map or diffusion calculation.

Data is fitted to a single exponential with the ADC or T2 options. The output is given in two images:

- A computed S(0) image (filename S0)
- A map of either ADC or T2 (filenameADC or filenameT2).

The diffcalc linux program is invoked with the DIFF option. The output depends on the number of diffusion directions applied.

The argument dir_flag (if supplied) or the parameter aipData (if dir_flag is not supplied), determines where the program reads and writes data; if aipData or dir_flag = 'saved', it uses the parameter file to determine the input directory (e.g., sems_01.img), and appends the name of the fit type to the directory name (e.g., sems_01_ADC.img) for the output directory; if aipData or dir_flag = 'processed', it uses curexp/recon as the input directory and curexp/<fit_type> as the output directory. Calling imagemath from the Current viewport, using the current data, reads the data from/written to curexp.

See the VnmrJ Imaging User's Guide manual for information on the image math programs fdffit or diffcalc.

Arguments:

- fit_type 'ADC', 'T2', or 'DIFF'; default is 'ADC'
- fit_var Name of the parameter that holds the independent variable.
 Defaults to:
 - 'bvalue' for ADC fit
 - 'te' for T2 fit
 - blank string for DIFF fit
dir_flag optional string argument that mimics aipSave.
 The macro imagemath looks at aipSave if no dirflag argument is given.

Examples:
 imagemath('ADC','bvalue','saved')
 imagemath('T2','te')
 imagemath('DIFF')
 imagemath('DIFF','','saved')

See also: VnmrJ Imaging User’s Guide

imageprint Plot non interactive gray scale image (M)
 Description: Sends to the plotter a dcon color intensity map with linear instead of
 logarithmic increments and with grayscale instead of colors.
 See also: NMR Spectroscopy User Guide
 Related: dcon Display noninteractive color intensity map (C)

imconi Display 2D data in interactive grayscale mode (M)
 Description: Calls the dconi program with the arguments required for grayscale image
 display: dconi('dcon','gray','linear').

in Lock and spin interlock (P)
 Description: Controls error handling based on lock level and spin speed, and specifies action
 based on lock level failure or spinner failure. The action can be to generate an
 error and halt acquisition, or to generate a warning and continue acquisition.
 Values: Can be set to one or two characters:
 • If set to two characters, the first character specifies the action for lock
 failure and the second character specifies the action for spinner failure.
 • If set to only one character, that character specifies the same action for
 either lock or spinner failure.
 'n' stops any system checking so that acquisition continues regardless of the
 lock level or spin speed.
 'w' makes the system check the lock level and the spin speed. A warning
 message is added to the log file if the lock level falls below a preset hardware
 level (about 20 on the lock meter) or if spin is set to a particular value and the
 spin speed goes out of regulation; however, acquisition is not stopped.
 'y' makes the system check the lock level and spin speed. Acquisition is halted
 if the lock level falls below a preset hardware level (about 20 on the lock meter)
 or if spin is set to a particular value and the spin speed goes out of regulation.
 See also: NMR Spectroscopy User Guide
 Related: spin Sample spin rate (P)

inadqft Set up parameters for INADEQUATE pulse sequence (M)
 Description: Sets up parameters for 2D INADEQUATE (Incredible Natural Abundance
 Double-Quantum Transfer Experiment).
 See also: NMR Spectroscopy User Guide
 Related: foldcc Fold INADEQUATE data about 2-quantum axis (C)
index2
Projection or 3D plane index selected (P)
Description: Stores whether a projection or 3D plane index is selected. It shows the current status only and cannot be used to select a plane or projection. This parameter is also displayed in the Status window below “Index.”
Values:
0 indicates a projection is selected.
1 to the half the Fourier number of the normal axis indicates a 3D plane is selected; the number is the index of the 3D plane.
See also: *NMR Spectroscopy User Guide*
Related:
- `dplane` Display a 3D plane (M)
- `dproj` Display a 3D plane projection (M)
- `nextpl` Display the next 3D plane (M)
- `prevpl` Display the previous 3D plane (M)
- `select` Select a spectrum or 2D plane without displaying it (C)

inept
Set up parameters for INEPT pulse sequence (M)
Description: Sets up parameters for the INEPT (Insensitive Nuclei Enhanced by Polarization Transfer) experiment.
See also: *NMR Spectroscopy User Guide*
Related:
- `ppcal` Proton decoupler pulse calibration (M)

initialize_iterate
Set iterate string to contain relevant parameters (M)
Description: Takes the current spin system (contained in `spinsys`) and derives from it relevant parameters. This can be used to control which parameters are iterated during a spin simulation iteration (e.g., for an ABC spin system, `iterate` is set to `'A,JAB,JAC,B,JBC,C'`).
See also: *NMR Spectroscopy User Guide*
Related:
- `iterate` Parameters to be iterated (P)

input
Receive input from keyboard (C)
Syntax: `input(<prompt>,<delimiter>)::var1,var2,...`
Description: Receives fields of characters from the keyboard and stores them into one or more variables.
Arguments:
- `prompt` is a string displayed on the command line.
- `delimiter` is a character separating input fields. The default is a comma.
- `var1,var2,...` are return values. `input` stores the values into as many of these arguments as given and ignores the rest of the input line.
Examples:
```
input:$b
input('Enter pulse width:'):pw
input('x and y coordinates'):cr,crl
input('Enter lastname:firstname',':'):$last,$first
```

See also: *User Programming*
Related:
- `string` Create a string variable (C)

ins
Integral normalization scale (P)
Description: Sets the integral value, independent of `is` and `vs`. Reported integral values are scaled by `fn`; that is, the reported integral of a given region is independent of
fn. The insref parameter is also used to determine a reference integral value. The setint macro sets integral value.

See also: NMR Spectroscopy User Guide

Related:

dlni Display list of normalized integrals (M)
fn Fourier number in directly detected dimension (P)
is Integral scale (P)
insref Fourier number scaled value of an integral (P)
mark Determine intensity of spectrum at a point (C)
setint Set value of an integral (M)
vs Vertical scale (P)

ins2 2D volume value (P)

Description: Adjusts the 2D volume value, independent of is and vs. The volume is scaled by Fourier numbers for the two dimensions.

See also: NMR Spectroscopy User Guide

Related: is Integral scale (P)
ins2ref Fourier number scaled volume of a peak (P)
ll2d Automatic and interactive 2D peak peaking (C)
vs Vertical scale (P)

insref Fourier number scaled value of an integral (P)

Description: Set to the Fourier number scaled value of a selected integral. The reported integral values will be (integral value)*ins/insref/fn. If insref is “not used”, the sum of all integrals will be ins. The “not used” mode is the equivalent of the normalized integral mode. If insref is zero or not defined, the reported integrals will be (integral value)*ins/fn.

See also: NMR Spectroscopy User Guide

Related: fn Fourier number in directly detected dimension (P)
is Integral scale (P)
liamp Amplitudes of integral reset points (P)
setint Set value of an integral (M)

ins2ref Fourier number scaled volume of a peak (P)

Description: Set to the Fourier number scaled volume of the selected peak. The reported volume is volume*ins2/ins2ref/fn/fn1. If ins2ref is “not used”, sum of all volumes is ins2. The “not used” mode is equivalent to a normalized volume mode. If ins2ref is zero or not defined, the reported volume is volume*ins2/fn/fn1.

See also: NMR Spectroscopy User Guide

Related: fn Fourier number in directly detected dimension (P)
fn1 Fourier number in first indirectly detected dimension (P)
ins2 2D volume value (P)
ll2d Automation and interactive 2D peak picking (C)

insert Insert sample (M)

Description: Turns off the eject air, waits for the sample to slowly drop, and then turns off the slow drop air. The macro i is identical in function to insert.
inset Display an inset spectrum (C)

Description: Displays the part of the spectrum between the two cursors as an inset. Before entering inset, run the ds command and display two cursors. The vertical position is shifted up about one-quarter of the height of the whole display canvas. The old spectrum remains on the screen, but the parameters shown at the bottom are relevant to the new display. If present, the integral trace is duplicated. The scale is also duplicated if it is present. After running inset, you can shift the displayed spectrum, expand it, or even contract it with the left and right mouse buttons.

See also: NMR Spectroscopy User Guide

Related: ds Display a spectrum FID (C)

integ Find largest integral in a specified region (C)

Syntax: \texttt{integ<(highfield,lowfield)>:<size,value>}

Description: Finds the largest absolute-value integral in the specified region, or the total integral if no reset points are present between the specified limits.

Arguments: highfield and lowfield are the limits of the region. The default values are the parameters sp and sp+wp, respectively.

size is a return value with the size of the largest integral. The size depends on the value of the parameter is and can be positive or negative.

value is a return argument with the value of the largest integral. This value depends on ins, insref, and fn, and is independent of is.

Examples: \texttt{integ:r1,r2}
 \texttt{integ(500,1000):$height}
 \texttt{integ(100+sp,300+sp):$ht,$val}

See also: User Programming

Related: fn Fourier number in directly detected dimension (P)
 ins Integral normalization scale (P)
 insref Fourier number scaled value of an integral (P)
 is Integral scale (P)
 rp Zero-order phase in directly detected dimension (P)
 sp Start of plot in directly detected dimension (P)
 wp Width of plot in directly detected dimension (P)

integrate Automatically integrate 1D spectrum (M)

Description: A universal macro for selecting integral regions and adjusting the integrals in size and offset. Only if regions are not already selected, and if intmod is set to 'partial', will integrate call region to select integral regions. For proton spectra, the selection is done through the hregions macro; for 19F and 31P spectra (for wide spectral windows, multiplet spectra), region is called with optimized arguments, and for other nuclei (mostly decoupled, single-line spectra) other optimized parameters are used with region, such that lines consisting of a few data points only are recognized.
intmod
Integral display mode (P)

Description: Controls display and plotting of the spectral integral.

Values:
- 'off' indicates that no integrals are displayed or plotted.
- 'full' indicates that all integral regions are displayed or plotted.
- 'partial' indicates that every other integral region is plotted (typically used to display integrals of only peaks and not of the baseline region).

See also: *NMR Spectroscopy User Guide*

Related: hregions
Select integral regions in proton spectrum (M)

intmod
Integral display mode (P)

isadj
Automatic integral scale adjustment (M)

Syntax: isadj<(height,<neg_height>)>

Description: Adjusts the height of the integrals in a display to make the tallest integral fit the paper. Optionally, the height of the maximum integral can be specified by an

io
Integral offset (P)

Description: Offset of the integral with respect to the spectrum.

Values: 0 to 200, in mm.

See also: *NMR Spectroscopy User Guide*

is
Integral scale (P)

Description: Multiplier that adjusts height of the displayed integral trace. Note that the *ins* parameter controls integral value, and that *is* has no effect on integral value.

Values: 1 to 1e9

See also: *NMR Spectroscopy User Guide*

Related: ins
Integral normalization scale (P)

ins2
2D volume value (P)

insref
Fourier number scaled value of an integral (P)

integ
Find largest integral in a specified region (C)

intvast
Produces a text file of integral regions (M)

Applicability: Systems with VAST accessory.

Syntax: intvast (last)

Description: intvast produces a text file, integ.out in the current experiment, containing the integrals of the partial regions of each spectra from wells 0 to last.

Arguments: last is the number last sample well. The default is 96.

See also: *NMR Spectroscopy User Guide*

Related: pintvast
Plot the integrals (M)
argument. Negative integrals, if present, are given a limit of 10 mm if parameter
\texttt{io} is less than 10; otherwise, they are set so they end 5 mm above the spectrum.
Negative integrals can also be given a height. Whichever part of the integrals
(positive or negative) runs into the given limit will be used to scale \texttt{is}.

Arguments: \texttt{height} is the size, in mm, of the maximum integral on display. The default is
the height that makes the tallest integral fit the paper.
\texttt{neg_height} is the desired height, in mm, of the largest negative integral. If
\texttt{io} is less than 10, the default is 10; otherwise, the default height is 5 mm above
the spectrum.

Examples: \texttt{isadj}
\texttt{isadj(100)}
\texttt{isadj(100,100)}

See also: \textit{NMR Spectroscopy User Guide}
Related: \texttt{io} Integral offset (P)
\texttt{is} Integral scale (P)
\texttt{isadj2} Automatic integral scale adjustment by powers of two (M)

\textbf{isadj2} \hspace{1cm} \textit{Automatic integral scale adjustment by powers of two (M)}

\textbf{Syntax:} \texttt{isadj2<(height<,neg_height>)>:scaling_factor}

\textbf{Description:} Functionally the same as \texttt{isadj} except that \texttt{isadj2} adjusts the integral height
by powers of two and returns the scaling factor to the calling macro.

Arguments: \texttt{height} is the size, in mm, of the maximum integral on display.
\texttt{neg_height} is the desired height, in mm, of the maximum negative integral
on display.
\texttt{scaling_factor} is a return value giving the ratio of the new integral size
to the old value (new \texttt{is}/old \texttt{is}).

Examples: \texttt{isadj2}
\texttt{isadj2(100)}
\texttt{isadj2(100,100)}
\texttt{isadj2(50):r1}

See also: \textit{NMR Spectroscopy User Guide}
Related: \texttt{is} Integral scale (P)
\texttt{isadj} Automatic integral scale adjustment (M)

\textbf{isreal} \hspace{1cm} \textit{Utility macro to determine a parameter type (M)}

\textbf{Syntax:} \texttt{isreal(paramname<,tree>)}

\textbf{Description:} Returns 1 if and only if \texttt{paramname} is a real type. It returns 0 if \texttt{paramname} is
a string type. If there is an error, the error is reported and the macro also returns
0. The value of \texttt{tree} is 'current', 'global', 'processed' or
'systemglobal' and the default is 'current'.

There is some unfortunate ambiguity and vagueness in regard to vnmr
parameters and their types. The meaning of \texttt{real} and \texttt{string} vary slightly
depending upon context. There are seven types altogether. The macro
\texttt{gettype} returns a unique integer value when operating on the parameter. Of
the seven types, two can be broadly categorized as string, and five can be
broadly categorized as real. Since one of the string category types is 'string'
and one of the real category types is 'real', this is where the ambiguity arises.
The return values for \texttt{gettype} are:
The isreal function returns 0 for the string category and 1 for the real category. This function is consistent with the typeof() operator. The typeof() operator is primarily intended to ascertain the type of the input argument to a macro, so using it for other purposes is not recommended. Also, it does not take a tree argument. Note that typeof() returns 0 for reals and 1 for strings, the opposite of this macro, but it should be clear from the name what is intended. A sister macro isstring returns the same value as typeof().

Related:
- **isstring** Utility macro to determine a parameter type (M)
- **typeof** Return identifier for argument type (O)

isstring

Utility macro to determine a parameter type (M)

Syntax: isstring(paramname<,tree>)

Description: Returns 1 if and only if paramname is a string type. It returns 0 if paramname is a real type. If there is an error, the error is reported and the macro also returns 0. The value of tree is 'current', 'global', 'processed' or 'systemglobal' and the default is 'current'.

There is some unfortunate ambiguity and vagueness in regard to vnmr parameters and their types. The meaning of real and string vary slightly depending upon context. There are seven types altogether. The macro gettype returns a unique integer value when operating on the parameter. Of the seven types, two can be broadly categorized as string, and five can be broadly categorized as real. Since one of the string category types is 'string' and one of the real category types is 'real', this is where the ambiguity arises. The return values for gettype are:

<table>
<thead>
<tr>
<th>category</th>
<th>type</th>
<th>gettype returns</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>'string'</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>'flag'</td>
<td>4</td>
</tr>
<tr>
<td>real</td>
<td>'real'</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>'delay'</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>'frequency'</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>'pulse'</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>'integer'</td>
<td>7</td>
</tr>
</tbody>
</table>

The function isstring returns 0 for the real category and 1 for the string category. This function is consistent with the typeof() operator. The typeof() operator is primarily intended to ascertain the type of the input argument to a macro, so using it for other purposes is not recommended. Also, it does not take a tree argument. Note that typeof() returns 0 for reals and 1
for strings, the opposite of this macro, but it should be clear from the name what is intended. A sister macro `isstring` returns the same value as `typeof()`.

Related: `isreal` Utility macro to determine a parameter type (M)
`typeof` Return identifier for argument type (O)

iterate Parameters to be iterated (P)

Description: Contains parameters to be iterated during iterative spin simulations. If the Set Params button is used in setting up spin simulation parameters, `iterate` is initialized to a string containing all parameters appropriate to the current spin system.

Values: List of parameters, separated by commas (e.g., `iterate='A,B,JAB'`).

See also: *NMR Spectroscopy User Guide*

Related: `initialize_iterate` Set `iterate` string to contain relevant parameters (M)
jcurwin
Work space numbers of all viewports (P)

Description: An arrayed global parameter, set to the work space numbers used by all viewports.

See also: *NMR Spectroscopy User Guide, VnmrJ Walkup*

Related:
- `curwin`
 Current window (P)
- `jviewport`
 Work space numbers of the current viewports (P)
- `jviewportlabel`
 Work space labels for all viewport buttons (P)

jdesign
Start Plot Designer Program (M)

Syntax: `jdesign`

Description: Opens the Plot Designer program, which provides mechanisms for positioning spectra, parameters, axes, and other plot output on a page. Text annotation and drawing features are available.

See also: *NMR Spectroscopy User Guide*

Related:
- `jplot`
 Plot from Plot Designer program (C)

jexp
Join existing experiment (C)

Syntax:
1. `jexp(exp_number)`
2. `jexp:$current_exp_number,$current_exp_name`

Description: Joins an existing experiment (syntax 1) or returns the current experiment number and experiment name (syntax 2). After entering this command, until another “join experiment” command or macro is entered, all actions (including changes of parameters, acquisition of data, and display of data) apply to the parameters and data of the experiment joined.

The `jexp` command does not refresh the display or display new experiment parameters. Use one of the macros `jexp1`, `jexp2`, etc. to join an experiment and have the screen refreshed and new parameters displayed.
Arguments: exp_number is a number from 1 to 9999 for existing experiment to be joined.
$\text{current}_\text{exp}_\text{number}$ is a return value with the current experiment number.
$\text{current}_\text{exp}_\text{name}$ is a return value with the current experiment name.

Examples:
jexp(3)
jexp:expp
jexp:r1,n1

See also: *NMR Spectroscopy User Guide; VnmrJ Walkup*

Related: cexp Create an experiment (M)
delexp Delete an experiment (M)
jexp1–jexp9 Join existing experiment and display new parameters (M)
unlock Remove inactive lock and join experiment (C)

jexp1–jexp9999 Join existing experiment and display new parameters (M)

Syntax: jexp1, jexp2, jexp3, ..., jexp9999

Description: Joins an existing experiment, refreshes the screen, and displays the main menu and the new experiment parameters. After entering this macro, until another “join experiment” command or macro is entered, all actions (including changes of parameters, acquisition of data, and display of data) apply to the parameters and data of the experiment joined.

To join an experiment without refreshing the screen and displaying new parameters, use the jexp command.

Examples: jexp8
jexp354

See also: *NMR Spectroscopy User Guide*

Related: cexp Create an experiment (M)
delexp Delete an experiment (M)
jexp Join existing experiment (C)
unlock Remove inactive lock and join experiment (C)

jplot

Plot from Plot Designer program (C)

Syntax: jplot<('set-up')<,template>

Description: Starts plotting from the Plot Designer program to the current plotter.

Arguments: '-set-up' is a keyword to start jdesign, the Plot Designer program, to allow interactive design and plotting.

template is the name of a file that will be used to make a plot of the current experiment. The default is a saved file chosen by the user.

Examples: jplot
jplot('t1')

See also: *NMR Spectroscopy User Guide*

Related: jdesign Start Plot Designer program (M)
jplotscale Scale plot parameters (M)
jplotunscale Restore current experiment parameters (M)

jplotscale Scale plot parameters (M)

Applicability: Plot Designer program
Description: Scales parameters of plotting area and an imported plot. When a region is drawn in Plot Designer, \texttt{jplotscale} automatically changes the plotting area parameters w_{cmax} and w_{c2max}. The parameters io, is, vs, wc, and $wc2$ of a plot imported into a region are adjusted according to w_{cmax} and w_{c2max}.

See also: \textit{NMR Spectroscopy User Guide}

\textbf{\texttt{jplotunscale} Restore current experiment parameters (M)}

Applicability: Plot Designer program

Description: Restores the current experiment parameters (io, is, vs, wc, and $wc2$) to a plot within a region that was created in Plot Designer. For example, entering \texttt{jplotunscale jexp2 jplotscale} restores the parameters of experiment 2 to a plot and then \texttt{jplotscale} applies the adjusted parameters to the plot.

See also: \textit{NMR Spectroscopy User Guide}

Related: \texttt{jplot} Plot from Plot Designer program (C) \texttt{jplotunscale} Restore current experiment parameters (M)

\textbf{\texttt{jprint} Prints the selected images to a printer or file (M)}

Description: The \texttt{jprint} macro takes the value of the parameters \texttt{printregion, printsend, printfile, printlayout, printformat, printsize}.

\textbf{\texttt{jumpret} Set up parameters for JUMPRET pulse sequence (M)}

Description: Sets up parameters for a jump-and-return water suppression sequence.

See also: \textit{NMR Spectroscopy User Guide}

\textbf{\texttt{jviewport} Work space numbers of the current viewports (P)}

Description: A global parameter, set to the work space number that the current viewport is joined to. The parameter is set when the viewport starts. Each viewport may be joined to a different work space.

See also: \textit{NMR Spectroscopy User Guide, VnmrJ Walkup}

Related: \texttt{curwin} Current window (P) \texttt{jcurwin} Work space numbers of all viewports (P) \texttt{jviewports} Viewport layout (P) \texttt{jviewportlabel} Work space labels for all viewport buttons (P)

\textbf{\texttt{jviewportlabel} Work space labels for all viewport buttons (P)}

Description: An arrayed global parameter, set to the labels on the toolbar buttons used to switch viewports. It is used by the viewport editor under \textit{Edit -> Viewports}.

See also: \textit{NMR Spectroscopy User Guide, VnmrJ Walkup}

Related: \texttt{jviewport} Work space numbers of the current viewports (P) \texttt{jviewports} Viewport layout (P) \texttt{vpaction} Set initial state for multiple viewports (M)
jviewports

Viewport layout (P)

Description: An arrayed global parameter, used to keep track of the viewport layout. It is used by the viewport editor under Edit -> Viewports to change the viewport layout.

Related:
- jcurwin: Work space numbers of all viewports (P)
- jviewport: Work space numbers of the current viewports (P)
- jviewportlabel: Work space labels for all viewport buttons (P)
- vpaction: Set initial state for multiple viewports (M)
- vpset3def: Set the viewport state to three default viewports (M)
- vpsetup: Set new viewports (M)

jwin

Activate and record activity in current window (M)

Syntax: `jwin(pane_number)`

Description: Activates and records the activity in a specific window pane, created by `setgrid`, in the VnmrJ graphics window. `jwin` is executed when you double-click the left mouse button in a multiple-paned graphics window.

Arguments: `pane_number` is the number of the pane to join.

Examples: `jwin(2)`

See also: NMR Spectroscopy User Guide

Related:
- curwin: Current window (P)
- fontselect: Open FontSelect window (C)
- mapwin: List of experiment numbers (P)
- setgrid: Activate selected window (M)
- setwin: Activate selected window (C)
killft3d
Terminate any ft3d process started in an experiment (M,U)

Syntax: `killft3d(exp_number)`

Description: Terminates any `ft3d` program that has been started in the specified VnmrJ experiment. `killft3d` can be executed from any experiment. For each `ft3d` process terminated, the relevant 3D data subdirectory is also deleted. Remote `ft3d` processes, denoted by the call name `ftr3d` in the process table (displayed by the UNIX command `ps -azx`), are not directly terminated by `killft3d` but die of their own accord due to the deletion of the 3D data subdirectory.

The `killft3d` command can also be run as a shellscript from UNIX. Its function is analogous to the associated VnmrJ macro.

Arguments: `exp_number` is a number from 1 to 9 that identifies the experiment that started the `ft3d` program.

Examples: `killft3d(4)`

See also: *NMR Spectroscopy User Guide*

Related: `ft3d` Perform a 3D Fourier transform (M,U)

killplot
Stop plot jobs and remove from plot queue (M)

Description: Kills all current plot jobs in the plot queue for the active plotter in VnmrJ, then removes the jobs from the plot queue. Unless the user executing `killplot` is `root`, only that user’s plot jobs are deleted from the plot queue. To kill a plot that is in progress (i.e., a plot in which you have not entered `page`), use the `page`('clear') command.

The plotter may have to be reinitialized after `killplot` is executed. To reinitialize the plotter, turn it off and then back on after a few seconds. Hewlett-Packard (HP) pen plotters appear to be more susceptible to this problem than the other HP output devices supported by VnmrJ.

If one port is configured to be both a printer and a plotter, `killplot` can cause both plot and print jobs to that port to be deleted. For example, if `printer='LaserJet_300', plotter='LaserJet_300R'`, and a plot command `pl pscale page` is followed by a print command `pexec(vnmruser+’/psglib/noesy.c’)`, entering `killplot` deletes both jobs.
killprint Stop print jobs and remove from print queue (M)
Description: Kills all current print jobs in the print queue for the active printer in VnmrJ, then removes the jobs from the print queue. Unless the user executing killprint is root, only that user's print job is deleted from the print queue. It is slightly possible that the printer may have to be reinitialized after the execution of this macro. To reinitialize the printer, turn it off, wait a few seconds, and then turn it back on.
If one port is configured to be both a printer and a plotter, killprint can cause both print and plot jobs to that port to be deleted. For example, if printer='LaserJet_300', plotter='LaserJet_300R', and a plot command pl pscale page is followed by a print command ptext(vnmruser+'/psglib/noesy.c'), entering killprint deletes both jobs.

See also: NMR Spectroscopy User Guide
Related: killplot Stop plot jobs and remove from plot queue (M)
ptext Print out a text file (M)
showplotq Display plot jobs in plot queue (M)

kind Kinetics analysis, decreasing intensity (M)
Description: If the signal decreases exponentially toward a limit, the output is matched by \[I = A_1 \cdot \exp(-T/TAU) + A_3 \]. This macro supplies the necessary keywords to the analyze command, which uses the output of fp (i.e., the file fp.out) as input. The results can be displayed with expl.

See also: NMR Spectroscopy User Guide
Related: analyze Generalized curve fitting (C)
expl Display exponential/polynomial curves (C)
fp Find peak heights (C)
kinds Kinetic analysis, decreasing intensity, short form (M)
kini Kinetics analysis, increasing intensity (M)
kinis Kinetic analysis, increasing intensity, short form (M)

kinds Kinetics analysis, decreasing intensity, short form (M)
Description: Produces a summary of the results from kind.

See also: NMR Spectroscopy User Guide
Related: kind Kinetics analysis, decreasing intensity (M)

kini Kinetics analysis, increasing intensity (M)
Description: If the signal increases exponentially toward a limit, the output is matched by \[I = -A_1 \cdot \exp(-T/TAU) + A_3 - A_1 \]. This macro supplies the necessary keywords to the analyze command, which uses the output of fp (i.e., the file fp.out) as input. The results can be displayed with expl.
kinis

Kinetics analysis, increasing intensity, short form (M)

Description: Produces a summary of the results from *kini*.

See also: *NMR Spectroscopy User Guide*

Related:
- **kind**
 Kinetics analysis, decreasing intensity (M)
- **kini**
 Kinetics analysis, increasing intensity (M)
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lastlk</td>
<td>Last lock solvent used (P)</td>
</tr>
<tr>
<td>lastmenu</td>
<td>Menu to display when Return button is selected (P)</td>
</tr>
<tr>
<td>latch</td>
<td>Frequency synthesizer latching (P)</td>
</tr>
<tr>
<td>lb</td>
<td>Line broadening in directly detected dimension (P)</td>
</tr>
<tr>
<td>lb1</td>
<td>Line broadening in 1st indirectly detected dimension (P)</td>
</tr>
<tr>
<td>lb2</td>
<td>Line broadening in 2nd indirectly detected dimension (P)</td>
</tr>
<tr>
<td>lc1d</td>
<td>Pulse sequence for LC-NMR (M)</td>
</tr>
<tr>
<td>lcpar2d</td>
<td>Create 2D LC-NMR acquisition parameters (M)</td>
</tr>
<tr>
<td>lcp</td>
<td>Peak number (P)</td>
</tr>
<tr>
<td>lcplot</td>
<td>Plot LC-NMR data (M)</td>
</tr>
<tr>
<td>lcpsgset</td>
<td>Set up parameters for various LC-NMR pulse sequences (M)</td>
</tr>
<tr>
<td>lcsset2d</td>
<td>General setup for 2D LC-NMR experiments (M)</td>
</tr>
<tr>
<td>left</td>
<td>Set display limits to left half of screen (C)</td>
</tr>
<tr>
<td>legrelay</td>
<td>Independent control of magnet leg relay (P)</td>
</tr>
<tr>
<td>length</td>
<td>Determine length of a string (C)</td>
</tr>
<tr>
<td>lf</td>
<td>List files in directory (C)</td>
</tr>
<tr>
<td>liamp</td>
<td>Amplitudes of integral reset points (P)</td>
</tr>
<tr>
<td>lifrq</td>
<td>Frequencies of integral reset points (P)</td>
</tr>
<tr>
<td>liqbear</td>
<td>Liquids Bearing Air Level (P)</td>
</tr>
<tr>
<td>listonoff</td>
<td>Disable receipt of messages from send2Vnmr (M)</td>
</tr>
<tr>
<td>listener</td>
<td>Enable receipt of messages from send2Vnmr (M)</td>
</tr>
<tr>
<td>lkof</td>
<td>Track changes in lock frequency (P)</td>
</tr>
<tr>
<td>ll2d</td>
<td>Automatic and interactive 2D peak picking (C)</td>
</tr>
<tr>
<td>ll2dbackup</td>
<td>Copy current ll2d peak file to another file (M)</td>
</tr>
<tr>
<td>ll2dmode</td>
<td>Control display of peaks picked by ll2d (P)</td>
</tr>
<tr>
<td>llamp</td>
<td>List of line amplitudes (P)</td>
</tr>
<tr>
<td>llfrq</td>
<td>List of line frequencies (P)</td>
</tr>
<tr>
<td>ln</td>
<td>Find natural logarithm of a number (C)</td>
</tr>
<tr>
<td>load</td>
<td>Load status of displayed shims (P)</td>
</tr>
<tr>
<td>loadcolors</td>
<td>Load colors for graphics window and plotters (M)</td>
</tr>
<tr>
<td>loc</td>
<td>Location of sample in tray (P)</td>
</tr>
<tr>
<td>locaction</td>
<td>Locator action (M)</td>
</tr>
<tr>
<td>logate</td>
<td>Transmitter local oscillator gate (P)</td>
</tr>
<tr>
<td>lookup</td>
<td>Look up words and lines from a text file (C)</td>
</tr>
<tr>
<td>locprotoexec</td>
<td>Execute a protocol from the locator (M)</td>
</tr>
<tr>
<td>lp</td>
<td>First-order phase in directly detected dimension (P)</td>
</tr>
</tbody>
</table>
Last lock solvent used (P)

Description: Contains the name of the last lock solvent. Intended for use with the optional sample changer, this parameter is a user global variable (stored in the user’s global file) and is not accessible to multiple users simultaneously. On a multiuser automation run, you should preferably access the last lock solvent from the file `/vnmr/acqqueue/lastlk`.

Values: String containing the name of the solvent.

See also: *NMR Spectroscopy User Guide*

Related: solvent Lock solvent (P)
lastmenu
Menu to display when Return button is selected (P)
Description: Contains the name of the menu to display when the Return button is clicked on certain menus. For example, if the Phase F2 button in the 2D Processing menu (controlled by the file `process_2D`) is clicked, lastmenu is set to 'process_2D', the ft and aph commands are executed, the ds window is opened, and the Interactive 1D Spectrum Display menu (ds_1 file) is displayed. Appearing in this menu is a Return button. Because lastmenu is still set to 'process_2D', clicking on the Return button redisplays the 2D Processing menu. lastmenu is stored in the $vnmrsys/global file.
Values: String containing the name of a menu (e.g., 'process_2D').
See also: [User Programming](#)
Related:
- menu
 Change status of menu system (C)
- newmenu
 Select a menu without immediate activation (C)

latch
Frequency synthesizer latching (P)
Description: Configuration parameter for whether the PTS frequency synthesizer has latching capabilities (all digits of the frequency value are sent to the synthesizer at once). The value for each channel is by the Latching label in the Spectrometer Configuration window.
Values:
- 'n' indicates the synthesizers do not have latching capabilities (Not Present choice from the Spectrometer Configuration window).
- 'y' indicates the synthesizers have latching capabilities (Present choice from the Spectrometer Configuration window).
See also: [VnmrJ Installation and Administration](#)
Related:
- config
 Display current configuration and possibly change it (M)

lb
Line broadening in directly detected dimension (P)
Description: Sets line broadening and exponential weighting along the directly detected dimension. This dimension is often referred to as the f_2 dimension in 2D data sets, the f_3 dimension in 3D data sets, etc.
Values:
- A positive value gives the desired line broadening, in Hz, which is then used to calculate a decaying exponential function of the form $\exp(-t \cdot \pi \cdot lb)$.
- A negative value gives a resolution enhancement function (increasing exponential) of the form $\exp(-t \cdot \pi \cdot lb)$.
- 'n' turns off line broadening and exponential weighting.
See also: [NMR Spectroscopy User Guide](#)
Related:
- exp
 Find exponential value of a number (C)
- lb1
 Line broadening in 1st indirectly detected dimension (P)
- lb2
 Line broadening in 2nd indirectly detected dimension (P)

lb1
Line broadening in 1st indirectly detected dimension (P)
Description: Sets line broadening and exponential weighting along the first indirectly detected dimension. This dimension is often referred to as the f_1 dimension in multidimensional data sets. lb1 works analogously to the parameter lb. The “conventional” parameters (lb, gf, etc.) operate on the detected FIDs, while this “2D” parameter is used during processing of the interferograms.
Values: A positive value gives the desired line broadening, in Hz, which is then used to calculate a decaying exponential function of the form \(\exp(-t \cdot \pi \cdot lb1) \). A typical value is between 0.0001 to 1000 Hz.

A negative value gives a resolution enhancement function (increasing exponential) of the form \(\exp(-t \cdot \pi \cdot lb1) \).

'\(n \)' turns off line broadening and exponential weighting.

See also: NMR Spectroscopy User Guide

Related:
- \texttt{exp} Find exponential value of a number (C)
- \texttt{lb} Line broadening in directly detected dimension (P)
- \texttt{lb2} Line broadening in 2nd indirectly detected dimension (P)

lb2

Line broadening in 2nd indirectly detected dimension (P)

Description: Sets line broadening and exponential weighting along the second indirectly detected dimension. This dimension is often referred to as the \(f_2 \) dimension in multidimensional data sets. \(lb2 \) works analogously to the parameter \(lb \). \(lb2 \) can be set with \texttt{wti} on the 2D interferogram data.

Values: A positive value gives the desired line broadening, in Hz, which is then used to calculate a decaying exponential function of the form \(\exp(-t \cdot \pi \cdot lb2) \).

A negative value gives a resolution enhancement function (increasing exponential) of the form \(\exp(-t \cdot \pi \cdot lb2) \).

'\(n \)' turns off line broadening and exponential weighting.

See also: NMR Spectroscopy User Guide

Related:
- \texttt{exp} Find exponential value of a number (C)
- \texttt{lb} Line broadening in directly detected dimension (P)
- \texttt{wti} Interactive weighting (C)

lc1d

Pulse sequence for LC-NMR (M)

Applicability: Systems with LC-NMR accessory.

Description: Creates parameters to set up a pulse sequence that can be used to start an LC-NMR run, including triggering the injection of a sample, and can be used also to obtain multiple solvent-suppressed spectra using multi frequency Shifted Laminar Pulses (SLP) and gradients. The sequence is coded without a \texttt{d2} variable, thus allowing \texttt{ni} to be used to obtain a series of spectra without resulting in any delay in the sequence being incremented.

The sequence requires a phase table, \texttt{lc1d}, to be found in the \texttt{tablib} directory. Phases of the selective pulses, the observe pulse, and the receiver and separately controlled by phase variables.

Note that the \texttt{lc1d} sequence uses power scaling of shaped pulses, which is supported starting in VnmrJ 5.2. Because of this feature, this sequence \textit{will not run} in earlier versions of VnmrJ.

lcpar2d

Create 2D LC-NMR acquisition parameters (M)

Applicability: Systems with LC-NMR accessory.

Description: Creates the acquisition parameters \texttt{ni}, \texttt{sw1}, and \texttt{phase}, which can be used to acquire a 2D LC-NMR data set. \texttt{lcpar2d} is functionally the same as \texttt{addpar('2d')}.

Related:
- \texttt{addpar} Add selected parameters to current experiment (M)
- \texttt{lcset2d} General setup for 2D LC-NMR experiments (M)
lcpeak
Peak number (P)
Applicability: Systems with LC-NMR accessory.
Description: Contains the number of the peak being sensed or the loop being flushed.

lcplot
Plot LC-NMR data (M)
Applicability: Systems with LC-NMR accessory.
Syntax: lcplot
Description: Plots LC-NMR data. This macro is executed with the Plot LC-NMR button on the Spare pane when LC-NMR is active.

lcpsgset
Set up parameters for various LC-NMR pulse sequences (M)
Applicability: Systems with LC-NMR accessory.
Syntax: lcpsgset(file,parameter1,parameter2,...,parameterN)
Description: Sets up parameters for various LC-NMR pulse sequences using information in a parlib file. Rather than returning the entire parameter file, lcpsgset returns the parameters listed. lcpsgset, in general, is never entered from the keyboard but is used as part of experiment setup macros.
Arguments: file is the file from the user or system parlib that provides information on setting up parameters listed. The parameters seqfil and pslabel are set to the supplied file name. parameter1,parameter1,...,parameterN are 1 to 11 parameters to be returned from the parlib file.
Examples: lcpsgset('lccosy','ds','ap','ss','dl','axis','phase')

lcset2d
General setup for 2D LC-NMR experiments (M)
Applicability: Systems with LC-NMR accessory.
Syntax: lcset2d(experiment<,F2_dig_res<,F1_dig_res>>)
Description: Runs the macro lcpar2d to create new parameters needed for 2D LC-NMR experiments, then selects starting values for a number of parameters. The lcset2d macro is “internal” and not normally entered directly by the user.
Arguments: experiment is the name of a 2D LC-NMR experiment. F2_dig_res is the f2 digital resolution desired, in Hz/pt. F1_dig_res is the f1 digital resolution desired, in Hz/pt.
Examples: lcset2d('lcnoesy')

left
Set display limits to left half of screen (C)
Description: Sets the horizontal control parameters sc and wc to produce a display (and subsequent plot) in the left half of a screen (and page). For 2D data, space is left for the scales.

Related:
- center Set display limits for center of screen (C)
- full Set display limits for a full screen (C)
- fullt Set display limits for full screen with room for traces (C)
- right Set display limits for right half of screen (C)
legrelay

Independent control of magnet leg relay (P)

Description: Gives override capability over the magnetic leg high and low (broad) band rf signal routing. This parameter does not normally exist but can be created by the user with the command `create('legrelay','string')`.

The `legrelay` override is operational only on standard systems shipped starting in November 1990 and on certain special systems shipped before that date. A system includes the override capability if it uses N-type connectors instead of BNC connectors on the magnet leg.

Values:
- 'n' indicates normal logic is used to set the leg relay.
- 'h' indicates the leg relay is set to the high band.
- 'l' indicates the leg relay is set to the low (broad) band.

Any other value results in an error message and an abort of pulse sequence generation.

See also: *User Programming*

Related: `create` Create new parameter in a parameter tree (C)

length

Determine length of a string (C)

Syntax: `length(string):string_length`

Description: Returns the length in characters of a specified string.

Arguments:
- `string` is zero or more characters enclosed in single quotes.
- `string_length` is the number of characters (a real number) in `string`.

Examples:
- `length('abc'):r1`
- `length(solvent):$len`

See also: *User Programming*

Related: `substr` Select a substring from a string (C)

lf

List files in directory (C)

Syntax: `lf<directory>`

Description: Lists the files in a directory, with output on the text output window. Directories are suffixed by “/”, executable files by “*”, and links by “@”.

Arguments:
- `directory` is the name of a directory. The default is the current working directory.
- `lf` is equivalent to the UNIX command `ls -F` and uses the same options (e.g., `-l` for a long listing such as `lf('-l *.fid')`).

Examples:
- `lf('data'))`
- `lf('-l *.fid')`

See also: *NMR Spectroscopy User Guide*

Related: `dir` List files in directory (C)

liamp

Amplitudes of integral reset points (P)

Description: Stores the integral amplitudes at the integral reset points for a list of integrals. To display the values of `liamp`, enter `display('liamp')`. Values of `liamp` can also be accessed in MAGICAL macros using, for example, `liamp[$i]`. Values are stored as absolute numbers (summations of data point values) and, as such, are a function of the parameter `fn`. The values displayed...
by the \texttt{dli}, \texttt{pir}, and \texttt{dpir} programs are related to \texttt{liamp} values by the relationship:

\[
\text{Displayed or plotted integral} = \text{liamp}[i]*\text{is}/(\text{fn}/128)*\text{ins}
\]

\textbf{Related:} \texttt{display}: Display parameters and their attributes (C) \hfill \texttt{dli}: Display list of integrals (C) \hfill \texttt{dpir}: Display integral amplitudes below spectrum (C) \hfill \texttt{fn}: Fourier number in directly detected dimension (P) \hfill \texttt{lifrq}: Frequencies of integral reset points (P) \hfill \texttt{pir}: Plot integral amplitudes below spectrum (C)

\textbf{lifrq} \hspace{2cm} \textbf{Frequencies of integral reset points (P)}

\textbf{Description:} Stores the frequencies of integral reset points for a list of integrals. The frequencies are stored in Hz and are \textit{not} adjusted by the reference parameters \texttt{rfl} and \texttt{rfp}.

\textbf{See also:} \textit{NMR Spectroscopy User Guide}

\textbf{Related:} \texttt{liamp}: Amplitudes of integral reset points (P) \hfill \texttt{rfl}: Ref. peak position in directly detected dimension (P) \hfill \texttt{rfp}: Ref. peak frequency in directly detected dimension (P)

\textbf{liqbear} \hspace{2cm} \textbf{Liquids Bearing Air Level (P)}

\textbf{Applicability:} DirectDrive systems

\textbf{Description:} This global parameter is the DAC value used when the liquids spinner bearing air is turned on. If the parameter does not exist the value defaults to 0xc000.

To create the parameter:

\begin{verbatim}
create('liqbear','integer','global')
setlimit('liqbear',65535,0,1,'global')
\end{verbatim}

\textbf{Values:} 0 - 65535

\textbf{listenoff} \hspace{2cm} \textbf{Disable receipt of messages from send2Vnmr (M)}

\textbf{Description:} Deletes the file \$vnmruser/.talk, thereby disallowing \texttt{send2Vnmr} to send commands to VnmrJ.

\textbf{See also:} \textit{User Programming}

\textbf{Related:} \texttt{listenon} \hspace{2cm} Enable receipt of messages from send2Vnmr (M) \hfill \texttt{send2vnmr} \hspace{2cm} Send a command to VnmrJ (U)

\textbf{listenon} \hspace{2cm} \textbf{Enable receipt of messages from send2Vnmr (M)}

\textbf{Description:} Writes files with the VnmrJ port number that /vnmr/bin/send2Vnmr needs to talk to VnmrJ. The command then to send commands to VnmrJ is /vnmr/bin/send2Vnmr $vnmruser/.talk command.

\textbf{See also:} \textit{User Programming}

\textbf{Related:} \texttt{listenoff} \hspace{2cm} Disable receipt of messages from send2Vnmr (M) \hfill \texttt{send2vnmr} \hspace{2cm} Send a command to VnmrJ (U)

\textbf{lkof} \hspace{2cm} \textbf{Track changes in lock frequency (P)}

\textbf{Description:} Tracks changes in the lock frequency resulting from changes in the solvent, and minor changes caused by the magnet drifting. The frequency units for \texttt{lkof} are
in Hz, analogous to \texttt{sfrq} and \texttt{tof}, or \texttt{dfrq} and \texttt{dof}. \texttt{lkof} affects two components of the system: autolock on the console and \texttt{acqi} on the host computer. If \texttt{lkof} exists, it offsets the current value of the \texttt{lockfreq} parameter.

See also: \textit{NMR Spectroscopy User Guide}

Related: \texttt{lockfreq} Lock frequency (P)

\texttt{ll2d} \hspace{1cm} \textbf{Automatic and interactive 2D peak picking (C)}

\textbf{Syntax:}

(1) \texttt{ll2d<(options)>:<$num>}

(2) \texttt{ll2d('info'<,#)}: $\text{peak_number}, f_1, f_2, \text{amplitude, volume, label, comment, FWHH}_1, \text{FWHH}_2, f_1_min, f_1_max, f_2_min, f_2_max

\textbf{Description:}

Automatically finds and integrates peaks that are above the threshold \texttt{th} in a 2D spectrum or a 2D plane of a 3D spectrum, and writes the peak location, volume, full-width at half-height (FWHH), volume, and the boundaries of the integrated region to a file in the \texttt{ll2d} subdirectory of the current experiment directory. For 2D spectra, the file name is \texttt{peaks.bin}, and for 2D planes of 3D spectra, the file name is \texttt{peaks_f#f#_#.bin}, where \texttt{f#f#} gives the plane direction (e.g., \texttt{f1f3}) and the final \# gives the number of the plane. For easy import and export of peak data, \texttt{ll2d} also allows insertion and deletion of peaks interactively as well as reading and writing of text peak files.

Two-dimensional volumes are scaled in a manner analogous to 1D integrals, using the parameters \texttt{ins2} and \texttt{ins2ref}. The \texttt{ins2ref} parameter is the Fourier number scaled value of a selected volume. The reported value of a peak volume is \((\text{unscaled volume}) \times \text{ins2}/\text{ins2ref}/\text{fn}/\text{fn1})\). The unscaled volume of a peak can be obtained from the command \texttt{ll2d('info',peak#)}\texttt{.ins2ref} can be set to the unscaled value divided by \texttt{fn} and \texttt{fn1}. The report volume for that peak is then the value of \texttt{ins2}.

\textbf{Arguments:} \texttt{options} (syntax 1) are any of the following (\texttt{dconi} is not necessarily active):

- \texttt{adjust} is a keyword to adjust the bounds of all peaks in the displayed area so that no boundaries overlap, and then to recalculate peak volumes.
- \texttt{draw} is a keyword to draw the peaks, boxes, numbers, and labels on the spectrum based on the value of the parameter \texttt{ll2dmode}.
- \texttt{info}, \texttt{total} displays the total number of peaks in the current peak table. If a single return value is requested, printing is suppressed and the total number of peaks is returned.
- \texttt{peaks} is a keyword to find all peaks in the displayed area above a threshold \texttt{th}. If \texttt{dconi} is active and in the box mode, \texttt{ll2d} finds peaks only in the area defined by the cursors. The \texttt{peaks} option is the default if no arguments are entered.
- \texttt{pos} or \texttt{neg} keywords can be used in addition to \texttt{peak}, \texttt{volume}, or \texttt{clear} to operate only on positive or negative peaks.
- \texttt{read\textless,file\textgreater} reads in a binary peak file, where \texttt{file} is the name of the peak file. If a full path is not specified, the file is searched for first in the current working directory and then in the \texttt{ll2d} subdirectory of the current experiment directory.
- \texttt{readtext\textless,file\textgreater} reads in a text peak file, where \texttt{file} is the name of the peak file. If a full path is not specified, the file is searched for first in the current working directory and then in the \texttt{ll2d} subdirectory of the current experiment directory.
- 'reset' is a keyword to delete all peaks in the peak table.
- 'volume' is a keyword to find the bounds of each peak in the displayed area and integrate this area.
- 'writetext '<file> writes a peak file to a text file, where file is the name of the text file written. If a full path is not specified, the file is written in the current working directory.

options (syntax 1) can also be any of the following (dconi must be active):
- 'clear' is a keyword to delete all peaks in the displayed region if in the dconi cursor mode, or to delete all peaks within the cursors if in the dconi box mode.
- 'combine' is a keyword to combine all peaks within the area defined by the cursors into a single peak (in dconi box mode only). The center of the new peak is at the average of all combined peaks' centers, and the bounds of this peak contains the maximum extents of the combined peaks' bounds. If all combined peaks have the same label, this label is assigned to the new peak. **CAUTION:** All individual peaks to be combined are deleted prior to the creation of the new combination peak, and there is no automatic way to restore the original peaks. Therefore, it is recommended that you make a backup copy of the peak file prior to using this option.
- 'comment' is a keyword to prompt for an 80-character comment. The comment is assigned to the nearest peak in the dconi cursor mode or to all peaks within the cursors in the dconi box mode.
- 'comment',text executes the 'comment' option using the string entered for text instead of prompting for a comment.
- 'label' is a keyword to prompt for a 15-character label. The label is assigned to the nearest peak in dconi cursor mode or assigned to all peaks within the cursors in dconi box mode. To erase an existing label, enter a label consisting of one or more spaces.
- 'label',text executes the 'label' option using the string entered for text instead of prompting for a label.
- 'mark' is a keyword to insert a peak at the current cursor position if in the dconi cursor mode. If in the dconi box mode, 'mark' is a keyword to integrate the area within the cursors and assign that area to all peaks within the cursors that do not have their bounds already defined. If there are no peaks within the area defined by the cursors, using 'mark' finds the highest point within this area, marks that as a peak, integrates the area within the cursors, and assigns that area to the peak. The displayed values of the volume integrals are scaled by ins2 and ins2ref and the Fourier number of the 2D experiment.
- 'unmark' is a keyword to delete the nearest peak if in dconi cursor mode. If in the dconi box mode, 'unmark' deletes all peak bounds that are completely within the area defined by the cursors. Peaks are not deleted in the box mode.

options (syntax 1) also can be any of the following (dconi does not have to be active because 112d is executed on a peak number):
- 'combine',#1,#2,... executes the 'combine' option on the list of peak numbers that follow the 'combine' keyword. If a single return value is requested, the peak number of the new combination peak is returned.
'comment',text,# executes the 'comment' option on peak # using the string entered for text instead of prompting for a comment.

'label',text,# executes the 'label' option on peak # using the string entered for text instead of prompting for a label.

'unmark',# deletes peak number #.

num(syntax 1) is a return value set to the total number of peaks that have been picked unless the arguments 'combine',#1,#2,... are used, in which case num is the number of the newly created combination peak.

Syntax 2 arguments are the following:

- 'info'<>,#> displays information in the text window about peak number #. If no peak number is included, $dconi$ must be active and the default is the peak nearest to the cursor. If return values are requested, the display is suppressed.

- $peak_number$ is a return value set to the number of the peak, either the second argument # or, if no value is given for #, the peak nearest to the cursor in $dconi$.

- $f1$ and $f2$ are return values set to the peak frequencies in f_1 and f_2 of peak $peak_number$.

- amp is a return value set to the amplitude of peak $peak_number$.

- vol is a return value set to the unscaled volume of $peak_number$. This value can be used to set the $ins2ref$ parameter.

- $label$ is a return value set to the label of peak $peak_number$.

- $comment$ is a return value set to the comment about $peak_number$.

- $FWHH1$ and $FWHH2$ are return values set to full-width at half-height of $peak_number$.

- $f1_{min},f1_{max},f2_{min},f2_{max}$ are return values set to the bounds of $peak_number$.

Examples:

```sh
ll2d
ll2d:$npeaks
ll2d('volume')
ll2d('read','peaklist.inp')
ll2d('mark')
ll2d('label','Peak 1')
ll2d('info','total'):$npeaks
ll2d('combine',3,4,5,6):$cpn
ll2d('info',3):$num,$f1,$f2,$amp,$vol,$label
```

See also: *NMR Spectroscopy User Guide*

Related:

- $dconi$ Interactive 2D contour display (C)
- $ins2$ 2D volume value (P)
- $ins2ref$ Fourier number scaled volume of a peak (P)
- $ll2dbackup$ Copy current $ll2d$ peak file to another file (M)
- $ll2dmode$ Control display of peaks picked by $ll2d$ (P)
- $parll2d$ Create parameters for 2D peak picking (M)
- $plll2d$ Plot results of 2D peak picking (C)
- th Threshold (P)
- $th2d$ Threshold for integrating peaks in 2D spectra (P)
- $xdiag$ Threshold for excluding diagonal peaks when peak picking (P)
112dbackup Copy current ll2d peak file to another file (M)
Syntax: 112dbackup<(file)>
Description: Backs up the current 112d peak file by copying it to a file with a different file name. The default 112d peak file is peaks.bin for 2D data.
Arguments: file is the name to be given to the backup file. If a full path is not specified, the file is written to the current working directory. If no argument is provided, the system prompts for a file name. If no file name is specified at the prompt, the default 112d peak file name with .bck appended is used.
See also: NMR Spectroscopy User Guide
Related: 112d Automatic and interactive 2D peak picking (C)

112dmode Control display of peaks picked by ll2d (P)
Description: Sets the display attributes of peaks picked by the 112d command
Values: A string variable composed of 4 characters, with each character taking the value 'y' (display the peak attribute) or 'n' (do not display the attribute). The first character determines if a “+” is drawn on the screen in dconi displays to mark peaks, the second character controls the drawing of the peak number, the third character controls drawing of the peak bounds box, and the last character controls drawing of the peak label.
See also: NMR Spectroscopy User Guide
Related: 112d Automatic and interactive 2D peak picking (C)

llamp List of line amplitudes (P)
Description: Stores a list of line amplitudes above the threshold set by th.
See also: NMR Spectroscopy User Guide
Related: dll Display listed line frequencies and intensities (C
llfrq List of line frequencies (P)
th Threshold (P)

llfrq List of line frequencies (P)
Description: Stores a list of line frequencies above the threshold set by th. Frequencies are stored in Hz and are not adjusted by reference parameters rfl and rfp.
See also: NMR Spectroscopy User Guide
Related: llamp List of line amplitudes (P)
rfl Ref. peak position in directly detected dimension (P)
rfp Ref. peak frequency in directly detected dimension (P)
th Threshold (P)

ln Find natural logarithm of a number (C)
Syntax: ln(value) <::n>
Description: Finds the natural logarithm (base e) of a number. To convert the value to base 10, use $\log_{10}x = 0.43429*ln(x)$.
Arguments: value is a number.
n is the return value giving the logarithm of value. The default is to display the logarithmic value in the status window.
Examples: \(\ln(0.5) \)
\(\ln(val) : \ln_val \)

See also: *User Programming*

Related:
\begin{itemize}
 \item *atan* Find arc tangent of a number (C)
 \item *cos* Find cosine value of an angle (C)
 \item *exp* Find exponential value of a number (C)
 \item *sin* Find sine value of an angle (C)
 \item *tan* Find tangent value of an angle (C)
\end{itemize}

load
Load status of displayed shims (P)

Description: Sets whether shim values are used. \texttt{load} is automatically set to 'y' by the \texttt{rts} and is automatically set to 'n' by \texttt{su, go, au}, and \texttt{shim}. Shim DAC values are automatically loaded after the console is rebooted (the last values returned before the console was rebooted).

Values:
- 'y' begins any noninteractive shimming process or data acquisition after loading the shim DACs with the shim values from the current experiment. It also prevents \texttt{acqi} from delivering shim values to that experiment.
- 'n' begins any noninteractive shimming process or data acquisition with the current values stored in the shim DACs. Shim values in the current experiment are ignored.

See also: *NMR Spectroscopy User Guide*

Related:
\begin{itemize}
 \item *acqi* Interactive acquisition display process (C)
 \item *au* Submit experiment to acquisition and process data (C)
 \item *go* Submit experiment to acquisition (C)
 \item *rts* Retrieve shim coil settings (C)
 \item *shim* Submit an autoshim experiment to acquisition (C)
 \item *su* Submit a setup experiment to acquisition (M)
\end{itemize}

loadcolors
Load colors for graphics window and plotters (M)

Syntax: \texttt{loadcolors<(color_file)>}

Description: Loads the color table for VnmrJ graphics window and plotters. \texttt{loadcolors} is generated by the \texttt{color} program and includes a series of \texttt{setcolor} commands. On bootup, the \texttt{bootup} macro calls \texttt{loadcolors} to set the graphics and plotter colors.

The \texttt{loadcolors} macro checks the value of \texttt{maxpen} to decide if the plotter supports colors. If \texttt{maxpen} is greater than 1, a color printer is configured.

Arguments: \texttt{color_file} is the name of the file to load. \texttt{loadcolors} first searches for this file in the directory \$vnmruser/templates/ directory. If not found there, \texttt{loadcolors} then searches the \texttt{user_templates/vnmr} directory. The default is a color table with the same name as the value of the plotter parameter that \texttt{loadcolors} searches for in the same two directories.

Examples:
\begin{itemize}
 \item loadcolors
 \item loadcolors('mycolortable')
\end{itemize}

See also: *VnmrJ Imaging NMR*

Related:
\begin{itemize}
 \item *bootup* Macro executed automatically when VnmrJ activated (M)
 \item *color* Select plotting colors from a graphic interface (M)
 \item *maxpen* Maximum number of pens to use (P)
 \item *setcolor* Set colors for graphics window and for plotters (C)
\end{itemize}
loc

Location of sample in tray (P)

Description: Indicates whether a sample changer is present and enabled, present but disabled, or not present. If the changer is present and enabled, the value of **loc** sets the location in the tray of the sample in use or to be used. The **loc** parameter is stored in the global tree. When an acquisition is started, certain global parameters, including **loc**, are saved with the experiment parameters. The **saveglobal** parameter specifies which global parameters are saved.

The **auto_au** macro controls most of the automation features, including setting the value of **loc**.

Values: A number between 1 and **traymax** indicates the sample location. 0 indicates the changer is not present or disabled.

See also: *NMR Spectroscopy User Guide; VnmrJ Walkup*

Related:
- **auto_au** Controlling macro for automation (M)
- **saveglobal** Save selected parameters from global tree (P)
- **traymax** Sample changer tray size (P)

locaction

Locator action (M)

Description: Perform an action on an object in the locator database. The action depends on the type of object selected, the action performed, and the target selected for the action.

Related:
- **dndfid** Retrieve and process fid data from the locator (M)
- **dndjoin** Join a workspace from the locator (M)
- **dndpar** Retrieve a parameter set from the locator (M)
- **dndshims** Retrieve a shimset set from the locator (M)
- **locprotoexec** Execute a protocol from the locator (M)
- **xmmakenode** Make a new study queue node (M)

lock

Submit an Autolock experiment to acquisition (C)

Description: Performs an automatic locking operation using the acquisition computer, optimizing lock power, phase, and gain. If necessary, **lock** obtains lock through a software-controlled search. **lock** is the only method to automatically adjust lock phase (usually needed only after probe change or lock channel tuning). **lock** also sets the rf frequencies, decoupler status, and temperature.

See also: *NMR Spectroscopy User Guide*

Related:
- **au** Submit experiment to acquisition and process data (C)
- **change** Submit a change sample experiment to acquisition (M)
- **ga** Submit experiment to acquisition and FT the result (C)
- **go** Submit experiment to acquisition (C)
- **sample** Submit change sample, autoshim experiment to acquisition (M)
- **shim** Submit an Autoshim experiment to acquisition (C)
- **spin** Submit a spin setup experiment to acquisition (C)
- **su** Submit a setup experiment to acquisition (M)

lockacqtc

Lock loop time constant during acquisition (P)

Applicability: DirectDrive and Inova

Description: Controls time constant of lock loop during acquisition (i.e., time constant by which the lock feedback corrects disturbances of the magnetic field).
Values: 1, 2, 3, or 4 (where 1 sets 1.2 seconds, 2 sets 4.7 seconds, 3 sets 12 seconds, and
4 sets 48 seconds).
If lockacqtc does not exist, it is set to 48 seconds. All systems are designed
to work well with the default settings, and there should rarely be a reason to alter
the lock time constant. However, to experiment with other values, create
lockacqtc and set a new value:

\[
\text{create('lockacqtc','integer','global')}
\]
\[
\text{setlimit('lockacqtc',4,1,1,'global')} \quad \text{lockacqtc=}\ n
\]
where \(n \) is the new value.

See also: \textit{NMR Spectroscopy User Guide}

Related: create \hspace{1em} Create new parameter in a parameter tree (C)
locktc \hspace{1em} Lock time constant (P)
setlimit \hspace{1em} Set limits of a parameter in a tree (C)

\textbf{lockfreq} \hspace{1em} Lock frequency (P)

Description: Sets system lock frequency. The value is entered using the Lock Frequency
label in Spectrometer Configuration window. \textbf{The value of lockfreq must be set correctly in order to observe NMR signals.}

\(\text{lockfreq} \) can find the lock signal or resonance. Traditionally, Varian
spectrometers have used the parameter \(z_0 \) for this purpose; however, using
\(\text{lockfreq} \) can require less shimming when switching solvents and less
adjustment to the lock phase. To use \(\text{lockfreq} \), set \(z_0='n' \).

Values: 1 to 160 (in MHz), 'n'

Use the true \(^2\text{H}\) frequency. Typical values of \(\text{lockfreq} \) are shown in the chart
below.

<table>
<thead>
<tr>
<th>(^1\text{H}) Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 \hspace{1em} 30.710</td>
</tr>
<tr>
<td>300 \hspace{1em} 46.044</td>
</tr>
<tr>
<td>400 \hspace{1em} 61.395</td>
</tr>
<tr>
<td>500 \hspace{1em} 76.729</td>
</tr>
<tr>
<td>600 \hspace{1em} 92.095</td>
</tr>
<tr>
<td>750 \hspace{1em} 115.250</td>
</tr>
</tbody>
</table>

Refer to the manual \textit{VnmrJ Installation and Administration} for details on
finding the correct lock frequency.

The commands; \texttt{go}, \texttt{lock}, \texttt{shim}, and \texttt{su} reset the lock frequency in the
console to the current value of \(\text{lockfreq} \). Lock frequency in the console can
be set with the \texttt{sethw} command.

\(\text{lockfreq} \) is offset by the value of \(\text{lkof} \), if that parameter exists, but \texttt{sethw}
directly uses its numeric argument, without any offset by \(\text{lkof} \).

See also: \textit{VnmrJ Installation and Administration; NMR Spectroscopy User Guide}

Related: \texttt{config} \hspace{1em} Display current configuration and possibly change it (M)
\texttt{go} \hspace{1em} Submit experiment to acquisition (M)
\texttt{lkof} \hspace{1em} Track changes in lock frequency (P)
\texttt{lock} \hspace{1em} Submit an Autolock experiment to acquisition (C)
\texttt{sethw} \hspace{1em} Set values for hardware in acquisition system (C)
\texttt{setlockfreq} \hspace{1em} Set lock frequency (C)
\texttt{shim} \hspace{1em} Submit an Autoshim experiment to acquisition (C)
lockgain Lock gain (P)
Description: Contains the current lock gain value as set by computer control. The value is stored in vnmrsys/global and can be examined by typing lockgain?.
Values: 0 to 48 dB, in 1-dB steps.
See also: NMR Spectroscopy User Guide

lockphase Lock phase (P)
Description: Contains the current lock phase. The value is stored in vnmrsys/global and can be examined by typing lockphase?.
Values: 0 to 360, in degrees, in 1.4-degree steps.
See also: NMR Spectroscopy User Guide

lockpower Lock power (P)
Description: Contains the current lock power value as set by computer control. The value is stored in vnmrsys/global and can be examined by typing lockpower?.
Values: 0 to 68 dB, in 1-dB steps, 68 is full power.
See also: NMR Spectroscopy User Guide

locktc Lock time constant (P)
Description: Controls lock loop time constant when system is not performing acquisition (idle, lock display, shim display, FID display, autoshim, autolock, etc.).
Values: 1, 2, 3, or 4 (where 1 corresponds to 1.2 seconds, 2 to 4.7 seconds, 3 to 12 seconds, and 4 to 48 seconds). If locktc does not exist, the system uses a value of 1, the fastest value. To experiment with other value, create locktc and set a value (e.g., create('locktc','integer','global') setlimit('locktc',4,1,'global') locktc=2).
See also: NMR Spectroscopy User Guide
Related: create Create new parameter in a parameter tree (C)
lockacqtc Lock acquisition time constant (P)
setlimit Set limits of a parameter in a tree (C)

logate Transmitter local oscillator gate (P)
Description: Specifies whether the transmitter local oscillator (L.O.) is gated with the transmitter rf output or with the transmitter I.F. (intermediate frequency).
The logate parameter does not exist in most parameter sets; the system internally sets it to 'l'. To use the value 's', create logate and change the value by entering: create('logate','string') setenumeral('logate',2,'l','s') logate='s'.
Values: 'l' makes the transmitter L.O. gate with the rf output, producing better signal-to-noise, usually most important in liquids NMR.
's' makes the transmitter L.O. gate with the I.F. signal, producing sharper pulses, especially important in solid-state NMR.
lookup

Look up words and lines from a text file (C)

Applicability: VnmrJ

Syntax: `lookup('codeword',argument<,'codeword',
argument<,...>>):$n1<$n2<,...>>`

Description: Search a text file or files for a word or any string of characters delimited by white space characters (space character, a tab, a new line, a carriage return, or a comma) or codeword and return to the user subsequent words or lines.

The white space characters may be specified. Punctuation marks, unless they are defined as white space as the comma is by default, also form words or are part of a word. A line is any string of characters from the current word to the next carriage return. A line will include all “white space” characters except the carriage return. Depending on the codeword, word searches and word counts can be case insensitive or case sensitive.

The codewords `mfile` and `filekey` implement multiple text file lookup and `lookup` reads the contents of the specified files.

The `mfile` and `file` keywords are used together to keep track of various locations within a single file to restart the search from that location.

The first time a file is selected, or the search is restarted at the beginning of the file, use the name of the file instead of the `filekey` codeword. Subsequent calls to `lookup` on this file use the value returned by the `filekey` codeword as the argument following the `mfile` codeword. The `mfile` codeword resets the white space to the default values.

Arguments: Default white space characters: space character, tab, new line, carriage return, or comma.

- `file` codeword specifies that the next supplied argument is the name of the active text file. This codeword must be the first argument and the file name must be the second argument passed to `lookup`. The search through a text file is a top to bottom search. The `file` codeword resets the search to start from the top of the text file. Subsequent searches through a previously accessed text file will continue from where the previous search stopped provided the `file` codeword is not used. The `file` codeword resets the white space characters to their default values.

- `mfile` codeword specifies that the next supplied argument is the `filekey` to select one of multiple text files to access. This codeword must be first argument and the `filekey` must be the second argument passed to `lookup` if `mfile` is used.

- `seek` this codeword causes the `lookup` program to search the text file for words which match those supplied as arguments following the `seek` codeword. An implicit `seek` is initially assumed for each call to `lookup`. The `lookup` program maintains a pointer to the word following the last successful `seek`. The first argument following an explicit `seek` codeword is interpreted as a word to search for and not a codeword. The second or later argument following an explicit `seek` is interpreted as a codeword if it matches one of the nine cases. Therefore, for example, one can search for the word `file` without having it interpreted as a codeword by having it immediately follow the `seek` codeword in the argument list. This seek is case insensitive.

- `seekcs` this codeword is the case sensitive equivalent to the `seek` codeword and follows the same rules as `seek`. Alternate case sensitive and case insensitive searches are allowed.
skip increments the word pointer to the next word in the text file. This codeword may optionally be followed by a number which will specify how many words to skip.

read returns to the user the word currently being pointed to and increments the pointer to the next word in the text file. This codeword may optionally be followed by a number which will specify how many words to return to the user.

readline returns to the user the word currently being pointed to and all following words until the end of the current line. The pointer is moved to the first word of the next line in the text file. This codeword may optionally be followed by a number which will specify how many lines to return to the user.

count returns to the user the number of times words in the text file match the subsequent argument. The count starts at the current word pointer and proceeds to the end of the text file. The word count is not case sensitive.

countcs this codeword is the case sensitive equivalent to the count codeword. In all other respects, it is the same as count.

delimiter this codeword specifies that the next supplied argument is a list of characters which are used to identify the white space used to identify words.

Characters are specified by the following:
\n — new line
\t — tab
\r — carriage return
\| — backslash
\' — single quote.

The two arguments delimiter,' \t\n\r', reselect the default white space. The file codeword will also reselect the default white space. The distinction is that the file codeword restarts the search from the beginning of the file while the delimiter codeword continues from the current search position. An implicit seek is applied following the 'delimiter' codeword and argument.

filekey returns the current location within the file that is being accessed. Combined with the mfile codeword, a subsequent call to lookup starts the search at the location within the file specified by the value of filekey. The filekey serves both as a pointer to the file and as the character offset within that file.

Examples: lookup('file', systemdir + '/manual/lookup')
Select this file for the search.

lookup('user','skip',2,'read',2,'readline'):$n1,$n2,$n3,$ret
Seek is assumed with the call to lookup. Finding the word user the next instruction,'skip',2, causes the pointer to jump two words. The codeword read causes the word to be put into $n1. The argument 2 specifies two words to be read into $n2. The word pointer now points to the next. The codeword readline causes the remaining characters up to the next carriage return to be placed in $n3. The pointer now points to the first word in the next line. The variable $ret is set to the number of arguments successfully returned from the text file and is used to determine if the end of the text file has been reached.

lookup('skip',8,'read','skip',3,'read',2,'seek','comma'):$n3,$n4,$n5
'Skip',8 causes the pointer to jump eight words. The 'read' sets $n3 equal to word where the pointer is now located. 'Skip',3 jumps the next three words. 'Read',2 reads two consecutive words and sets $n4 to the first word and $n5 equal the second word. The seek argument searches for the word 'comma'. If the word 'comma' is at the end of a sentence it will not be found because the period is treated (by default) as part of the word. Define the period as a white space and occurrences comma at the end of sentences are also found. The word pointer now points to the next word.
lookup('delimiter',' ','\\\n \t\n', 'seek', 'file', 'skip', 6, 'read'): n6

The delimiter with the argument ' ', '\n \t\n' sets white space to space, comma, single quote, period, new line, tab, and double quote. Setting single quotes to white space causes the explicit seek to select the next argument file as a search word not a codeword. The search for the word must matches both MUST and must because seek is not case sensitive. 'Skip', 6 jumps six words. Read sets $n6 equal to word found between the next set of single quotes because single quotes are defined as white space.

lookup('seekcs', 'Test', 'read'): n7

seekcs is the case sensitive form of seek and searches for the word that is an exact match to the case of Test (the argument following the codeword seekcs). Finding the word 'Test', read sets $n7 to search. Any occurrence of the word test is skipped.

See also: User Programming

Related: dialog Display a dialog box from a macro (C)
systemdir VnmrJ system directory (P)

locprotoexec Execute a protocol from the locator (M)

Description: When a protocol is dragged from the locator and dropped onto the graphics canvas, this macro adds the protocol to the end of the study queue, and executes the macro associated with the protocol.

Related: dndfid Retrieve and process fid data from the locator (M)
dndjoin Join a work space from the locator (M)
dndpar Retrieve a parameter set from the locator (M)
dndshims Retrieve a shimset set from the locator (M)
locaction Locator action (M)
xmmakenode Make a new study queue node (M)

lp First-order phase in directly detected dimension (P)

Description: Specifies the first-order phase-correction angles along the directly detected dimension according to the formula

\[
\text{absorption spectrum}(\omega) = \text{real channel}(\omega) \times \cos \theta + \text{imaginary channel}(\omega) \times \sin \theta
\]

where the phase angle θ is a function of frequency, i.e.

\[
\theta = \theta_p + (\omega - \omega_0)/2\pi l_p
\]

ω_0 is defined to be the right end of the spectrum (i.e., lp has zero effect at the right edge of the spectrum and a linearly increasing effect going to the left). In multidimensional data sets, lp controls the phase of the directly detected dimension: f_2 dimension in 2D data sets, f_3 dimension in 3D data sets, etc.

Values: –3600 to +3600, in degrees. Typical values are between 0 and –180.

See also: NMR Spectroscopy User Guide

Related: aph Automatic phase adjustment of spectra (C)
lp1 First-order phase in 1st indirectly detected dimension (P)
lp2 First-order phase in 2nd indirectly detected dimension (P)
rp Zero-order phase in directly detected dimension (P)
setlp0 Set parameters for zero linear phase (M)
lp1
First-order phase in 1st indirectly detected dimension (P)
Description: Controls the first-order phase constant along the first indirectly detected dimension during the process of phase-sensitive 2D transformation. The first indirectly detected dimension is often referred to as the f_1 dimension of a multidimensional data set.
See also: *NMR Spectroscopy User Guide*
Related:
- lp First-order phase in directly detected dimension (P)
- lp2 First-order phase in 2nd indirectly detected dimension (P)
- rp1 Zero-order phase in 1st indirectly detected dimension (P)

lp2
First-order phase in 2nd indirectly detected dimension (P)
Description: Controls the first-order phase constant along the second indirectly detected dimension during a `ds`, `dconi`, or equivalent display operation on the 2D data or a 1D trace therein. The second indirectly detected dimension is often referred to as the f_2 dimension of a 3D (or higher dimensionality) data set.
See also: *NMR Spectroscopy User Guide*
Related:
- dconi Interactive 2D contour display (C)
- ds Display a spectrum (C)
- lp First-order phase in directly detected dimension (P)
- rp2 Zero-order phase in 2nd indirectly detected dimension (P)

lpalg
LP algorithm in np dimension (P)
Description: Specifies the linear prediction (LP) algorithm to use in the np dimension. The resulting LP coefficients are used to appropriately extend the complex time-domain data prior to a normal Fourier transform. The LP algorithms work both on complex t_2 FIDs and on hypercomplex or complex t_1 interferograms. Enter `addpar('lp')` to create `lpalg` and other np dimension LP parameters in the current experiment.
Values:
- `'lpfft'` does a least-squares calculation of `lpfilt` complex LP coefficients using `lpnupts` complex time-domain data points. Eigenvalue decomposition of the least-squares matrix is done using Householder tridiagonalization followed by the QL method with implicit shifts.
- `'lparfft'` does a non-least-squares calculation of `lpfilt` complex LP coefficients using $(\text{lpfilt}+1)$ complex, autoregressive (AR) matrix elements. These AR matrix elements are calculated from the raw, complex time-domain data using `lpnupts` points.
Note that the `'lpfft'` algorithm is preferred by far. While `'lparfft'` can model broad lines and can extend data sets when mostly noise exists, it cannot model narrow lines.
See also: *NMR Spectroscopy User Guide*
Related:
- addpar Add selected parameters to the current experiment (M)
- lpalg1 LP algorithm in ni dimension (P)
- lpalg2 LP algorithm in ni2 dimension (P)
- lpext LP data extension in np dimension (P)
- lpfilt LP coefficients to calculate in np dimension (P)
- lpnupts LP number of data points in np dimension (P)
- lpopt LP algorithm data extension in np dimension (P)
- lpprint LP print output in np dimension (P)
- lptrace LP output spectrum in np dimension (P)
- np Number of data points (P)
- proc Type of processing on np FID (P)
lpalg1
LP algorithm in ni dimension (P)

Description: Specifies the LP (linear prediction) algorithm to use in the ni dimension.
lpalg1 functions analogously to lpalg. Enter addpar ('lp', 1) to create lpalg1 and other ni dimension LP parameters in the current experiment.

Values: 'lpfft' or 'lparfft'

See also: NMR Spectroscopy User Guide

Related:
- addpar Add selected parameters to the current experiment (M)
- lpalg LP algorithm in np dimension (P)
- ni Number of increments in 1st indirectly detected dimension (P)

lpalg2
LP algorithm in ni2 dimension (P)

Description: Specifies the LP (linear prediction) algorithm to use in the ni2 dimension.
lpalg2 functions analogously to lpalg. Enter addpar ('lp', 2) to create lpalg2 and other ni2 dimension LP parameters in the current experiment.

Values: 'lpfft' or 'lparfft'

See also: NMR Spectroscopy User Guide

Related:
- addpar Add selected parameters to the current experiment (M)
- lpalg LP algorithm in np dimension (P)
- ni2 Number of increments in 2nd indirectly detected dimension (P)

lpext
LP data extension in np dimension (P)

Description: Specifies number of complex time-domain data points for LP (linear prediction) in the np dimension by which the original data is to be extended (or altered) in either the forward or backward direction. lpext is constrained by
\[(strtext - lpext) \geq 0 \text{ for } lpopt = 'b' \text{ and by } (strtext + lpext - 1) \leq fn/2 \text{ for } lpopt = 'f'. \]
In the np direction, if \((strtext - lpext) = 0 \text{ and } lpopt = 'b' \) (backwards linear prediction with calculation of the first point), &mult defaults to the theoretical value of 0.5 instead of 1.0. Enter addpar ('lp') to create lpext and other np dimension LP parameters in the current experiment.

Related:
- addpar Add selected parameters to the current experiment (M)
- lpalg LP algorithm in np dimension (P)
- lpext1 LP data extension in ni dimension (P)
- lpext2 LP data extension in ni2 dimension (P)
- lpopt LP algorithm data extension in np dimension (P)
- np Number of data points (P)
- strtext Starting point for LP data extension in np dimension (P)

lpext1
LP data extension in ni dimension (P)

Description: Specifies number of complex time-domain data points for LP (linear prediction) in the ni dimension by which the original data is to be extended (or altered) in either the forward or backward direction. lpext1 functions analogously to lpext. Enter addpar ('lp', 1) to create lpext1 and other ni dimension LP parameters in the current experiment.
lpext2
LP data extension in ni2 dimension (P)

Description: Specifies number of complex time-domain data points for LP (linear prediction) in the ni2 dimension by which the original data is to be extended (or altered) in either the forward or backward direction. lpext2 functions analogously to lpext. Enter `addpar('lp', 2)` to create `lpext2` and other ni2 dimension LP parameters in the current experiment.

Related:
- `addpar` Add selected parameters to the current experiment (M)
- `lpext` LP data extension in np dimension (P)
- `ni2` Number of increments in 2nd indirectly detected dimension (P)

lpfilt
LP coefficients to calculate in np dimension (P)

Description: Specifies number of complex LP (linear prediction) coefficients in the np dimension to be calculated from a specified region of the time-domain data. lpfilt should be greater than `nsignals`, where `nsignals` is the number of sinusoidal signals contained in that FID (or interferogram). Enter `addpar('lp')` to create `lpfilt` and other np dimension LP parameters in the current experiment.

Related:
- `addpar` Add selected parameters to the current experiment (M)
- `lpalg` LP algorithm in np dimension (P)
- `lpfilt1` LP coefficients to calculate in ni dimension (P)
- `lpfilt2` LP coefficients to calculate in ni2 dimension (P)
- `np` Number of data points (P)

lpfilt1
LP coefficients to calculate in ni dimension (P)

Description: Specifies number of complex LP (linear prediction) coefficients in the ni dimension to be calculated from a specified region of the time-domain data. lpfilt1 functions analogously to lpfilt. Enter `addpar('lp', 1)` to create `lpfilt1` and other ni dimension LP parameters in the current experiment.

Related:
- `addpar` Add selected parameters to the current experiment (M)
- `lpalg` LP algorithm in np dimension (P)
- `lpfilt` LP coefficients to calculate in np dimension (P)
- `ni` Number of increments in 1st indirectly detected dimension (P)

lpfilt2
LP coefficients to calculate in ni2 dimension (P)

Description: Specifies number of complex LP (linear prediction) coefficients in the ni2 dimension to be calculated from a specified region of the time-domain data. lpfilt2 functions analogously to lpfilt. Enter `addpar('lp', 2)` to create `lpfilt1` and other ni2 dimension LP parameters in the current experiment.

Related:
- `addpar` Add selected parameters to the current experiment (M)
lpnupts LP number of data points in np dimension (P)
Description: Specifies number of complex time-domain data points in the np dimension to be used in constructing the autoregressive (lpalg='lparfft') or least-squares (lpalg='lpnefft') matrix from which the complex LP (linear prediction) coefficients are calculated. Note that lpnupts greater than or equal to 2*lpfilt is required for both algorithms. Enter addpar('lp') to create lpnupts and other np dimension LP parameters in the current experiment.

Related: addpar Add selected parameters to the current experiment (M)
lpalg LP algorithm in np dimension (P)
lpfilt LP coefficients to calculate in np dimension (P)
lpnupts1 LP number of data points in ni dimension (P)
lpnupts2 LP number of data points in ni2 dimension (P)
np Number of data points (P)

lpnupts1 LP number of data points in ni dimension (P)
Description: Specifies number of complex time-domain data points in the ni dimension to be used in constructing the autoregressive (lpalg1='lparfft') or least-squares (lpalg1='lpnefft') matrix from which the complex LP (linear prediction) coefficients are calculated. lpnupts1 functions analogously to lpnupts. Enter addpar('lp',1) to create lpnupts1 and other ni dimension LP parameters in the current experiment.

Related: addpar Add selected parameters to the current experiment (M)
lpalg1 LP algorithm in ni dimension (P)
lpnupts LP number of data points in np dimension (P)
ni Number of increments in 1st indirectly detected dimension (P)

lpnupts2 LP number of data points in ni2 dimension (P)
Description: Specifies number of complex time-domain data points in the ni2 dimension to be used in constructing the autoregressive (lpalg2='lparfft') or least-squares (lpalg2='lpnefft') matrix from which the complex LP (linear prediction) coefficients are calculated. lpnupts2 functions analogously to lpnupts. Enter addpar('lp',2) to create lpnupts2 and other ni2 dimension LP parameters in the current experiment.

Related: addpar Add selected parameters to the current experiment (M)
lpalg2 LP algorithm in ni2 dimension (P)
lpnupts LP number of data points in np dimension (P)
ni2 Number of increments in 2nd indirectly detected dimension (P)

lpopt LP algorithm data extension in np dimension (P)
Description: Specifies how the specific LP (linear prediction) algorithm is to extend (or alter) forward or backward the time-domain data in the np dimension. Enter addpar('lp') to create lpopt and other np dimension LP parameters in the current experiment.
Multiple LP operations, extended forward or backward, can be performed on each FID or interferogram. This is accomplished by arraying the LP processing parameters (e.g., \texttt{lpopt='b', 'f', 'b')}). The number of LP operations is determined by the LP processing parameter with the largest array size. LP parameters having a smaller array size are padded out with their last value. The most common use for this capability is to back-calculate the first 1 to 2 points in an FID or interferogram and subsequently to extend the length of the time-domain data by LP.

A printout can be obtained for each LP operation on an individually definable FID or interferogram. For example, if \texttt{lpprint=30,30} and \texttt{lptrace=1,2}, the text file \texttt{lpanalyz.out.1} contains the LP printout for the first LP operation on FID 1 and \texttt{lpanalyz.out.2} contains the LP printout for the second LP operation on FID 2.

Values:
- \texttt{'b'} indicates the LP coefficients are to be used in the back-calculation of a specified number of time-domain data points.
- \texttt{'f'} indicates the LP coefficients are to be used in the forward extension of the time-domain data by a specified number of points. The characteristic polynomial in z space, derived from the complex LP coefficients, is set up and rooted. Any root found to lie outside the unit circle is reflected back into the unit circle. New complex LP coefficients are then calculated from these adjusted complex roots.

Related:
- \texttt{addpar} Add selected parameters to the current experiment (M)
- \texttt{lpalg} LP algorithm in \texttt{np} dimension (P)
- \texttt{lpopt1} LP algorithm data extension for \texttt{ni} dimension (P)
- \texttt{lpopt2} LP algorithm data extension for \texttt{ni2} dimension (P)
- \texttt{lpprint} LP print output for \texttt{np} dimension (P)
- \texttt{lptrace} LP output spectrum for \texttt{np} dimension (P)
- \texttt{np} Number of data points (P)

\textbf{lpopt1} LP algorithm data extension in \texttt{ni} dimension (P)

Description: Specifies how the specific LP (linear prediction) algorithm is to extend (or alter) forward or backward the time-domain data in the \texttt{ni} dimension. \texttt{lpopt1} functions analogously to \texttt{lpopt}. Enter \texttt{addpar('lp',1)} to create \texttt{lpopt1} and other \texttt{ni} dimension LP parameters in the current experiment.

Related:
- \texttt{addpar} Add selected parameters to the current experiment (M)
- \texttt{lpopt} LP algorithm data extension for \texttt{np} dimension (P)
- \texttt{ni} Number of increments in 1st indirectly detected dimension (P)

\textbf{lpopt2} LP algorithm data extension in \texttt{ni2} dimension (P)

Description: Specifies how the specific LP (linear prediction) algorithm is to extend (or alter) forward or backward the time-domain data in the \texttt{ni2} dimension. \texttt{lpopt2} functions analogously to \texttt{lpopt}. Enter \texttt{addpar('lp',2)} to create \texttt{lpopt2} and other \texttt{ni2} dimension LP parameters in the current experiment.

Related:
- \texttt{addpar} Add selected parameters to the current experiment (M)
- \texttt{lpopt} LP algorithm data extension for \texttt{np} dimension (P)
- \texttt{ni2} Number of increments in 2nd indirectly detected dimension (P)
lpprint

LP print output for np dimension (P)

Description: Controls LP (linear prediction) print output for the np dimension and creates an output file in the current experiment directory (curexp) with the name lpanalyz.out.1. Enter `addpar('lp')` to create `lpprint` and other np dimension LP parameters in the current experiment.

Values: Comprised of sum of decimal values of the following bit fields, in which each bit field controls an independent output option:

- Bit 0 (decimal value 1) writes out the LP matrix and Y vector from which the LP coefficients are calculated.
- Bit 1 (decimal value 2) writes out the LP coefficients that have been obtained using either of the two supported algorithms.
- Bit 2 (decimal value 4) writes out the LP roots obtained from the characteristic polynomial derived from the LP coefficients; this only applies for `lpalg='lpfft'` and `lpopt='f'`.
- Bit 3 (decimal value 8) writes out the original and recalculated values for each LP extended (or altered) complex time-domain data point.
- Bit 4 (decimal value 16) writes out the internal LP parameter structure.

For example, `lpprint=12` and `lptrace=1` yields the following information in the file `curexp/lpanalyz.out.1` for spectrum 1 along f2: the values for all lpfilt complex LP coefficients and the original and recalculated values for each of the lpfilt LP extended (or altered) complex time-domain data points.

See also: *NMR Spectroscopy User Guide*

Related:
- `addpar` Add selected parameters to the current experiment (M)
- `curexp` Current experiment directory (P)
- `lpalg` LP algorithm in np dimension (P)
- `lpfilt` LP coefficients to calculate in np dimension (P)
- `lpprint1` LP print output for ni dimension (P)
- `lpprint2` LP print output for ni2 dimension (P)
- `lptrace` LP output spectrum in np dimension (P)
- `np` Number of data points (P)

lpprint1

LP print output for ni dimension (P)

Description: Controls LP (linear prediction) print output for the ni dimension and creates an output file in the current experiment directory (curexp) with the name lpanalyz1.out.1. `lpprint1` functions analogously to `lpprint`. Enter `addpar('lp',1)` to create `lpprint1` and other ni dimension LP parameters in the current experiment.

See also: *NMR Spectroscopy User Guide*

Related:
- `addpar` Add selected parameters to the current experiment (M)
- `lpprint` LP print output for np dimension (P)
- `ni` Number of increments in 1st indirectly detected dimension (P)

lpprint2

LP print output for ni2 dimension (P)

Description: Controls LP (linear prediction) print output for the ni2 dimension and creates an output file in the current experiment directory (curexp) with the name lpanalyz2.out.1. `lpprint2` functions analogously to `lpprint`. Enter
addpar('lp',2) to create lpprint2 and other ni2 dimension LP parameters in the current experiment.

See also: *NMR Spectroscopy User Guide*

Related: addpar Add selected parameters to the current experiment (M)
lpprint LP print output for np dimension (P)
ni2 Number of increments in 2nd indirectly detected dimension (P)

lptrace

LP output spectrum in np dimension (P)

Description: Specifies for which spectrum LP (linear prediction) output in the np dimension is produced in accordance with the parameter lpprint. Enter addpar('lp') to create lptrace and other np dimension LP parameters in the current experiment.

See also: *NMR Spectroscopy User Guide*

Related: addpar Add selected parameters to the current experiment (M)
lpalg LP algorithm in np dimension (P)
lpprint LP print output in np dimension (P)
lptrace1 LP output spectrum in ni dimension (P)
lptrace2 LP output spectrum in ni2 dimension (P)
np Number of data points (P)

lptrace1

LP output spectrum in ni dimension (P)

Description: Specifies for which spectrum or trace LP (linear prediction) output in the ni dimension is produced in accordance with the parameter lpprint1. lptrace1 functions analogously to lptrace. Enter addpar('lp',1) to create lpprint2 and other ni dimension LP parameters in the current experiment.

See also: *NMR Spectroscopy User Guide*

Related: addpar Add selected parameters to the current experiment (M)
lpprint1 LP print output in ni dimension (P)
lptrace LP output spectrum in np dimension (P)
ni Number of increments in 1st indirectly detected dimension (P)

lptrace2

LP output spectrum in ni2 dimension (P)

Description: Specifies for which spectrum or trace LP (linear prediction) output in the ni2 dimension is produced in accordance with the parameter lpprint2. lptrace2 functions analogously to lptrace. Enter addpar('lp',2) to create lptrace2 and other ni2 dimension LP parameters in the current experiment.

See also: *NMR Spectroscopy User Guide*

Related: addpar Add selected parameters to the current experiment (M)
lpprint2 LP print output in ni2 dimension (P)
lptrace LP output spectrum in np dimension (P)
ni2 Number of increments in 2nd indirectly detected dimension (P)

ls

List files in directory (C)

Syntax: ls<(directory)>

Description: Lists the names of files in a directory on the text output window. ls is identical to dir and lf.
Arguments: directory is the name of a directory. The default is the current working directory. ls is equivalent to the UNIX command ls and uses the same options (e.g., -l for a long listing such as ls(' -l *.fid')).

Examples: ls
ls('data')
ls(' -l *.fid')

Related: dir List files in directory (C)
lf List files in directory (C)

lsfid

Number of complex points to left-shift the np FID (P)

Description: Specifies number of complex points (not real points) that the np FID is to be either left-shifted (lsfid>0) or right-shifted (lsfid<0). A right shift adds zeros to the front of the FID. lsfid (and related parameters phfid and lsfrq) operate on complex np FID data, referred to as the t2 dimension in a 2D experiment or as the t3 dimension in a 3D experiment. lsfid is in the processing group and is properly handled by a wti operation (display).

Values: –fn/2 to np/2 (or –fn/2 to fn/2 if fn<np), 'n'

Related: dfid Display a single FID (C)
ds Display a spectrum FID (C)
f1 Fourier number in directly detected dimension (P)
ft Fourier transform 1D data (C)
ft1d Fourier transform along f2 dimension (C)
ft2d Fourier transform 2D data (C)
lsfid1 Number of complex points to left-shift ni interferogram (P)
lsfid2 Number of complex points to left-shift ni2 interferogram (P)
lsfrq Frequency shift of the fn spectrum in Hz (P)
np Number of data points (P)
phfid Zero-order phasing constant for the np FID (P)
wft Weight and Fourier transform 1D data (C)
wft1d Weight and Fourier transform f2 of 2D data (C)
wft2d Weight and Fourier transform 2D data (C)
wti Interactive weighting (C)

lsfid1

Number of complex points to left-shift ni interferogram (P)

Description: Specifies number of hypercomplex (for hypercomplex interferogram data) or complex (for complex interferogram data) points that the ni interferogram is to be either left-shifted (lsfid1>0) or right-shifted (lsfid1<0). A right shift adds zeros to the front of the FID. lsfid1 (and related parameters phfid1 and lsfrq1) operate on ni interferogram data, both hypercomplex and complex. ni interferogram data are referred to as the t1 dimension in both a 2D and a 3D experiment. lsfid1 is in the processing group and is properly handled by a wti operation (display); that is, a wti operation on an ni interferogram applies the parameters phfid1, lsfid1, and lsfrq1, if selected, to the time-domain data prior to the Fourier transformation.

Values: –fn1/2 to ni (or –fn1/2 to fn1/2 if fn1<2*ni), 'n'

Related: fn1 Fourier number in 1st indirectly detected dimension (P)
lsfid Number of complex points to left-shift np FID (P)
lsfid2 Number of complex points to left-shift ni2 interferogram (P)
lsfid2 Number of complex points to left-shift ni2 interferogram (P)

Description: Specifies the number of hypercomplex (for hypercomplex interferogram data) or complex (for complex interferogram data) points that the ni2 interferogram is to be either left-shifted (lsfid2>0) or right-shifted (lsfid2<0). A right shift adds zeros to the front of the FID. lsfid2 (and related parameters phfid2 and lsfrq2) operate on ni2 interferogram data, both hypercomplex and complex. ni2 interferogram data are referred to as the t2 dimension in a 3D experiment. lsfid2 is in the processing group and is properly handled by a wti operation (display).

Values: –fn2/2 to ni2 (or –fn2/2 to fn2/2 if fn2<2*ni2), 'n'

Related: fn2 Fourier number in 2nd indirectly detected dimension (P)
lsfid Number of complex points to left-shift np FID (P)
lsfid1 Number of complex points to left-shift ni FID (P)
lsfrq2 Frequency shift of the fn2 spectrum in Hz (P)
ni2 Number of increments in 2nd indirectly detected dimension (P)
phfid2 Zero-order phasing constant for ni2 interferogram (P)
wti Interactive weighting (C)

lsfrq Frequency shift of the fn spectrum (P)

Description: Sets a frequency shift of spectral data, in Hz. lsfrq is the time-domain equivalent of lp within VnmrJ. lsfrq (and related parameters phfid and lsfid) operate on complex np FID data, referred to as the t2 dimension in a 2D experiment or as the t3 dimension in a 3D experiment. lsfrq is in the processing group and is properly handled by a wti operation (display).

Values: A positive value results in peaks being shifted downfield (to the left). A negative value results in peaks being shifted upfield (to the right).

Related: dfid Display a single FID (C)
ds Display a spectrum FID (C)
fn Fourier number in directly detected dimension (P)
ft Fourier transform 1D data (C)
ft1d Fourier transform along f2 dimension (C)
ft2d Fourier transform 2D data (C)
lp First-order phase in directly detected dimension (P)
lsfid Number of complex points to left-shift np FID (P)
lsfrq1 Frequency shift of the fn1 spectrum in Hz (P)
lsfrq2 Frequency shift of the fn2 spectrum in Hz (P)
phfid Zero-order phasing constant for np FID (P)
wft Weight and Fourier transform 1D data (C)
wft1d Weight and Fourier transform f2 of 2D data (C)
wft2d Weight and Fourier transform 2D data (C)
wti Interactive weighting (C)
lsfrq1 Frequency shift of the fn1 spectrum (P)

Description: Sets a frequency shift of spectral data, in Hz. lsfrq1 is the time-domain equivalent of lp1 within VnmrJ. lsfrq1 (and related parameters phfid1 and lsfid1) operate on ni interferogram data, both hypercomplex and complex. ni interferogram data are referred to as the t1 dimension in both a 2D and a 3D experiment. lsfrq1 is in the processing group and is properly handled by a wti operation (display); that is, a wti operation on an ni interferogram applies the parameters phfid1, lsfid1, and lsfrq1, if selected, to the time-domain data prior to the Fourier transformation.

Values: A positive value results in peaks being shifted downfield (to the left). A negative value results in peaks being shifted upfield (to the right).

Related: fn1 Fourier number in 1st indirectly detected dimension (P)
lp1 First-order phase in 1st indirectly detected dimension (P)
lsfid1 Number of complex points to left-shift ni interferogram (P)
lsfrq Frequency shift of the fn spectrum in Hz (P)
lsfrq2 Frequency shift of the fn2 spectrum in Hz (P)
ni Number of increments in 1st indirectly detected dimension (P)
phfid1 Zero-order phasing constant for ni interferogram (P)
wti Interactive weighting (C)

lsfrq2 Frequency shift of the fn2 spectrum (P)

Description: Sets a frequency shift of spectral data in Hz. lsfrq2 is the time-domain equivalent of lp2 within VnmrJ. lsfrq2 (and related parameters phfid2 and lsfid2) operate on ni2 interferogram data, both hypercomplex and complex. ni2 interferogram data is referred to as the t2 dimension in a 3D experiment. lsfrq2 is in the processing group and is properly handled by a wti operation (display).

Values: A positive value results in peaks being shifted downfield (to the left). A negative value results in peaks being shifted upfield (to the right).

Related: fn2 Fourier number in 2nd indirectly detected dimension (P)
lp2 First-order phase in 2nd indirectly detected dimension (P)
lsfid1 Number of complex points to left-shift ni interferogram (P)
lsfid2 Number of complex points to left-shift ni2 interferogram (P)
lsfrq Frequency shift of the fn spectrum in Hz (P)
lsfrq2 Frequency shift of the fn2 spectrum in Hz (P)
ni2 Number of increments in 2nd indirectly detected dimension (P)
phfid2 Zero-order phasing constant for ni2 interferogram (P)
wti Interactive weighting (C)

lvl Zero-order baseline correction (P)

Description: When spectral display is active, the command dc turns on a linear drift correction (baseline correction). The result of this operation includes calculating a zero-order baseline correction parameter lvl. This is done by averaging of a small number of points at either end of the display and drawing a straight line baseline between them.

Related: cdc Cancel drift correction (C)
lvlctl Control sensitivity of lvl and tlt adjustments (P)
tlt First-order baseline correction (P)
lvltilt
Control sensitivity of lvl and tlt adjustments (P)

Description: Controls the sensitivity of the interactive `lvl` and `tlt` adjustments. `lvltilt` is in the “current” parameter set and is basically a multiplier for the sensitivity. If this parameter does not exist, it can be created by commands
`create('lvltilt')`
`setgroup('lvltilt','display')`.

Values: The default value is 1.0. Larger values make the adjustments larger. Smaller values make the adjustments smaller.

Related:
`create`
Create new parameter in a parameter tree (C)
`ds`
Display a spectrum (C)
`lvl`
Zero-order baseline correction (P)
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>macro</td>
<td>Macro name (P)</td>
</tr>
<tr>
<td>macrocat</td>
<td>Display a user macro file in text window (C)</td>
</tr>
<tr>
<td>macrocp</td>
<td>Copy a user macro file (C)</td>
</tr>
<tr>
<td>macrodir</td>
<td>List user macro files (C)</td>
</tr>
<tr>
<td>macroedit</td>
<td>Edit a macro with user-selectable editor (M)</td>
</tr>
<tr>
<td>macr0ld</td>
<td>Load a macro into memory (C)</td>
</tr>
<tr>
<td>macrorm</td>
<td>Remove a user macro (C)</td>
</tr>
<tr>
<td>macrosycat</td>
<td>Display a system macro file in text window (C)</td>
</tr>
<tr>
<td>macrosyscp</td>
<td>Copy a system macro to become a user macro (C)</td>
</tr>
<tr>
<td>macrosysdir</td>
<td>List system macros (C)</td>
</tr>
<tr>
<td>macrosysrm</td>
<td>Remove a system macro (C)</td>
</tr>
<tr>
<td>macrovi</td>
<td>Edit a user macro with the vi text editor (M)</td>
</tr>
<tr>
<td>make3dcoef</td>
<td>Make a 3D coefficients file from 2D coefficients (M)</td>
</tr>
<tr>
<td>makedosyparams</td>
<td>Create parameters for DOSY processing (M)</td>
</tr>
<tr>
<td>makefid</td>
<td>Make a FID element using numeric text input (C)</td>
</tr>
<tr>
<td>makeeccglobals</td>
<td>Create global parameters for ECC control (M)</td>
</tr>
<tr>
<td>makeslice</td>
<td>Synthesize 2D projection of 3D DOSY experiment (C)</td>
</tr>
<tr>
<td>man</td>
<td>Display online description of command or macro (M)</td>
</tr>
<tr>
<td>managedb</td>
<td>Update user files (U)</td>
</tr>
<tr>
<td>manualpath</td>
<td>Path to user’s manual directory (P)</td>
</tr>
<tr>
<td>manvi</td>
<td>Edit online description of a command or macro (M)</td>
</tr>
<tr>
<td>mapwin</td>
<td>List of experiment numbers (P)</td>
</tr>
<tr>
<td>mark</td>
<td>Determine intensity of spectrum at a point (C)</td>
</tr>
<tr>
<td>masvt</td>
<td>Type of variable temperature system (P)</td>
</tr>
<tr>
<td>maxattench1-4</td>
<td>Maximum limit for attenuator setting for rf channel 1-4 (P)</td>
</tr>
<tr>
<td>maxpen</td>
<td>Maximum number of pens to use (P)</td>
</tr>
<tr>
<td>md</td>
<td>Move display parameters between experiments (C)</td>
</tr>
<tr>
<td>menu</td>
<td>Change status of menu system (C)</td>
</tr>
<tr>
<td>menuvi</td>
<td>Edit a menu with vi text editor (M)</td>
</tr>
<tr>
<td>method</td>
<td>Autoshim method (P)</td>
</tr>
<tr>
<td>mf</td>
<td>Move FIDs between experiments (C)</td>
</tr>
<tr>
<td>mfblk</td>
<td>Copy FID block (C)</td>
</tr>
<tr>
<td>mfclose</td>
<td>Close memory map FID (C)</td>
</tr>
<tr>
<td>mfdata</td>
<td>Move FID data (C)</td>
</tr>
<tr>
<td>mfopen</td>
<td>Memory map open FID file (C)</td>
</tr>
<tr>
<td>mftrace</td>
<td>Move FID trace (C)</td>
</tr>
<tr>
<td>minsw</td>
<td>Reduce spectral width to minimum required (M)</td>
</tr>
<tr>
<td>mkdir</td>
<td>Create new directory (C)</td>
</tr>
<tr>
<td>mlabel</td>
<td>Menu label (P)</td>
</tr>
<tr>
<td>move</td>
<td>Move to an absolute location to start a line (C)</td>
</tr>
<tr>
<td>movedssw</td>
<td>Set down sampling parameters for selected spectral region (M)</td>
</tr>
<tr>
<td>moveossw</td>
<td>Set over sampling parameters for selected spectral region (M)</td>
</tr>
<tr>
<td>movesw</td>
<td>Move spectral window according to cursors (M)</td>
</tr>
</tbody>
</table>
Command and Parameter Reference for VnmrJ 2.2MI 01-999380-00 A 07008

macro

Macro name (P)

Description: A string parameter, available in each experiment, similar to the n1, n2, and n3 parameters. Certain macros, such as h1p, need to know which macro invoked them. This parameter is used to pass that information.

See also: User Programming

Related:

h1p Process simple proton spectra from h1 macro (M)
n1,n2,n3 Name storage for macros (P)

macrocata Display a user macro file in text window (C)

Syntax: macrocat(file1<,file2><,...>)

Description: Displays one or more user macro files in the text window.

Arguments: file1, file2, ... are the names of macros in the user macro library.

Examples: macrocat('build')
 macrocat('dan','george')

See also: User Programming

Related:

macrodire List user macros (C)
macroscat Display a system macro file in text window (C)

macrocp Copy a user macro file (C)

Syntax: macrocp(from_file,to_file)

Description: Makes a copy of the existing user macro file and places the copy in the user’s macro library. Using macrocp to make a backup copy is the recommended procedure to modify a macro but still be able to revert to the previous version if you are unsure about the modification. macrocp can also be useful for writing a new macro that is very similar to an existing macro.

Arguments: from_file is the name of an existing user macro file to be copied. The file must be in the user’s macro library.

 to_file is the file name to be given to the copy. This name must be different from the name of the original macro.

Examples: macrocp('dan','dan.old')
See also: *User Programming*

Related:
- `macrocat` Display a user macro file in text window (C)
- `macrodir` List user macros (C)
- `macrosyscp` Copy a system macro to become a user macro (C)

macrodir List user macro files (C)

Description: Lists the names of user macro files in the user’s macro library.

See also: *User Programming*

Related:
- `macrosysdir` Lists system macros (C)

macroedit Edit a macro with user-selectable editor (M)

Syntax: `macroedit(file)`

Description: Opens a MAGICAL macro file from a user’s personal macro library for editing (if you want to edit a system macro, copy it to a personal library and then use `macroedit`).

The default editor is `vi`. To select another editor, first set UNIX environmental variable `vnmreditor` to the name of the editor; that is, in the `.login` file, change the line

```
setenv vnmreditor old_ed
```

to become

```
setenv vnmreditor new_ed (e.g., setenv vnmreditor emacs).
```

Second, make sure a script with the prefix `vnmr_` followed by the name of the editor is placed in the `bin` subdirectory of the VnmrJ system directory (e.g., `vnmr_emacs`).

The script file makes adjustments for the type of graphic interface in use. Scripts provided in the software include `vnmr_vi` and `vnmr_textedit`. To create other scripts, refer to the `vnmr_vi` script for non-window editor interfaces or refer to `vnmr_textedit` for window-based editor interfaces.

Arguments: `file` is the name of the macro file you wish to edit.

Examples: `macroedit('pa')`

See also: *User Programming*

Related:
- `paramedit` Edit a parameter and its attributes with user-selected editor (C)
- `paramvi` Edit a parameter and its attributes with `vi` editor (M)
- `edit` Edit a file with user-selectable editor (C)
- `macrovi` Edit a user macro with `vi` editor (M)
- `menuvi` Edit a menu with the `vi` editor (M)
- `textvi` Edit text file of current experiment with `vi` editor (M)

macrolld Load a macro into memory (C)

Syntax: `macrolld(file)`

Description: Loads a macro, user or system, into memory. If the macro already exists in memory, it is overwritten by the new macro. Loading a macro into memory increases the execution speed of the macro. The trade-off is that the macro uses memory. The `mstat` command displays macros that have been loaded into memory. One or more individual macros, or all the macros loaded in memory, can be removed from memory with the `purge` command.

If a macro already loaded into memory is edited using `macrovi` or `macroedit`, the changed macro automatically is loaded by those macros. This
overwrites the previous macro. However, if a macro is edited or created some other way (with macrocp perhaps), the changed version is not automatically loaded. If the macro already exists in memory, the previous version executes unless the user runs macrold.

Arguments: file is the name of the macro file to be loaded into memory. For loading macros, the same search path is used as when deciding which macro to execute. That is, the user’s private maclib directory is searched first and finally the system maclib. If an absolute path is supplied as the file argument, that macro is loaded. This allows macros not in a maclib to be loaded and executed from VnmrJ.

dummy is any throwaway variable. Requesting a return value suppresses the message in the status window (line 3) that the macro is loaded.

Examples: macrold('pa')
macrold('_sw'):$noline3

See also: User Programming

Related: macrocp Copy a user macro file (C)
macroedit Edit a macro with user-selectable editor (M)
macrovi Edit a user macro with the vi text editor (M)
mstat Display memory usage statistics (C)
purge Remove macros from memory (C)

macrorm Remove a user macro (C)

Syntax: macrorm(file)

Description: Removes a user macro from the user’s macro directory. If the macro has already been loaded in memory, it remains in memory until a new macro of the same name is loaded or the program exits.

Arguments: file is the name of the user macro to be removed.

Examples: macrorm('pa')

See also: User Programming

Related: delcom Delete a user macro (M)
macrodir List user macros (C)
macrosysrm Remove a system macro (C)
purge Remove all macros from memory (C)

macrosyscat Display a system macro file in text window (C)

Syntax: macrosyscat(file1<,file2><,...>)

Description: Displays one or more system macro files in the text window.

Arguments: file1, file2, ... are names of macros in the system macro library.

Examples: macrosyscat('build')
macrosyscat('dan','george')

See also: User Programming

Related: macrocat Display a user macro file in text window (C)
macrosysdir Lists system macros (C)

macrosyscp Copy a system macro to become a user macro (C)

Syntax: macrosyscp(from_file,to_file)
macrosyscp

Description: Makes a copy of the existing system macro file and places the copy in the user’s macro library. This is the recommended way to modify a system macro for personal use.

Arguments: from_file is the name of an existing system macro file to be copied. The file must be in the system macro library.

to_file is the file name to be given to the copy. In this case, the name of the copied macro can be the same as the original macro. In many cases, it is the same, allowing the user to have a personal macro of the same name as the system macro but which will override the system macro.

Examples: macrosyscp('pa','pa')
macrosyscp('pa','mypa')

See also: User Programming

Related:
macrocp Copy a user macro file (C)
macrosyscat Display a system macro file in text window (C)
macrosysdir Lists system macros (C)

macrosysdir

List system macros (C)

Description: Lists the names of system macros in the system macro library.

See also: User Programming

Related: macrodir List user macros (C)

macrosysrm

Remove a system macro (C)

Syntax: macrosysrm(file)

Description: Removes a system macro file from the system macro directory. If the macro has already been loaded in memory, it remains in memory until a new macro of the same name is loaded or the program exits.

Arguments: file is the name of the system macro file to be removed.

Examples: macrosysrm('pa')

See also: User Programming

Related: macrorm Remove a user macro (C)
macrosysdir Lists system macros (C)
purge Remove all macros from memory (C)

macrovi

Edit a user macro with the vi text editor (M)

Syntax: macrovi(file)

Description: Initiates creating a new user macro or modifying an existing user macro using the UNIX vi text editor. On the Sun workstation, a pop-up window contains the edit. On the GraphOn, the edit is done on the entire terminal. To edit a system macro, first copy the macro to a personal library and then edit it using macroedit or macrovi.

Arguments: file is the name of an existing user’s macro to be edited or the name of a new user’s macro to be created.

Examples: macrovi('pa')

See also: User Programming

Related: macroedit Edit a macro with a user-selectable editor (C)
vi Edit text file with vi text editor (C)
make3dcoef

Make a 3D coefficients file from 2D coefficients (M)

Syntax:
make3dcoef<('t1t2'|'t2t1')>

Description:
Makes a 3D coefficients file from 2D coefficients and writes the file in the path stored by `curexp`. 2D coefficients are supplied as strings in the parameters `f2coef` and `f1coef`. This macro is capable of handling 3D data collected with any number of data sets (e.g., TPPI, Hypercomplex, Rance SE, Kay SE, and phase-sensitive gradient in one or both dimensions). `make3dcoef` is called by the `ft3d` macro.

The 2D coefficients are supplied as strings in `f1coef` and `f2coef`. These coefficients are the same as found by processing with `wft2d(2dcoefs)`. Note that `wft2da` (for States-Hypercomplex method) is equivalent to `wft2d(1,0,0,0,0,-1,0)`, and that `wft2d` (for absolute-value mode) is equivalent to `wft2d(1,0,0,-1)`. Coefficients are separated by spaces and not commas. For example, if a 3D data set collected by the States-Hypercomplex method in both `ni` and `ni2` dimensions, `f1coef='1 0 0 0 0 -1 0'` and `f2coef='1 0 0 0 0 -1 0'`. And if a 3D data set collected in absolute-value mode in both `ni` and `ni2` dimensions, `f1coef='1 0 0 -1'` and `f2coef='1 0 0 -1'`.

The `f1coef` and `f2coef` parameters are created by the `par3d` macro. Execution of `make3dcoef` when `f1coef` and `f2coef` have no value or inconsistent values causes the macro to abort, which enables the user to enter these values and reexecute the macro. For example, the value of `f1coef` when the F1 dimension can be processed with `wft2da` is '1 0 0 0 0 -1 0'. The value of `f2coef` when the F2 dimension can be processed with `wft2d` is '1 0 0 0 0 -1 0'. The value of `f2coef` when the F2 dimension can be processed with `wft2d` is '1 0 0 0 0 -1 0'.

The parameters `f1coef` and `f2coef` must be 2D coefficients that give proper `ni` and `ni2` first planes with the same `rp` (assuming `lp` is 0 by using `calfa`) values. For example, processing the phase-sensitive gradient dimension should not be done with `1 0 0 1 0 1 0` and applying 45° phase shifts to `rp`, but with `1 0 1 0 0 1 0`, or its variant, that gives the same `rp` value as the other dimension. This also applies to Rance-type or Kay-type sensitivity-enhanced dimensions.

Note that sensitivity-enhanced sequences (gradient or otherwise) can be processed two different ways to give “orthogonal” data sets. The coefficients must be picked so that they have the same `rp` as the other dimension.

This macro can also handle coefficients that are not 1s or 0s. For example, if processing requires that a data set contributes to the interferogram after a 30° phase shift, `cos(30)` and `sin(30)` can be selected as the real and imaginary contributions, respectively, during the construction of the interferogram.

Arguments:
't1t2' means `array='phase,phase2'` in simple hypercomplex data sets. It means `array='t1related','t2related'` with multiple sets in general.

't2t1' means `array='phase2,phase'` in simple hypercomplex data sets. It means `array='t2related','t1related'` with multiple sets in general.

If no argument is used and if `array='phase,phase2'` or `array='phase2,phase'`, the macro automatically decides on 't1t2' or 't2t1', respectively.

See also:
NMR Spectroscopy User Guide

Related:
array Parameter order and precedence (P)
calfa Recalculate alfa so that first-order phase is zero (M)
curexp Current experiment directory (P)
f1coef Coefficient to construct F1 interferogram (P)
f2coef Coefficient to construct F2 interferogram (P)
makedosyparams

Create parameters for DOSY processing (M)

Syntax:
makedosyparams(dosytimecubed, dosyfrq)

Description:
This macro is automatically called by the Dbppste, DgcsteSL, Doneshot, Dbppsteinpt, Dgcstecosy, and Dgcstehmqc sequences to create the parameters dosyfrq, dosygamma, and dosytimecubed, which are necessary for the dosy analysis. Do not manually run makedosyparams.

See also: NMR Spectroscopy User Guide

Related:
doisy

Process DOSY experiments (M)
dosyfrq

Larmor frequency of phase encoded nucleus in DOSY (P)
dosygamma

Gyromagnetic constant of phase encoded nucleus in DOSY (P)
dosytimecubed

Gyromagnetic constant of phase encoded nucleus in DOSY (P)

makefid

Make a FID element using numeric text input (C)

Syntax:
makefid(file<,element_number<,format>)

Description:
Creates FID files that can be used to introduce computed data into an experiment. The number of points comes from the number of numeric values read from the input file. If the current experiment already contains a FID, you will not be able to change either the format or the number of points from that present in the FID file. Use rm(curexp+'/acqfil/fid') to remove the FID.

The makefid command does not look at parameter values when establishing the format of the data or the number of points in an element. Thus, if the FID file is not present, it is possible for makefid to write a FID file with a header that does not match the value of dp or np. Because the active value is in the processed tree, you need to use the setvalue command if any changes are required.

Arguments:
- **file** is the name of the input file. It contains numeric values, two per line. The first value is assigned to the X (or real) channel; the second value on the line is assigned to the Y (or imaginary) channel.
- **element_number** is the number of the element or FID and is any integer larger than 0. The default is the first element or FID. If the FID element already exists in the FID file, the program overwrites the old data.
- **format** is a character string with the precision of the resulting FID file and can be specified by one of the following strings:

 - 'dp=n'
 single-precision (16-bit) data
 - 'dp=y'
 double-precision (32-bit) data
 - '16-bit'
 single-precision (16-bit) data
 - '32-bit'
 double-precision (32-bit) data

If an FID file exists, makefid uses the same format string for precision; otherwise, the default is double-precision (32-bit) data.
element_number and format arguments can be entered in any order.

Examples: \texttt{makfid('fid.in',2,'32-bit')}

See also: \textit{NMR Spectroscopy User Guide; User Programming}

Related: \texttt{cp} Copy a file (C)
\texttt{curexp} Current experiment directory
\texttt{dp} Double precision (P)
\texttt{mv} Move and/or rename a file (C)
\texttt{np} Number of data points (P)
\texttt{rm} Delete file (C)
\texttt{setvalue} Set value of any parameter in a tree (C)
\texttt{writefid} Write numeric text file using a FID element (C)

\texttt{makeeccglobals} \textbf{Create global parameters for ECC control (M)}

Applicability: Systems with Varian, Inc. Cold Probes

Description: Creates the following nine global parameters required for ECC control by PSG:
\texttt{tc1z,tc2z,tc3z,tc4z,amp1z,amp2z,amp3z,amp4z,and chiliConf}

Related: \texttt{chiliConf}

\texttt{makeslice} \textbf{Synthesize 2D projection of 3D DOSY experiment (C)}

Syntax: \texttt{makeslice(<option>,lowerlimit,upperlimit)}

Arguments: \texttt{option} is either \texttt{'i'} or \texttt{'s'}.
\texttt{'i'} includes the "tails" of diffusion peaks that lie outside the range between \texttt{lowerlimit} and \texttt{upperlimit}. The default is \texttt{'i'}.
\texttt{'s'} only includes the integration peaks whose diffusion coefficient lies between the specified limits.
\texttt{lowerlimit} is the lower diffusion limit (in units of \texttt{10^{-10} m^2/s}) to be displayed.
\texttt{upperlimit} is the upper diffusion limit (in units of \texttt{10^{-10} m^2/s}) to be displayed.

Description: Synthesizes an integral projection between specified diffusion limits of a 3D DOSY spectrum onto the frequency-frequency plane. \texttt{makeslice} requires the first 2D increment of the 3D DOSY data to have been transformed.

See also: \textit{NMR Spectroscopy User Guide}

Related: \texttt{doso} Process DOSY experiments (M)
\texttt{showoriginal} Restore first 2D spectrum in 3D DOSY spectrum (M)

\texttt{man} \textbf{Display online description of command or macro (M)}

Syntax: \texttt{man('file')}<\$\text{return}>

Displays a description of commands and macros from files in the applications directory. The manual file is displayed in the text window when it is retrieved by the \texttt{man} macro. The man macro aborts if a name is not supplied as an argument.

Arguments: \texttt{file} — name of a command or macro in one of the applications directories.
\texttt{:\$res} — supply a return argument to suppress messages if the manual page does not exist.

Examples: \texttt{man('mark')}
man('notAcommand'):$res
See also: NMR Spectroscopy User Guide; User Programming
Related: manvi Edit online description of a command or macro (M)
 manualpath Path to user’s manual directory (P)

managedb Update user files (U)
Syntax: managedb update
Description: Updates VnmrJ database for the Locator.
See also: NMR Spectroscopy User Guide

manualpath Path to user’s manual directory (P)
Description: Contains the absolute path to a user’s directory of VnmrJ manual entries. If manualpath exists for a user, it must be defined in the user’s global parameter file. Enter create('manualpath','string','global') to create the manualpath parameter.
See also: User Programming
Related: man Display online description of a command or macro (M)

manvi Edit online description of a command or macro (M)
Syntax: manvi('file')
Description: Enables editing or creating an online description of commands and macros stored in any of the applications directories for to which the user has write permission.
Arguments: file is the name of a command macro.
Examples: manvi('mark')
See also: User Programming
Related: man Display online description of command or macro (M)

mapwin List of experiment numbers (P)
Description: Arrayed global parameter that maintains a list of experiment numbers for the window panes in the VnmrJ graphics window.
Related: curwin Current window (P)
 fontselect Open FontSelect window (C)
 jwin Activate current window (M)
 setgrid Activate selected window (M)
 setwin Activate selected window (C)

mark Determine intensity of spectrum at a point (C)
Syntax: (1) mark<(f1_position)>:<:intensity>
(2)mark<(left_edge,region_width)>:<:intensity,integral>
(3)mark<(f1_position,f2_position)>:<:intensity>
(4)mark<(f1_start,f1_end,f2_start,f2_end)> <:intensity,integral,c1,c2>

Related: manvi Edit online description of a command or macro (M)
 manualpath Path to user’s manual directory (P)
 man Display online description of command or macro (M)
(5) mark\('trace',<options>\)\:<\:intensity,integral,
c1,c2>
(6) mark('reset')

Description: Find the intensity of a spectrum at a point. Either 1D or 2D operations can be
performed in the cursor or box mode for a total of four separate functions: 1D
operations in cursor mode (syntax 1), 1D operations in box mode (syntax 2), 2D
operations in cursor mode (syntax 3) and 2D operations in box mode (syntax 4).

In the cursor mode, the intensity at a particular point is found. In the box mode,
the integral over a region is calculated. The displayed integral is scaled in the
same way as output from dli is scaled; that is, by the ins and insref
parameters. For 2D operations, this is the volume integral and the volume is
scaled by ins2 and ins2ref. In addition, the mark command in the box
mode finds the maximum intensity and the coordinate(s) of the maximum
intensity.

The mark command requires that transformed data be present in the current
experiment. If required, it recomputes the phase file from the complex data (i.e.,
it rephases the data if required); however, the mark command requires
parameters from the command line if no data is displayed (i.e., if ds or dconi
has not been executed).

Note that 2D operations require that 2D data be present. This not only means
that ni must be larger than 1, but also that the data was transformed using
ft1d, ft2d or an equivalent (and not ft or its equivalents).

The mark command, as well as the MARK button of ds, writes output to a file in
the current experiment. For 1D operations, the file is named mark1d.out; for 2D operations, it is mark2d.out. If this file already exits, VnmrJ appends
output from the current mark operation to the end of the file. (Older versions
of VnmrJ used ds.out and dconi.out as files for output from the MARK
button). Either file can be read by other programs at any time between
operations.

The following criteria establish the exact function. The command checks them
in the following order until it determines the exact function:
1. Number of numeric parameters.
2. Number of return values called out.
3. Which display command (ds or dconi) was last used.
4. Nature of the data in the experiment.

The first two criteria only serve to distinguish between box mode and cursor
mode. The nature of the data in the experiment and the last display command
entered determines whether a 1D or a 2D operation is selected.

Arguments:

- f1_position defines the position, in Hz, along the f1 axis in the 1D and 2D
cursor modes. The default is cr (1D) or crl (2D).
- left_edge defines the position of the left edge of the region, in Hz, to be
integrated in 1D box mode. The default is cr.
- region_width defines the width, in Hz, of the region, which extends to the
right of left_edge, in 1D box mode. The default is delta.
- f2_position defines the position, in Hz, along the f2 axis in the 2D cursor
mode. The default is delta1.
- f1_start and f1_end define region along the f1 axis in the 2D box mode.
- f2_start and f2_end define region along the f2 axis in the 2D box mode.
- 'trace' is a keyword to select a 1D operation if 2D data is present. It must be
either the first or the last argument (e.g., mark('trace',400) determines
the intensity at 400 Hz in the current trace).
'reset' is a keyword to erase the output files from the mark command. No other argument can be used with this keyword. Use rename to rename the current mark output files (e.g., rename (curexp+’/mark1d.out’, curexp+’/mark.16.01.89’)

intensity is a return value set to the intensity of the spectrum at the point for either 1D or 2D operations (the maximum if cursor mode was selected).

integral is a return value set to the integral of the spectrum at the point. integral is not returned in the cursor mode.

c1,c2 are return values set to the coordinates where the maximum intensity was found in 2D mode. c1 and c2 are not returned in the cursor mode.

Examples: 1D data sets:

mark(cr) cursor mode for 1D data
mark(cr,delta) box mode for 1D data

2D data sets (2D mode): In this mode, the order of the arguments to mark is independent of the trace parameter.

mark(cr1,cr) cursor mode for 2D data
mark(cr1,delta1,cr,delta) box mode for 2D data

2D data sets (1D mode): In this mode, the selection of the arguments to mark is dependent on the trace parameter. If trace='f2', then cr,delta,sp, or wp are appropriate. If trace='f1', then cr1,delta1,sp1, and wp1 are appropriate.

mark('trace',cr) cursor mode for selected 2D trace
mark('trace',cr1,delta1) box mode for selected 2D trace

Alternate: MARK button in the ds program.

See also: NMR Spectroscopy User Guide; User Programming

Related: cr Cursor position in directly detected dimension (P)
cr1 Cursor position in 1st indirectly detected dimension (P)
curexp Current experiment directory (P)
dconi Interactive 2D contour display (C)
delta Difference of two frequency cursors (P)
dli Display list of integrals (C)
ds Display a spectrum (C)
ft1d Fourier transform along f2 dimension (C)
ft2d Fourier transform 2D data (C)
ins Integral normalization scale (P)
ins2 2D volume value (P)
ins2ref Fourier number scaled volume of a peak (P)
mv Move and/or rename a file (C)
n1 Number of increments in 1st indirectly detected dimension (P)

masvt

Type of variable temperature system (P)

Description: Identifies the type of VT system in use: the standard Oxford VT controller or the Oxford-Sorenson or solids VT controller system (used with the Varian VT CP/MAS probe). masvt is a global parameter that is active on all of each user’s experiments on a per user account basis. The current value of the parameter can be displayed by typing masvt?.
Note that the VT Controller option displayed by `config` must be set to Present for either VT controller system to be active. If `masvt` does not exist, it can be created with the command `create('masvt','string','global')`.

The new Highland VT controller is autosensing, making `masvt` superfluous for systems with this controller.

Values: 'y' indicates the solids VT system is in use.
'y', any other value but 'n' and 'y', or if `masvt` does not exist, indicate that the Oxford Varian VT controller, if present, is in use.

See also: *VnmrJ Installation and Administration*

Related:
- `config` Display current configuration and possibly change values (M)
- `create` Create a new parameter in a parameter tree (C)
- `vttype` Variable temperature controller present (P)

maxattench1-4 Maximum limit for attenuator setting for rf channel 1-4 (P)

Description: `maxattench1, maxattench2, maxattench3, and maxattench4,` are optional global parameters for the limiting the maximum attenuator settings for rf channel 1, channel 2, channel 3, and channel 4 (respectively) from pulse sequence statements and through `tpwr/dpwr/…` settings on `go` command. If `maxattench2` is present, the attenuator setting check will be carried out by SpinCAD and if `p` ps. If the attenuator setting exceeds the limit set in `maxattench2`, `ps` aborts with error message. This command is only applicable for check during the `go` command.

See also: *SpinCAD*

maxpen Maximum number of pens to use (P)

Description: Controls the maximum number of pens that will be used.

Values: 1 to the number of pens in the system plotter. If `maxpen=x` and the software attempts to use pen `x+y`, it uses pen `y` instead.

See also: *NMR Spectroscopy User Guide*

Related:
- `pen` Select a pen or color for drawing (C)
- `setpen` Set maximum number of HP plotter pens (M)

md Move display parameters between experiments (C)

Syntax: `md(<from_exp>,>to_exp)`

Description: Moves the saved display parameters from one experiment to another. These parameters must have been saved with the `s` command (e.g., `s2`).

Arguments: `from_exp` specifies the number of the experiment, 1 through 9, from which the parameters are to be taken. The default is that the parameters are moved from the currently active experiment.

`to_exp` specifies to which experiment the parameters are to be moved.

Examples:
- `md(4)`
- `md(2, 3)`

See also: *NMR Spectroscopy User Guide*

Related:
- `mf` Move FIDs between experiments (C)
- `mp` Move parameters between experiments (C)
- `s` Save display parameters as a set (M)
menu

Change status of menu system (C)

Syntax:

1. `menu(menu_name)`
2. `menu('off')`

Description: The VNMR menu system allows up to eight buttons to be active at a time, enabling the user to perform most actions with the mouse rather than typing in commands. All menus are stored in the library `menulib` in the system directory or in the user’s `menulib`. See `menuvi` to change these menus.

If the menu system becomes deactivated for some reason, select the Menu On button in the Permanent Menu to reactivate it. Entering `menu('main')` also works.

Arguments: `menu_name` is the name of the file controlling the menu (e.g., `'main'`). Including this argument activates the menu system and displays the menu controlled by `menu_name`.

`'off'` is a keyword to turn off the menu system.

Examples:

```python
menu
menu('fitspec')
menu('off')
```

See also: User Programming

Related:

- `menuvi` Edit a menu with the vi text editor (M)
- `mlabel` Menu label (P)
- `newmenu` Select a menu without immediate activation (C)

menuvi

Edit a menu with vi text editor (M)

Syntax: `menuvi(menu)`

Description: Edits a Classic VNMR menu file using the UNIX `vi` text editor. On the Sun workstation, a pop-up window contains the edit. On the GraphOn, the edit is done on the entire terminal.

Arguments: `menu` is the name of file controlling a menu.

Examples:

```python
menuvi('display_1D')
```

See also: User Programming

Related:

- `menu` Change status of menu system (C)
- `newmenu` Select a menu without immediate activation (C)
- `vi` Edit text file with vi text editor (C)

method

Autoshim method (P)

Description: Selects the method for automatic shimming. Refer to the manual NMR Spectroscopy User Guide for information on how to write or alter methods.

Values: Name of file in the `/vnmr/shimmethods` library for one of the defined shim methods in the system. To display all available methods, enter `ls('/vnmr/shimmethods')`. Standard methods include `'z1z2'` (selects shimming of the Z1 and Z2 gradients) and `'allzs'` (selects shimming all spinning gradients, Z1 to Z4 or Z5, depending on the magnet type). Shim methods can also be stored in a user's `shimmethods` directory (e.g., `/home/vnmr1/vnmrsys/shimmethods`).

See also: NMR Spectroscopy User Guide

Related:

- `ls` List files in current directory (C)
- `newshm` Interactively create a shim method with options (M)
- `stdshm` Interactively create a shim method (M)
mf
Move FIDs between experiments (C)

Syntax:
mf(<from_exp>,to_exp)

Description:
Moves the last acquired FID, as well as its associated parameters, from one experiment to another. The text, the processed acquisition parameters and the current display and processing parameters are also moved to the specified experiment.

Arguments:

- **from_exp** specifies number of the experiment from which the FID is to be taken. The default is the FID is moved from the currently active experiment.
- **to_exp** specifies to which experiment the FID is to be moved.

Examples:
mf(4)

mf(3,2)

See also:
NMR Spectroscopy User Guide

Related:
md Move display parameters between experiments (C)

mp Move parameters between experiments (C)

mfblk
Copy FID block (C)

Syntax:
mfblk(<src_expno>,src_blk_no,dest_expno,dest_blk_no)

Description:
Copies data from a source FID block specified by src_blk_no to a destination FID block specified by dest_expno and dest_blk_no, using memory-mapped input and output.

mfblk searches for the source and destination FID file in the directory $vnmruser/expN/acqfil, where N is the requested experiment number or the current experiment number. If the FID file is not open, mfblk opens the file, copies the data, and closes the file. If a number of blocks need to be copied, explicitly opening and closing the files with the commands mfopen and mfclose can significantly speed up the data reformating process.

mfblk can also be used to append blocks of data to a FID file by specifying that the dest_blk_no is greater than the number of blocks in a file.

Be aware that mfblk can modify data returned to an experiment with the rt command. To avoid modification, enter the following sequence of VnmrJ commands before running mfblk:

cp(curexp+’/acqfil/fid’,curexp+’/acqfil/fidtmp’)
rn(curexp+’/acqfil/fid’)
mv(curexp+’/acqfil/fidtmp’,curexp+’/acqfil/fid’)

Arguments:

- **src_expno** specifies the experiment number of the source FID file. The default is the FID file of the current experiment.
- **src_blk_no** specifies the source block of data to be copied. Block numbers start at 1 and run from 1 to the number of blocks in a file.
- **dest_expno** specifies the experiment number of the destination FID file.
- **dest_blk_no** specifies the destination block to send the copied data.

Examples:
mfblk(1,2,1) copies current experiment, block 1 to exp 2, block 1.
mfblk(3,2,6,2) copies exp 2, block 2 to exp 6, block 2.

See also:
User Programming

Related:
mfclose Memory map close FID file (C)
mfdata Move FID data (C)
mfopen Memory map open FID file (C)
mftrace Move FID trace (C)
mfclose

Close memory map FID (C)

Description: Closes experiment source and destination FID files that have been explicitly opened with `mfopen`.

See also: *User Programming*

Related:

- `mfblk` Move FID block (C)
- `mfdata` Move FID data (C)
- `mfopen` Memory map open FID file (C)
- `mftrace` Move FID trace (C)
- `rfblk` Reverse FID block (C)
- `rfdata` Reverse FID data (C)
- `rftrace` Reverse FID trace (C)

mfdata

Move FID data (C)

Syntax:

```
mfdata(<src_expno>,src_blk_no,src_start_loc, dest_expno,dest_blk_no,dest_start_loc,num_points)
```

Description: Copies data specified by `src_start_loc` from a FID block specified by `src_blk_no` to a destination location specified by `dest_expno`, `dest_blk_no`, and `dest_start_loc`, using memory-mapped input and output. The data point locations and the `num_points` to be copied are specified by data points corresponding to the `np` parameter, not bytes or complex points.

`mfdata` searches for the source and destination FID file in the directory `${vnmruser}/expN/acqfil`, where N is the requested experiment number or the current experiment number. If the FID file is not open, `mfdata` opens the file, copies the data, and closes the file. If a number of blocks need to be copied, explicitly opening and closing the files with the commands `mfopen` and `mfclose` can significantly speed up the data reformatting process.

Be aware that `mfdata` can modify data returned to an experiment with the `rt` command. To avoid modification, enter the following sequence of VnmrJ commands before running `mfdata`:

```
cp(curexp+’/acqfil/fid’,curexp+’/acqfil/fidtmp’)
rm(curexp+’/acqfil/fid’)
mv(curexp+’/acqfil/fidtmp’,curexp+’/acqfil/fid’)
```

Arguments:

- `src_expno` specifies the experiment number of the source FID file. The default is the FID file of the current experiment.
- `src_blk_no` specifies the source block of data to be copied. Block numbers start at 1 and run from 1 to the number of blocks in a file.
- `src_start_loc` specifies the starting data location within the specified block to copy the data. Data locations start from 0 and are specified as data points corresponding to the `np` parameter.
- `dest_expno` specifies the experiment number of the destination FID file.
- `dest_blk_no` specifies the destination block to send the copied data.
- `dest_start_loc` specifies the starting data destination location within the specified block to send the copied data.

Examples:

```
mfdata(1,0,2,1,(nv-1)*np,np)
```

Copies `np` points of data from the starting location 0 of block 1 of the current experiment to the data location `(nv-1)*np` of block 1 of experiment 2.

See also: *User Programming*

Related:

- `mfblk` Move FID block (C)
- `mfclose` Memory map close FID file (C)
- `mfdata` Move FID data (C)
mfopen Memory map open FID file (C)
Syntax: mfopen(<src_expno,>dest_expno>)
Description: Explicitly opens experiment source and destination FID files for using memory-mapped input and output. Opening a file explicitly can significantly speed up the data reformatting process.
mfopen searches for the FID file to be opened in the directory $vnmruser/expN/acqfil, where N is the requested experiment number or the current experiment number. Without arguments, mfopen assumes the source and destination files are the same and are in the current experiment.

After a file is open, the data reformatting commands mfblk, mfdata, mftrace, rfblk, rfdmata, and rftrace can be used for moving around data. The mfclose must be used to close the file when data reformatting has been completed.

Arguments: src_expno specifies the experiment number of the source FID file. The default is the FID file of the current experiment.
dest_expno specifies the experiment number of the destination FID file. The default is the FID file of the current experiment.
If only one argument is provided, mfopen uses that as the experiment number of the destination FID file and assumes the source is the FID file of the current experiment.

Examples:
mfopen
mfopen(3)
mfopen(1,2)

See also: User Programming
Related: mfblk Move FID block (C)
mfclose Memory map close FID file (C)
mfdata Move FID data (C)
mftrace Move FID trace (C)
rfblk Reverse FID block (C)
rfdmata Reverse FID data (C)
rftrace Reverse FID trace (C)

mftrace Move FID trace (C)
Syntax: mftrace(<src_expno,>src_blk_no,src_trace_no, \
dest_expno,dest_blk_no,dest_trace_no)
Description: Copies FID traces specified by src_trace_no from a FID block specified by src_blk_no to a destination location specified by dest_expno, dest_blk_no, and dest_trace_no, using memory-mapped input and output. If a number of blocks need to be copied, explicitly opening and closing the files with the commands mfopen and mfclose can significantly speed up the data reformatting process.
mftrace searches for the source and destination FID file in the directory $vnmruser/expN/acqfil, where N is the requested experiment number or the current experiment number. If the FID file is not open, mftrace opens the file, copies the data, and closes the file.
mftrace cannot be used to append data to a FID file. Its purpose is for moving around data. Be aware that mftrace can modify data returned to an experiment with the \texttt{rt} command. To avoid modification, enter the following sequence of VnmrJ commands before running mftrace:

\begin{verbatim}
 cp(curexp+'/acqfil/fid', curexp+'/acqfil/fidtmp')
 rm(curexp+'/acqfil/fid')
 mv(curexp+'/acqfil/fidtmp', curexp+'/acqfil/fid')
\end{verbatim}

Arguments:
- \texttt{src_expno} specifies the experiment number of the source FID file. The default is the FID file of the current experiment.
- \texttt{src_blk_no} specifies the source block of data to be copied. Block numbers start at 1 and run to the number of blocks in a file.
- \texttt{src_trace_no} specifies the source trace of data within the specified block to be copied. Trace numbers run from 1 to number of traces in a file.
- \texttt{dest_expno} specifies the experiment number of the destination FID file.
- \texttt{dest_blk_no} specifies the destination block to send the copied data.
- \texttt{dest_trace_no} specifies the destination trace of data within the specified block to be copied. Trace numbers run from 1 to the number of traces in a file.

Examples:
\begin{verbatim}
mftrace(1,1,2,1,nv) copies trace 1 from block 1 of the current experiment to trace \texttt{nv} of block 1 of experiment 2.
\end{verbatim}

See also: User Programming

Related:
- \texttt{mfblk} Move FID block (C)
- \texttt{mfclose} Memory map close FID file (C)
- \texttt{mfdata} Move FID data (C)
- \texttt{mfopen} Memory map open FID file (C)
- \texttt{rftrace} Reverse FID trace (C)
- \texttt{rfblk} Reverse FID block (C)
- \texttt{rfdata} Reverse FID data (C)

minsw

Reduce spectral width to minimum required (M)

Description: Searches the spectrum for peaks, sets new limits accordingly, and then calls \texttt{movesw} to calculate a new transmitter offset \texttt{tof} and spectral width \texttt{sw}.

See also: NMR Spectroscopy User Guide

Related:
- \texttt{movesw} Move spectral window according to cursors (M)
- \texttt{movetof} Move transmitter offset (M)
- \texttt{sw} Spectral width in directly detected dimension (P)
- \texttt{tof} Frequency offset for transmitter offset (P)

mkdir

Create new directory (C)

Syntax: \texttt{mkdir(directory)}

Description: Creates a new UNIX directory. The function of the VnmrJ mkdir command is similar to the UNIX mkdir command.

Arguments: \texttt{directory} is the name of the new directory to be created.

Examples:
\begin{verbatim}
 mkdir('tests')
 mkdir('/home/george')
\end{verbatim}

See also: NMR Spectroscopy User Guide

Related:
- \texttt{rmdir} Remove directory (C)
mlabel **Menu label (P)**
Description: Stores the label for a menu button. Usually this parameter is arrayed, with one label for each button in the menu. This parameter is stored in a user’s global file and is set whenever a menu is called.
See also: *User Programming*
Related: menu Change status of menu system (C)
mstring Menu string (P)

move **Move to an absolute location to start a line (C)**
Syntax: move(<'graphics'|'plotter'>,x,y)
Description: Moves the start of a line to an absolute location with the coordinates given as an argument. move is part of a line drawing capability that includes the pen and draw commands. pen selects the pen number of the plotter ('pen1', 'pen2', etc.) or the color ('red', 'green', 'blue', etc.). move sets the point from which to start drawing the line. draw draws a line from that point to the point given by the draw arguments. Refer to the description of the draw command for examples of using the line drawing capability.
Arguments: 'graphics' and 'plotter' are keywords selecting output to the graphics window or a plotter device. The default is 'plotter'. The output selected is passed to subsequent pen, move, or draw commands, remaining unchanged until different output is specified.
 x, y are the absolute coordinates, in mm, of a point to move to. The range of x is 0 at the left edge of the chart and wcmax at the right edge of the chart. The range of y is -20 at the bottom of the chart and wc2max at the top.
See also: *NMR Spectroscopy User Guide*
Related: draw Draw line from current location to another location (C)
gin Return current mouse position and button values (C)
pen Select a pen or color for drawing (C)
wcmax Maximum width of chart (P)
w2max Maximum width of chart in second direction (P)

movedssw **Set downsampling parameters for selected spectral region (M)**
Description: Sets the parameters dslsfrq and downsamp to appropriate values for digital filtering and downsampling in a cursor-selected spectral region. To accomplish this, Fourier transform an oversampled data set, and then run the ds program. In the resulting spectral display, enclose the desired region with the cursors, and then run movedssw.
See also: *NMR Spectroscopy User Guide*
Related: downsamp Downsampling factor applied after digital filtering (P)
ds Display a spectrum (C)
dslsfrq Bandpass filter offset for downsampling (P)

moveossw **Set oversampling parameters for selected spectral region (M)**
Description: Sets the parameters oslsfrq and sw to appropriate values for oversampling and digital filtering in a cursor-selected spectral region. To accomplish this, acquire a data set without digital filtering, and then run the ds program. In the resulting spectral display, enclose the desired region with the cursors, and then run moveossw. The value of oversamp is manually set.
See also: *NMR Spectroscopy User Guide*

movesw
Move spectral window according to cursors (M)

Syntax: movesw<width">

Description: Uses the parameters `cr` and `delta` to calculate a new transmitter offset `tof` and a new spectral width `sw`. If referencing was used, it is also adjusted. The `movesw` macro also sets `sp` and `wp` to display the spectral window.

Arguments: `width` specifies the spectral width `sw`. The default is to use a value calculated from the parameter `delta`.

Examples:
- `movesw`
- `movesw(5000)`

See also: *NMR Spectroscopy User Guide*

movetof
Move transmitter offset (M)

Syntax: movetof<frequency>

Description: Moves the transmitter offset parameter `tof` so that the current cursor position, defined by `cr`, becomes the center of the spectrum. If referencing was used, `movetof` maintains the referencing.

Arguments: `frequency` specifies the transmitter frequency rather than using the cursor position to define the frequency. This provides a convenient method of moving the transmitter frequency outside the current spectral window.

See also: *NMR Spectroscopy User Guide*

Related:
- `cr` Cursor position in directly detected dimension (P)
- `delta` Cursor difference in directly detected dimension (P)
- `minsw` Reduce spectral width to minimum required (M)
- `movetof` Move transmitter offset (M)
- `sp` Start of plot (P)
- `sw` Spectral width in directly detected dimension (P)
- `tof` Frequency offset for observe transmitter (P)
- `wp` Width of plot (P)

mp
Move parameters between experiments (C)

Syntax: mp(<from_exp>,to_exp)

Description: Moves text and the current display, processing, and acquisition parameters from one experiment to another. No FID is transferred.

Arguments:
- `from_exp` specifies the number of the experiment from which the parameters are to be taken; default is the parameters are moved from the currently active experiment.
- `to_exp` specifies to which experiment the parameters are to be moved.
mp(4)
mp(2,3)

See also: *NMR Spectroscopy User Guide*

Related:
m
Move display parameters between experiments (C)
m
Move FIDs between experiments (C)

mqcosy

Set up parameters for MQCOSY pulse sequence (M)

Syntax: `mqcosy<(level)>`

Description: Sets up a multiple-quantum filtered COSY experiment.

Arguments: `level` is the desired quantum level of filtration.

Examples:
- `mqcosy`
- `mqcosy(3)`

See also: *NMR Spectroscopy User Guide*

mref

Set referencing based on an existing spectrum of the sample (M)

Syntax:
- `mref(<source_exp,>target_exp)<:$ret>`
- `mref(source_fid)<:$ret>`

Description: Use a primary referenced spectrum to reference a secondary spectrum acquired in another work space (or experiment) at the same temperature, using the same lock sample, and either a different or the same nucleus without adding a secondary reference sample. The primary spectrum must be properly referenced using the IUPAC recommended Ξ values. Ξ is the normalized frequency such that the ¹H signal from TMS is 100.00 MHz.

Begin with a `source_exp` spectrum (typically a ¹H spectrum) and reference it using an internal reference (such as TMS, see the IUPAC recommendations).

Join a different experiment and acquire a `target_exp` spectrum on a different (or same) nucleus. Enter `mref(<source_exp,>target_exp)`.

Referencing of 2D data sets using `mref` only applies to the directly detected dimension. The indirect dimensions is referenced using `reff1` and `reff2` (after using `mref` or after manual referencing of the observe dimension). The reference frequency for the secondary spectrum, `reffrq_b`, is calculated as follows:

\[
\text{reffrq}_b = \left(\frac{\text{reffrq}_a}{\Xi_a} \right) \times \Xi_b
\]

`mref` also corrects for possible changes in the lock frequency:

\[
\text{reffrq}_b = \left(\frac{\text{reffrq}_a}{\text{lockfreq}_a} \right) \times \text{lockfreq}_b
\]

`mref` works if the lock frequency changed between the two acquisitions, if the two spectra were acquired on different instruments, or at different field strengths.

`mref` calculates `rfl` and `rfp` after calculating `reffrq`:

\[
\begin{align*}
\text{rfp} &= 0 \\
\text{rfl} &= sw/2 - (\text{sfrq} - \text{reffrq}) \times 1e6
\end{align*}
\]

The systemglobal parameters `lockfreq` and `h1freq` must saved in the local parameters using the `saveglobal` mechanism when the go command is executed. The `mref` macro only tracks lock frequency changes if these systemglobal parameters are saved in the local parameters.

The `mref` macro works with earlier data if both data sets were:

- acquired at the same lock frequency (on the same instrument).
the `lockfreq` (on a data station) and (on older instruments) `h1freq` parameters are set to the values used to acquire the data.

Referencing action from `mref` are reported on line 3. Suppress the report by supplying a return argument, e.g.:

```bash
$ret='' mref('myfid.fid'):\$ret
```

The referencing message is captured in the return argument "$ret" and the contents of this string variable can be used to label plots with the referencing information.

Limitations: the macro works with data recalled from an archive or acquired on an other system provided the data was acquired using VNMR6.1C or newer.

Setting the global (or local) flag `bioref='y'` enables Bio-NMR referencing (based on `nuctables/nuctabrefBio`) and disables standard IUPAC/organic chemistry referencing (based on `nuctables/nuctabref`).

See `/vnmr/nuctables/nuctabref`.

Arguments: `source_exp` — experiment containing the primary referenced spectrum or the full (or relative) path and fid file name containing the primary references spectrum.

`target_exp` — experiment containing spectra to be referenced based upon the primary experiment referencing.

`\$ret` — return argument for output of `mref`.

Alternatively, the name of a FID file (with or without extension) can be given as a single argument; in this case, the data in the CURRENT experiment are referenced based on the referencing in the specified FID file.

Examples: `mref(3)` — uses the current experiment as the source and applies the reference to the specified experiment as the target. `mref(1,2)` — experiment 1 is the source and experiment 2 is the target. `mref('myfid')` `mref('/data/fids/myfid.fid')`

Related
- `setref` Set Frequency Referencing Based on Lock Signal Shift (M)
- `setref1` Set Frequency Referencing for f1 Evolution Dimension (M)
- `setref2` Set Frequency Referencing for f2 Evolution Dimension (M)
- `reff1` Reference f1 Indirect Dimension from Observe Dimension (M)
- `reff2` Reference f2 Indirect Dimension from Observe Dimension (M)
- `bioref` Flag for Bio-NMR Referencing (P)

mrev8

Set up parameters for MREV8 pulse sequence (M)

Applicability: Systems with a solids module.

Description: Converts FLIPFLOP, BR24, or S2PUL parameter set into the MREV8 multiple-pulse line narrowing sequence.

See also: *User Guide: Solid-State NMR*

Related: `br24` Set up parameters for BR24 pulse sequence (M)
- `cylmrev` Set up parameters for cycled MREV8 pulse sequence (M)
- `flipflop` Set up parameters for FLIPFLOP pulse sequence (M)
- `s2pul` Set up parameters for standard two-pulse sequence (M)

mrfb

Set the filter bandwidths for multiple receivers (P)

Applicability: Systems with multiple receivers
Description: An array of \texttt{fb} settings to apply to individual receivers in a multiple receiver system. The first element applies to the first receiver, the second to the second receiver, and so on. If \texttt{mrfb} exists and is active, these settings override the setting specified by the \texttt{fb} parameter; otherwise, \texttt{fb} is used as the filter bandwidth setting for all receivers. If there are fewer elements in \texttt{mrfb} than there are receivers, the remaining receivers are set to the \texttt{fb} value.

Note that some older multiple receiver systems do not have the hardware to provide individual receiver control. In that case, the filter setting for receiver 1 is used on receivers 1 and 2 and the setting for receiver 3 is used on receivers 3 and 4.

Also note that \texttt{mrfb} is not automatically set when \texttt{sw} is changed. Normally, you can leave \texttt{mrfb} inactive and let \texttt{fb} be used for all receivers.

Examples: \texttt{mrfb=fb/3, fb/2} sets the filter bandwidth of the first receiver to \texttt{fb/3}, the second to \texttt{fb/2}, and of the rest to \texttt{fb}.

Related: \texttt{fb} Filter bandwidth (P)

\textbf{mrgain} Set the gain for multiple receivers (P)

Applicability: Systems with multiple receivers

Description: An array of ‘\texttt{gain}’ settings to apply to individual receivers in a multiple receiver system. If it exists and is active, these settings override the setting specified by the ‘\texttt{gain}’ parameter; otherwise, ‘\texttt{gain}’ is used as the gain setting for all receivers.

Note that not all multiple receiver systems have the hardware set up to provide individual receiver control. In that case, the gain setting for receiver 1 is used on receivers 1 and 2 and the setting for receiver 3 is used on receivers 3 and 4.

Examples: \texttt{mrgain=30,40,20} sets the gains of receiver 1 to 30, receiver 2 to 40 and receivers 3 and 4 to 20.

Related: \texttt{gain} Receiver gain (P)

\textbf{mstat} Display memory usage statistics (C)

Syntax: \texttt{mstat<(program_id)>}

Description: Displays statistics on memory usage by programs that use the procedures \texttt{allocateWithId} and \texttt{release}.

Arguments: \texttt{program_id} is the program ID, usually the same name as the program. The default is to display all program IDs and associated memory statistics.

Examples: \texttt{mstat}
\texttt{mstat('proc2d')}

See also: \textit{User Programming}

\textbf{mstring} Menu string (P)

Description: Stores command strings to be executed when a VnmrJ menu button is clicked. Usually the \texttt{mstring} parameter is arrayed, with one string for each button in the menu. The string can be any string of commands that can otherwise appear in a macro or on the command line. This parameter is stored in a user’s global file and is set whenever a menu is called.
See also: *User Programming*

Related:
- **menu** Change status of menu system (C)
- **mlabel** Menu label (P)

mtune
Tune probe using swept-tune graphical display (M)

Description: *mtune* replaces *qtune* on the Varian NMR System and/or Linux. *mtune* runs in the spectra screen and uses VnmrJ panels. Enter *mtune* to retrieve parameters and panels.

- all parameters changeable on-the-fly (exception: tune channel for the Varian NMR System).
- one or two markers are selectable to tune at the same time.
- vertical autoscale button.
- number of acquired points changeable for better resolution at large spectral widths (more points will update less often).
- quit button returns user to current experiment and returns mtune to the original frequencies.

See also: *NMR Spectroscopy User Guide*

Related:
- **tchan** RF channel number used for tuning (P)
- **tugain** Amount of receiver gain used by qtune (P)
- **tune** Assign frequencies (C)

mv
Move and/or rename a file (C)

Syntax: `mv(from_file,to_file)`

Description: Renames and/or moves a file or directory. *mv* functions the same as the command *rename*.

Arguments:
- `from_file` is the name of the file to be moved and/or renamed.
- `to_file` is the new name of the file and/or the new location. If the `from_file` argument has an extension such as `.fid` or `.par`, be sure the `to_file` argument has the same extension.

Examples:
- `mv('/home/vnmr1/vnmrsys/seqlib/d2pul', '/vnmr/seqlib/d2pul')`

See also: *NMR Spectroscopy User Guide*

Related:
- **copy** Copy a file (C)
- **cp** Copy a file (C)
- **delete** Delete a file, parameter directory, or FID directory (C)
- **rename** Move and/or rename a file (C)
- **rm** Delete a file (C)

mxconst
Maximum scaling constant (P)

Description: Before the start of data acquisition, noise is sampled to determine the number of bits of noise present. This number is used to set the maximum number of scaling operations on the data that can occur (essentially relevant only if `dp = 'n'`). *mxconst* is used to adjust this amount of scaling.

Increasing *mxconst* to 1, for example, permits additional scaling operations, allowing acquisition to proceed slightly longer in single-precision mode. Decreasing *mxconst* to -1 allows fewer scaling operations before reaching the message “maximum transients accumulated”.

01-999380-00 A 07008 Command and Parameter Reference for VnmrJ 2.2MI 369
One special case exists. If \texttt{mxconst} is set to less than \(-90\) and single-precision acquisition is used (\texttt{dp='n'}), then scaling of the data is disabled. In this mode, reports of data overflowing the 16 bits is also disabled.

\texttt{mxconst} does not exist in standard parameter sets. If it does not exist, its value defaults to 0. To modify \texttt{mxconst}, first create it by entering \texttt{create('mxconst','integer')} and then enter the desired value.

\textbf{CAUTION:} Do not change \texttt{mxconst} unless you are fully aware of the consequences.

See also: \textit{NMR Spectroscopy User Guide}

Related:
- \texttt{create} Create new parameter in a parameter tree (C)
- \texttt{dp} Double precision (P)
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Related</th>
</tr>
</thead>
<tbody>
<tr>
<td>n1, n2, n3</td>
<td>Name storage for macros (P)</td>
<td>See also: User Programming</td>
</tr>
<tr>
<td>newmenu</td>
<td>Select a menu without immediate activation (C)</td>
<td>Related: dgs, r1–r7</td>
</tr>
<tr>
<td>newshm</td>
<td>Interactively create a shim method with options (M)</td>
<td></td>
</tr>
<tr>
<td>nextpl</td>
<td>Display the next 3D plane (M)</td>
<td></td>
</tr>
<tr>
<td>nfni</td>
<td>Number of increments in 1st indirectly detected dimension (P)</td>
<td></td>
</tr>
<tr>
<td>n12</td>
<td>Number of increments in 2nd indirectly detected dimension (P)</td>
<td></td>
</tr>
<tr>
<td>n13</td>
<td>Number of increments in 3rd indirectly detected dimension (P)</td>
<td></td>
</tr>
<tr>
<td>niter</td>
<td>Number of iterations (P)</td>
<td></td>
</tr>
<tr>
<td>nimax</td>
<td>Maximum limit of n1 (P)</td>
<td></td>
</tr>
<tr>
<td>n1</td>
<td>Position cursor at the nearest line (C)</td>
<td></td>
</tr>
<tr>
<td>nli</td>
<td>Find integral values (C)</td>
<td></td>
</tr>
<tr>
<td>nlivast</td>
<td>Produces a text file of integral regions without a sum region (M)</td>
<td></td>
</tr>
<tr>
<td>nlivast2</td>
<td>Produces a text file with normalized integral regions (M)</td>
<td></td>
</tr>
<tr>
<td>nlivast3</td>
<td>Produces a text file with normalized integral regions (M)</td>
<td></td>
</tr>
<tr>
<td>nll</td>
<td>Find line frequencies and intensities (C)</td>
<td></td>
</tr>
<tr>
<td>nm</td>
<td>Select normalized intensity mode (C)</td>
<td></td>
</tr>
<tr>
<td>nm2d</td>
<td>Select Automatic 2D normalization (M)</td>
<td></td>
</tr>
<tr>
<td>Noesy</td>
<td>Convert the parameter to a NOESY experiment (M)</td>
<td></td>
</tr>
<tr>
<td>Noesyl1</td>
<td>Convert the parameter set to a Noesyl1d experiment (M)</td>
<td></td>
</tr>
<tr>
<td>noise</td>
<td>Measure noise level of FID (C)</td>
<td></td>
</tr>
<tr>
<td>noisemult</td>
<td>Control noise multiplier for automatic 2D processing (M)</td>
<td></td>
</tr>
<tr>
<td>noiselm</td>
<td>Limit noise in spectrum (M)</td>
<td></td>
</tr>
<tr>
<td>notebook</td>
<td>Notebook name (P)</td>
<td></td>
</tr>
<tr>
<td>np</td>
<td>Number of data points (P)</td>
<td></td>
</tr>
<tr>
<td>npoint</td>
<td>Number of points for fp peak search (P)</td>
<td></td>
</tr>
<tr>
<td>nrecords</td>
<td>Determine number of lines in a file (M)</td>
<td></td>
</tr>
<tr>
<td>nt</td>
<td>Number of transients (P)</td>
<td></td>
</tr>
<tr>
<td>ntrig</td>
<td>Number of trigger signals to wait before acquisition (P)</td>
<td></td>
</tr>
<tr>
<td>ntype3d</td>
<td>Specify whether f1 or f2 display expected to be N-type (P)</td>
<td></td>
</tr>
<tr>
<td>nuctable</td>
<td>Display VNMR style nucleus table for a given H1 frequency (M)</td>
<td></td>
</tr>
<tr>
<td>numrcvrs</td>
<td>Number of receivers in the system (P)</td>
<td></td>
</tr>
<tr>
<td>numreg</td>
<td>Return the number of regions in a spectrum (C)</td>
<td></td>
</tr>
<tr>
<td>numrfch</td>
<td>Number of rf channels (P)</td>
<td></td>
</tr>
</tbody>
</table>
newmenu Select a menu without immediate activation (C)

Syntax: (1) newmenu(menu_name)
 (2) newmenu:$current_menu

Description: Selects a menu but does not activate it (syntax 1). This is most useful when
 picking which menu will be active when an interactive command exits.
 newmenu can also return the name of the currently active menu (syntax 2).

Arguments: menu_name is the name of the file controlling the menu selected. For example,
 the command string newmenu('manipulate_1D') causes the menu
 controlled by manipulate_1D to be displayed when the Return button in the
dsa menu is selected.
$current_menu returns the file name of the currently active menu.

Examples: newmenu('display_1D')
 newmenu:$name1

See also: User Programming

Related: menu Change status of menu system (C)
 menuvi Edit a menu with the vi text editor (M)

newshm Interactively create a shim method with options (M)

Syntax: newshm

Description: Interactively creates a method string to be used in autoshimming of the
 magnetic field homogeneity. The string may consist of a series of shimming
 operations. The command dshim('method') describes method strings.
 Any text editor may be used to make and modify the strings.

newshm provides for either lock shimming or FID shimming, permitting the
user to choose whichever is best. Lock shimming is much faster, but FID
shimming is frequently much more effective in improving the field. With FID
shimming, the FID evaluation range limits are requested. The full range is 0 to
100. Sensitivity to higher order gradients is greatly increased by setting the
finish limit to about 5 or 10 with the start limit at 0.

newshm begins by asking for the name of the user's new shim method. If the
non-spin (transverse) controls are chosen for adjustment, the spinner is turned
off; otherwise, it is turned on. If uncertain about the shim criteria, the "medium
to medium" choice is suitable in most circumstances. The new method is found
in curexp+/.../shimmethods.

To shim after running newshm, type method='methodname' and then
enter shim or set the wshim parameter to shim before the start of acquisition.
'methodname' is the name supplied to newshm. For more information on
shimming, see the manual NMR Spectroscopy User Guide.

Compared to stdshm, the newshm macro is more flexible and provides for a
shimming time and FID evaluation limits supplied by the user. The primary
difference between the macros is that stdshm provides for determining an
estimated shimming time for the selected shim controls. When no time limit is
supplied, autoshim continues until the exit criteria is met or the number of
cycles reaches a limit.

See also: NMR Spectroscopy User Guide

Related: curexp Current experiment directory (P)
 dshim Display a shim method string (M)
 method Autoshim method (P)
 shim Submit an Autoshim experiment to acquisition (C)
 stdshm Interactively create a shim method (M)
nextpl

Display the next 3D plane (M)

Syntax: `nextpl`

Description: Displays the 2D color map of the next 3D plane in the set of planes defined by the parameters `plane` and `path3d`. If `nextpl` immediately follows the command `dproj`, `nextpl` results in the display of the first 3D plane within that specified set and is therefore equivalent to the command `dplane(1)`. For example, if `dplane(40)` has just been executed, `nextpl` results in the display of 3D plane 41 of that set. The `nextpl` macro is more efficient than `dplane` or `dproj` because the 3D parameter set (`procpar3d`) is not loaded into VnmrJ—it is assumed to have already been loaded by `dplane` or `dproj`, for example.

See also: *NMR Spectroscopy User Guide*

Related:
- `dplane` Display a 3D plane (M)
- `dproj` Display a 3D plane projection (M)
- `dplanes` Display a series of 3D planes (M)
- `getplane` Extract planes from a 3D spectral data set (M)
- `path3d` Path to currently displayed 2D planes from a 3D data set (P)
- `plane` Currently displayed 3D plane type (P)
- `plplanes` Plot a series of 3D planes (M)
- `prevpl` Display the previous 3D plane (M)

nfni

Number of increments in 1st indirectly detected dimension (P)

Description: Number of increments of the evolution time `d2`, and thus the number of FIDs that will comprise the first indirectly detected dimension of a multidimensional data set. To create parameters `ni1`, `phase`, and `sw1` to acquire a 2D data set in the current experiment, enter `addpar('2d')`.

Values: 8 is minimum; typical values range from 32 to 512. In microimaging, `ni1` greater than 0 is the imaging mode and `ni1` equal to 0 is the projection mode.

See also: *NMR Spectroscopy User Guide; VnmrJ Imaging NMR*

Related:
- `addpar` Add selected parameters to the current experiment (M)
- `celem` Completed FID elements (P)
- `d2` Incremented delay in 1st indirectly detected dimension (P)
- `ni2` Number of increments in 2nd indirectly detected dimension (P)

ni2

Number of increments in 2nd indirectly detected dimension (P)

Description: Number of increments of the evolution time `d3`, and thus the number of FIDs that will comprise the second indirectly detected dimension of a multidimensional data set. To create parameters `d3`, `ni2`, `phase2`, and `sw2` to acquire a 3D data set in the current experiment, enter `addpar('3d')`.

See also: *NMR Spectroscopy User Guide*

Related:
- `addpar` Add selected parameters to the current experiment (M)
- `d3` Incremented delay in 2nd indirectly detected dimension (P)
- `ni` Number of increments in 1st indirectly detected dimension (P)
- `par3d` Create 3D acquisition, processing, and display parameters (M)
- `phase2` Phase selection for 3D acquisition (P)
- `sw2` Spectral width in 2nd indirectly detected dimension (P)
ni3
Number of increments in 3rd indirectly detected dimension (P)
Description: Number of increments of the evolution time d_4, and thus the number of FIDs that will comprise the third indirectly detected dimension of a multidimensional data set. To create parameters d_4, ni_3, $phase_3$, and sw_3 to acquire a 4D data set in the current experiment, enter `addpar('4d')`.

See also: NMR Spectroscopy User Guide

Related:
- `addpar`: Add selected parameters to the current experiment (M)
- d_4: Incremented delay in 3rd indirectly detected dimension (P)
- ni: Number of increments in 1st indirectly detected dimension (P)
- ni_2: Number of increments in 2nd indirectly detected dimension (P)
- `par4d`: Create 4D acquisition parameters (M)
- $phase_3$: Phase selection for 4D acquisition (P)
- sw_3: Spectral width in 3rd indirectly detected dimension (P)

niter
Number of iterations (P)
Description: Sets the maximum number of iterations in an iterative simulation.

Values: 1 to 9999. The value is initialized to 20 if the Set Params button is used in setting up spin simulation parameters.

See also: NMR Spectroscopy User Guide

nimax
Maximum limit of ni (P)
Description: Maximum limit of ni. Used to prevent running an unrealistic number of Hadamard-encoded experiments.

Values: Any positive real integer.

See also: NMR Spectroscopy User Guide

Related:
- `sethtfrq1`: Set a Hadamard frequency list from a line list (M)
- ni: Number of increments in 1st indirectly detected dimension (P)
- `htfrq1`: Hadamard frequency in ni (P)

nl
Position cursor at the nearest line (C)
Syntax: `nl<:height<,frequency>>`

Description: Moves the cursor to the nearest calculated line position.

Arguments:
- height is a return value set to the height of the line.
- frequency is a return value set to the frequency of the line.

Examples:
- `nl`
- `nl:r1,r2`

See also: NMR Spectroscopy User Guide

nli
Find integral values (C)
Description: Equivalent to the dli command except that no screen display is produced. For a list of integrals, nli stores the reset points in the parameter `lifrq` and stores the amplitudes in the parameter `liamp`.

See also: NMR Spectroscopy User Guide

Related:
- `cz`: Clear integral reset points (C)
- `dli`: Display list of integrals (C)
- `dlni`: Display list of normalized integrals (M)
nlivast Produces a text file of integral regions without a sum region (M)
Applicability: Systems with VAST accessory.
Syntax: nlivast (last)
Description: Using predefined integral regions from the spectra for each well, nlivast writes a text file, integ.out, containing the integrals of the regions. The file is written into the current experiment. Does not add an additional region that is the sum of all the defined regions for each well (see dlivast).
Arguments: last is the number of the last well. The default is 96.
See also: NMR Spectroscopy User Guide

nlivast2 Produces a text file with normalized integral regions (M)
Applicability: Systems with VAST accessory.
Syntax: nlivast (well)
Description: Using predefined integral regions from the spectra for each well, nlivast2 writes a text file, integ.out, containing the integrals of the regions. The file is written into the current experiment. Integrals are normalized to the integral specified by the argument well. The macro nlivast2 does not add an additional region that is the sum of all the defined regions for each well (see dlivast). All of the spectra are integrated.
Arguments: well is the number of the reference sample well. The default reference is well 96.
See also: NMR Spectroscopy User Guide

nlivast3 Produces a text file with normalized integral regions (M)
Applicability: Systems with VAST accessory.
Syntax: nlivast (well)
Description: Using predefined integral regions from the spectra for each well, nlivast3 writes a text file, integ.out, containing the integrals of the regions. The file is written into the current experiment. Integrals are referenced to the integral specified by the argument well. The integral of spectrum from the sample specified by well is set to 1000. The macro nlivast3 does not add an additional region that is the sum of all the defined regions for each well (see dlivast). All of the spectra are integrated.
Arguments: well is the number of the reference sample well. Reference integral set to 1000. The default reference is well 96.
See also: NMR Spectroscopy User Guide

nll Find line frequencies and intensities (C)
Syntax: nll<('pos',noise_mult)>:<number_lines,scale>
Description: Equivalent to the command dll except that the line listing is not displayed or printed. The results of this calculation are stored in llfrq and llamp. The frequencies are stored as Hz and are not referenced to rfl and rfp. Amplitudes are stored as the actual data point value; they are not scaled by vs.
Arguments: 'pos' is a keyword that causes only positive lines to be listed.

`noise_mult` is a numerical value that determines the number of noise peaks listed for broad, noisy peak. The default is 3. A smaller value results in more peaks, a larger value results in fewer peaks, and a value of 0.0 results in a line listing containing all peaks above the threshold `th`. Negative values of `noise_mult` are changed to 3.

`number_lines` is a return argument with the number of lines in the line list.

`scale` is a return argument with a scaling factor for line amplitudes. This scaling factor accounts for `vs` and whether the lines are listed in absolute intensity mode or normalized mode.

Examples:

```
nll:n1
nll('pos'):pn
nll(2.5),sc
```

See also: `User Programming`
Related: `dll` Display listed line frequencies and intensities (C)
 `llamp` List of line amplitudes (P)
 `llfrq` List of line frequencies (P)

nm

Select normalized intensity mode (C)

Description: Selects the normalized intensity mode in which spectra are scaled so that the largest peak in the spectrum is `vs` mm high. The alternative is the absolute intensity mode (selected by the `ai` command) in which the scale is kept constant from spectrum to spectrum to allow comparison of peak heights from one spectrum to another. The modes are mutually exclusive (i.e., the system is always in either `nm` or `ai` mode). Enter `aig?` to show which mode is currently active.

See also: `NMR Spectroscopy User Guide`
Related: `ai` Select absolute intensity mode (C)
 `aig` Absolute intensity group (P)
 `vs` Vertical scale (P)

nm2d

Select Automatic 2D normalization (M)

Syntax: `nm2d<noisemult>`

Description: Sets up parameters `th` and `vs2d` automatically for a 2D contour plot and color map display. `nm2d` measures the highest signal in the spectrum and sets `vs2d` so that the highest signal is in the range of the highest color level. It then calculates the noise threshold so that the number of points above the noise threshold is between 10% and 30% of all the points. At the same time, the difference between the mean value of all the points above the threshold (peak points) and the mean value of all the points under the threshold (noise points) is maximized. This noise threshold is then multiplied by the noise multiplier. `nm2d` works both with absolute-value and phase-sensitive spectra. `trace` can be set to `'f1'` or `'f2'`.

Arguments: `noisemult` specifies the noise multiplier number that multiplies the noise threshold:

- For 1H, 19F and 31P (high dynamic range nuclei), and homonuclear spectra in general, the default value is 4.
- For HMQC/HSQC type spectra, the default value is also 4 but noise multipliers of 3 to 5 are often more adequate.
- For HETCOR and 2D-INADEQUATE spectra, the default value is 2.
• For “quick & dirty” COSY spectra with lots of t1 noise and other artifacts, a value of 8 and higher may be adequate for suppressing the artifacts.
• For 2D-INADEQUATE spectra, a value below 3 is appropriate to catch signals right above the noise level.
• If the multiplied noise threshold is below \(th=1 \), \(vs2d \) is scaled up; otherwise, \(th \) is increased to the desired level.
• Minimum value is 1.5 (if a lower value is entered, the value is set to 1.5).

Examples: \(nm2d \)
\(nm2d(3) \)

See also: *NMR Spectroscopy User Guide*

Related:
- \(dconi \) Interactive 2D contour display (C)
- \(noisemult \) Control noise multiplier for automatic 2D processing (M)
- \(proc2d \) Process 2D spectra (M)
- \(th \) Threshold (P)
- \(trace \) Mode for \(n \)-dimensional data display (P)
- \(vs2d \) Vertical scale for 2D displays (P)

Noesy

Convert the parameter to a NOESY experiment (M)

Description: Convert the parameter to a NOESY experiment.

See also: *NMR Spectroscopy User Guide*

Related: \(foldt \) Fold COSY-like spectrum along diagonal axis (C)

Noesy1d

Convert the parameter set to a Noesy1d experiment (M)

Description: Convert the parameter set to a NOESY 1D experiment.

See also: *NMR Spectroscopy User Guide*

Related:
- \(Proton \) Set up parameters for \(^1H \) experiment (M).
- \(sel1d \) Selective 1D protocols to set up (M).

noise

Measure noise level of FID (C)

Syntax: \(\text{noise}(\text{excess_noise}<,\text{last_noise}<,\text{block_number}>>) \):
\(r1,r2,r3,r4,r5,r6 \)

Description: Measures the noise level of a FID. By using \(pw=0 \) so that no real signal is accumulated, one or more transients can be acquired. The value of \(np \) must be greater than 4096. \(\text{noise} \) then performs a statistical analysis of the noise, providing noise level, dc level, etc., for each channel. The noise level measurement can be repeated at various settings of \(\text{gain} \) and various settings of \(\text{fb} \), etc., for a full system diagnosis.

Arguments:
- \(\text{excess_noise} \) is excess noise and is used to calculate the noise figure.
- \(\text{last_noise} \) is the last measured mean square noise and is used to calculate the noise figure.
- \(\text{block_number} \) is the block number. The default is 1.
- \(r1 \) returns the real dc offset.
- \(r2 \) returns the imaginary dc offset.
- \(r3 \) returns the real rms noise.
- \(r4 \) returns the imaginary rms noise.
- \(r5 \) returns the average rms noise.

r6 returns the percentage channel imbalance.

r7 returns the noise figure.

See also: *NMR Spectroscopy User Guide*

Related:
noisemult

Control noise multiplier for automatic 2D processing (M)

Syntax: noisemult<(noise_multiplier)>

Description: Predetermines the noise multiplier used by the nm2d macro when starting automatic 2D experiments. This multiplier determines the threshold level in 2D spectra.

Arguments: noise_multiplier is a noise multiplier, the same as used in the nm2d macro. The default is 8 for homonuclear 2D spectra or 4 for other spectra.

Examples: noisemult

noisemult(10)

See also: *NMR Spectroscopy User Guide*

Related: nm2d Automatic 2D normalization (M)

proc2d Process 2D spectra (M)

noislm

Limit noise in spectrum (M)

Syntax: noislm<(max_noise)>

Description: Limits the noise present in a spectrum by reducing the vertical scale vs. If the noise is smaller than the noise limit, vs is left untouched. The noise limit is in single root-mean-square noise size; the peak-to-peak noise (width of the noise band) is about twice that value. The noise is determined by taking the smallest value from four 5% regions at the left end of the spectrum. Any filter cutoff at the end will decrease the apparent noise in the spectrum, and therefore increase the noise limit in the central part of the spectrum. Because of the particular algorithm used in this macro, signals at the left end of the spectrum should not affect the result of noislm.

Arguments: max_noise is the maximum root-mean-square size, in mm, of the noise. The default is 2.

Examples: noislm

noislm(5)

See also: *NMR Spectroscopy User Guide*

Related: vs Vertical scale (P)

vsadj Automatic vertical scale adjustment (M)

vsadjc Automatic vertical scale adjustment for 13C spectra (M)

vsadjh Automatic vertical scale adjustment for 1H spectra (M)

notebook

Notebook name (P)

Description: Specifies the notebook name of a sample, which is saved with a study.
np Number of data points (P)
Description: Sets number of data points to be acquired. Generally, np is a dependent parameter and is calculated automatically when sw or at is changed. If a particular number of data points is desired, np can be entered, in which case at becomes the dependent parameter and is calculated based on sw and np.
Values: np is constrained to be a multiple of 2 (Acquisition Controller or Pulse Sequence Controller board) or a multiple of 64 (Output board). (See the acquire statement in the manual User Programming for a description of these boards.)
See also: NMR Spectroscopy User Guide
Related: at Acquisition time (P) npoint Number of points for fp peak search (P) dp Double precision (P) setlimit Set limits of a parameter in a tree (C) sw Spectral width in directly detected dimension (P)

npoint Number of points for fp peak search (P)
Description: If npoint is defined in the current parameter set and has a value, it determines the range of data points over which the fp command searches for a maximum for each peak. To create npoint and give it a value other than the default, enter create(‘npoint’,’integer’) npoint=x, where x is the new value.
Values: 1 to fn/4. The default is 2.
See also: NMR Spectroscopy User Guide
Related: create Create new parameter in a parameter tree (C) fn Fourier number in directly detected dimension (P) fp Find peak heights (C)

nrecords Determine number of lines in a file (M)
Syntax: nrecords(file):$number_lines
Description: Returns the number of lines (or records) in a file.
Arguments: file is the name of the file.
$number_lines returns the number of lines in the named file.
Examples: nrecords(userdir+’/mark1d.out’):$num
See also: User Programming

nt Number of transients (P)
Description: Sets the number of transients to be acquired (i.e., the number of repetitions or scans performed to make up the experiment or FID).
Values: 1 to 1e9. For an indefinite acquisition, set nt to a very large number such as 1e9.
See also: NMR Spectroscopy User Guide; VnmrJ Imaging NMR
ntrig Number of trigger signals to wait before acquisition (P)

Applicability: Systems with LC-NMR accessory.

Description: Sets the number of trigger signals from the LC to wait for on the external gate line before beginning acquisition. If ntrig is 0 or the parameter does not exist, the external gate signal is ignored. If ntrig does not exist, the parlc macro can create it. ntrig is not normally entered by the user.

See also: NMR Spectroscopy User Guide

Related: parlc Create LC-NMR parameters (M)

ntype3d Specify whether f1 or f2 display expected to be N-type (P)

Description: Indicates whether the f1 or f2 display is expected to be N-type, that is, opposite to the sense of precession defined by f3, under normal 3D processing conditions.

Values: 'yn' specifies that f1 is expected to have an N-type display under normal 3D processing conditions.

'ny' specifies that f2 is expected to have an N-type display under normal 3D processing conditions.

'yy' specifies that both f1 and f2 are expected to have N-type displays under normal 3D processing conditions. Setting ntype3d='yy' changes the sense of precession in f1 and f2 by negating the imaginary portion of the t1 and t2 interferograms prior to Fourier transformation.

See also: NMR Spectroscopy User Guide

Related: fiddc3d 3D time-domain dc correction (P)
 ft3d Perform a 3D Fourier transform on a 3D FID data set (M,U)
 ptspec3d Region-selective 3D processing (P)
 specdc3d 3D spectral drift correction (P)
 ssfilter Full bandwidth of digital filter to yield a filtered FID (P)
 ssorder Order of polynomial to fit digitally filtered FID (P)
 rftype Type of rf generation

nuctable Display VNMR style nucleus table for a given H1 frequency (M)

Syntax: nuctable<(h1_freq)>

Description: The VnmrJ nucleus table is a single nucleus table, /vnmr/nuctables/nuctable, which is calculated based on a proton frequency of 1000.000 MHz. nuctable can be used to reconstruct a traditional nucleus table, e.g., based on a proton frequency of 200.057 MHz, or to calculate a nucleus table for any given proton frequency.

Arguments: h1_freq (optional): proton frequency on which the calculated / displayed nucleus table will be based. Without argument, nuctable prints a nucleus table based on the proton frequency for which the current VnmrJ / VNMR installation is configured.

Examples: nuctable(200.057)
 nuctable:

Related restorenuctable Calculate and (Re-)store accurate nuctable (M)

numrcvrs Number of receivers in the system (P)

Applicability: Systems with multiple receivers.
Description: An integer giving the number of receivers installed in the system. `numrcvrs` is set from the config panel by the vnmr1 user.

numreg

Return the number of regions in a spectrum (C)

Syntax: `numreg: number_regions`

Description: Returns the number of regions in a spectrum previously divided by the `region` command, by manual means using the `z` command, or by the Resets button in `ds`. A region is the area between two reset points in integral mode, with every other reset point designating the start of a baseline region and not included in the count of regions.

Arguments: `number_regions` returns the number of peak regions in the spectrum.

Examples: `numreg: $num`

See also: User Programming

Related:
- `ds`: Display a spectrum (C)
- `getreg`: Get frequency limits of a specified region (C)
- `region`: Divide spectrum into regions (C)
- `z`: Add integral reset point at cursor position (C)

numrfch

Number of rf channels (P)

Description: Holds the number of rf channels available. The value is set with the Number of RF Channels label in the Spectrometer Configuration window. `numrfch` represents the hardware in the system. For example, if the last experiment used the second decoupler, `numrfch` is set to 2. The software then leaves the second decoupler on if it was on and leaves it off if it was off.

CAUTION: Do not reset `numrfch` to eliminate the use of a channel. See the description of `dn2` and `dn3` for the method to disable channels.

Values: The fifth channel can only be used with the deuterium decoupler channel.

See also: VnmrJ Installation and Administration

Related:
- `config`: Display current configuration and possibly change it (M)
- `dn2`: Nucleus for the second decoupler (P)
- `dn3`: Nucleus for the third decoupler (P)
- `dn4`: Nucleus for the fourth decoupler (P)
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Syntax</th>
<th>Example</th>
<th>See also</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>Make a parameter inactive (C)</td>
<td>off (parameter<,tree>)</td>
<td>off('gf')</td>
<td>User Programming</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>off('n','global')</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Turns off an active parameter in any tree.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arguments: parameter is the name of the parameter.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tree is type of parameter tree: 'current', 'global', 'processed', or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>'systemglobal'. The default is 'current'. Refer to the create</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>command for more information on the types of trees.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Examples:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>off('gf')</td>
<td></td>
<td>off('n','global')</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>See also:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>on</td>
<td>Make a parameter active or test its state (C)</td>
<td>on(parameter<,tree>)<::$active></td>
<td>on('var1'):$e</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Turns on an inactive parameter in any tree or tests if a</td>
<td></td>
<td>if $e then</td>
<td></td>
</tr>
<tr>
<td></td>
<td>parameter is active. Real variables (not strings) can be turned on and off.</td>
<td></td>
<td>write('line3','if statement is true with value of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This can be done in any tree with the commands on and off, and by entering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>name='y' or name='n' to change the active flag for variables in the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>current tree only. The variable trees are 'current', 'global', 'processed'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and 'systemglobal'. The default tree is 'current'.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>To test the active flag of a variable, use on(....):$x. This does not</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>change the active flag of the variable, but sets $x to 1, if the variable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>is active, or to 0, if it is not active. If the variable does not exist,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a value of -1 is returned. Care should be taken if using the return value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>as a test for a conditional statement. For example, in the following</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fragment,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>on('var1'):$e</td>
<td></td>
<td>if $e then</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if $e then</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>write('line3','if statement is true with value of')</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Related:
- create
- on
- typeof
the write command will be executed if 'var1' is active, writing the message
if statement is true with value of 1 It will also be executed if 'var1' does not
exist, writing the message if statement is true with value of -1.
To only execute the write command if the variable is active, use something
like the following:
on('var1'):$e
if ($e > 0.5) then
 write('line3','var1 is active')
endif
Arguments: parameter is the name of the parameter to make active or to test.
tree is type of parameter tree: 'current', 'global', 'processed', or
'systemglobal'. The default is 'current'. Refer to the create
command for more information on the types of trees.
$active is 1 if the parameter is active, or is 0 if it is not active. Adding a return
argument makes on conduct only a test of whether the specified parameter is
active and does not turn on the parameter if it is inactive.
Examples: on('lb'):$ison
on('gain','global')
See also: User Programming
Related: create Create new parameter in a parameter tree (C)
off Make a parameter inactive (C)

operator Operator name (P)
Applicability: VnmrJ Walkup
Description: Specifies the operator name. It is set when an operator logs into the Walkup
interface. Multiple operators may be defined for a single user using the VnmrJ
Administrator interface.
Related: acct Writes records for operator login and logoff (M)
operatorlogin Sets workspace and parameters for the operator (M)
vnmr_accounting Open Accounting window (U)

operatorlogin Sets workspace and parameters for the operator (M)
Syntax: operatorlogin operator email panellevel
Description: Sets the panel display level and other parameters for an operator when the
operator logs in. It also clears the new sample area in the study queue, and
disables the command line if the operator has insufficient privileges. An
operator may be logged in from the Switch operator dialog in the Utilities menu.
Related: acct Writes records for operator login and logoff (M)
email Email address (P)
operator Operator name (P)
panellevel Display level for VnmrJ interface pages (P)
vnmr_accounting Open Accounting window (U)

opx Open shape definition file for Pbox (M)
Syntax: opx<(name<.ext>)>
Description: Opens the pulse shape/pattern definition input file `shapelib/Pbox.inp` for the Pbox software and writes the file header.

Arguments:
- `name` is the name of the output shape file.
- `ext` is a file name extension that specifies the file type.

Examples:
- `opx`
- `opx('newfile.DEC')`

Related: Pbox Pulse shaping software (U)

oscoef

Digital filter coefficients for oversampling (P)

Description: Specifies number of coefficients used in the digital filter. Enter `addpar('oversamp')` to add `oscoef` to the current experiment if `oscoef` does not exist. `addpar('oversamp')` creates digital filtering and oversampling parameters `def_osfilt, filtfile, oscoef, osfb, osfilt, oslafreq, and oversamp`.

Values: The default is $7.5 \times \text{oversamp}$ for inline DSP ($\text{dsp}=\text{'i'}$). A larger number of coefficients gives a filter with sharper cutoffs; a smaller number gives a filter with more gradual cutoffs. The value of `oscoef` does not need to be changed when `oversamp` is changed because `oscoef` is automatically adjusted by VnmrJ to give filter cutoffs that are the same regardless of the value of `oversamp`.

The number of coefficients for real-time DSP ($\text{dsp}=\text{'r'}$) is determined by the hardware and is not adjustable.

Related: `addpar` Add selected parameters to current experiment (M)
- `dsp` Type of DSP for data acquisition (P)
- `filtfile` File of FIR digital filter coefficients (P)
- `osfb` Digital filter bandwidth for oversampling (P)
- `oslafreq` Bandpass filter offset for oversampling (P)
- `oversamp` Oversampling factor for acquisition (P)
- `paros` Create additional parameters used by oversampling (M)

osfb

Digital filter bandwidth for oversampling (P)

Description: Specifies bandwidth of the digital filter used for oversampling. If `osfb` does not exist in the current experiment, enter `addpar('oversamp')` to add it. `addpar('oversamp')` creates digital filtering and oversampling parameters `def_osfilt, filtfile, oscoef, osfilt, oslafreq, and oversamp`.

Values: Number, in Hz. A value less than $\frac{\text{sw}}{2}$ rejects frequencies at the edges of the spectrum; a value greater than $\frac{\text{sw}}{2}$ aliases noise and signals at frequencies outside of $\pm \frac{\text{sw}}{2}$.

`'n'` sets the bandwidth to $\frac{\text{sw}}{2}$.

Related: `addpar` Add selected parameters to current experiment (M)
- `def_osfilt` Default value of `osfilt` (P)
- `filtfile` File of FIR digital filter coefficients (P)
- `oscoef` Digital filter coefficients for oversampling (P)
- `osfilt` Oversampling filter for real-time DSP (P)
- `oslafreq` Bandpass filter offset for oversampling (P)
- `oversamp` Oversampling factor for acquisition (P)
paros Create additional parameters used by oversampling (M)
sw Spectral width in directly detected dimension (P)

osfilt
Oversampling filter for real-time DSP (P)

Applicability: Systems with real-time DSP.

Description: Sets the type of real-time digital filter to be used on systems equipped with the real-time DSP hardware option. `osfilt` is normally set automatically by the software based on the user’s global parameter `def_osfilt`, so that `osfilt` only needs to be changed if a particular experiment is to be run with a different digital filter than the default.

Values:
- 'a' or 'A' for the AnalogPlus™ digital filter.
- 'b' or 'B' for the brickwall digital filter.
- (null string) causes `osfilt` to be set to the value contained in the `def_osfilt` when an acquisition is initiated (with `go`, for example).

Related:
- `def_osfilt` Default value of `osfilt` (P)
- `dsp` Type of DSP for data acquisition (P)

oslsfreq
Bandpass filter offset for oversampling (P)

Description: Selects a bandpass filter that is not centered about the transmitter frequency. In this way `oslsfreq` works much like `lsfreq`. If `oslsfreq` does not exist in the current experiment, add it with `addpar('oversamp')`, which creates digital filtering and oversampling parameters, the same as the `paros` macro.

Values: Number, in Hz. A positive value selects a region upfield from the transmitter frequency. A negative value selects a downfield region.

Related:
- `addpar` Add selected parameters to current experiment (M)
- `def_osfilt` Default value of `osfilt` (P)
- `filtfile` File of FIR digital filter coefficients (P)
- `fsq` Frequency-shifted quadrature detection (P)
- `lsfreq` Frequency shift of the fn spectrum in Hz (P)
- `oscoef` Digital filter coefficients for oversampling (P)
- `osfb` Digital filter bandwidth for oversampling (P)
- `osfilt` Oversampling filter for real-time DSP (P)
- `oversamp` Oversampling factor for acquisition (P)
- `paros` Create additional parameters used for oversampling (M)

overrange
Frequency synthesizer overrange (P)

Applicability: Systems with optional version X46 of the PTS frequency synthesizer.

Description: Configures whether an rf channel has version X46 of the PTS frequency synthesizer. The value for each channel is set using the label Frequency Overrange in the Spectrometer Configuration window.

Values: Not Present, 10000 Hz, or 100000 Hz

- Not Present indicates that this rf channel does not have the frequency overrange option.
- 10000 or 100000 indicate that this rf channel has the frequency overrange option. The 10000 Hz or 100000 Hz choices are determined by the letters H, J, or K found in the PTS Synthesizers model number. The normal value for overrange is 10000 Hz. If Frequency Overrange is set to 10000 Hz or 100000 Hz, the Latching value for that RF channel must also be set to Present.
When set to either 10000 Hz or 100000 Hz, overrange guarantees a range of phase-continuous frequency jumps of at least 10 kHz or 100 kHz in each jump direction.

See also: VnmrJ Installation and Administration

Related: config Display current configuration and possibly change it (M)
latch Frequency synthesizer latching (P)

oversamp

Oversampling factor for acquisition (P)

Description: Specifies the oversampling factor for the acquisition. With inline digital filtering (\(\text{dsp}='i'\)), \(\text{np} \times \text{oversamp}\) data points are acquired at a rate of \(\text{sw} \times \text{oversamp}\). The data is then transferred to the host computer, digitally filtered, and downsampled to give \(\text{np}\) points and a spectral width of \(\text{sw}\).

With real-time digital filtering (\(\text{dsp}='r'\)), the oversampling, digital filtering, and down sampling all occur as each data point is collected, so that only \(\text{np}\) data points are ever stored in the acquisition computer memory and subsequently transferred to the host computer.

If oversamp does not exist in the current experiment, enter the command `addpar('oversamp')` to add it. `addpar('oversamp')` creates digital filtering and oversampling parameters `def_osfilt`, `filtfile`, `oscoef`, `osfb`, `osfilt`, `oslfq`, and `oversamp`.

If oversamp is set to a number, then that number represents the amount of oversampling to apply when collecting the data. The oversamp value is automatically calculated whenever \(\text{sw}\) is changed, provided oversamp is not set to 'n'. That is the distinction between `oversamp='n'` and `oversamp=1`. In both cases, no oversampling will be used. This occurs, for example, if the \(\text{sw}\) parameter is greater than half the maximum spectral width. However, if \(\text{sw}\) is reduced so that oversampling is possible, then if `oversamp` is set to 'n', `oversamp` will remain set to 'n' and oversampling will not occur. On the other hand, if `oversamp` is set to 1, then `oversamp` is recalculated and oversampling will occur. Therefore, the `oversamp` parameter accurately represents whether oversampling is performed for a data set. When `oversamp` is automatically determined based on a change to \(\text{sw}\), it is set to the maximum possible oversampling factor. The value of `oversamp` can be manually reset.

Note that setting `oversamp` greater than 1 means oversampling is selected for the experiment. However, if the oversampling facility is not present in the system (i.e., `\(\text{dsp}='n'\)`) then the `oversamp` parameter is automatically reset to 1, indicating that no oversampling will be performed.

Two other experiment local parameters reflect whether DSP is used during the acquisition of a data set:

- `fb` is set to Not Active if DSP is used.
- `oscoef` reflects whether real-time (\(\text{dsp}='r'\)) or inline (\(\text{dsp}='i'\)) DSP was used. If real-time, `oscoef` is set to Not Active. If inline, `oscoef` is set to the value used by the inline algorithm.

Values: Number less than or equal to 68. For inline DSP, \(\text{sw} \times \text{oversamp}\) and \(\text{np} \times \text{oversamp}\) are limited by the values in the following table:

<table>
<thead>
<tr>
<th>Maximum (\text{sw} \times \text{oversamp})</th>
<th>Maximum (\text{np} \times \text{oversamp})</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 kHz</td>
<td>2M</td>
</tr>
<tr>
<td>100 kHz</td>
<td>128K</td>
</tr>
</tbody>
</table>

The maximum \(\text{np} \times \text{oversamp}\) is given for double precision data (\(\text{dp}='y'\)). For \(\text{dp}='n'\), multiply this value by 2.
'n' causes normal acquisition to be done without digital filtering.

owner

Operating system account owner (P)

Description: Set to the Unix or Linux account owner. It is set when VnmrJ is started.

Related:
- addpar: Add selected parameters to current experiment (M)
- def_osfilt: Default value of osfilt parameter (P)
- dp: Double precision (P)
- dsp: Type of DSP for data acquisition (P)
- fb: Filter bandwidth (P)
- filtfile: File of FIR digital filter coefficients (P)
- fsq: Frequency-shifted quadrature detection (P)
- np: Number of data points (P)
- oscoef: Digital filter coefficients for oversampling (P)
- osfb: Digital filter bandwidth for oversampling (P)
- osfilt: Oversampling filter for real-time DSP (P)
- oslsfqrq: Bandpass filter offset for oversampling (P)
- paros: Create additional parameters used by oversampling (M)
- sw: Spectral width in directly detected dimension (P)
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>Enter pulse width for p1 in degrees (C)</td>
</tr>
<tr>
<td>p1</td>
<td>First pulse width (P)</td>
</tr>
<tr>
<td>p2pul</td>
<td>Set up sequence for PFG testing (M)</td>
</tr>
<tr>
<td>p31</td>
<td>Automated phosphorus acquisition (M)</td>
</tr>
<tr>
<td>p3lp</td>
<td>Process 1D phosphorus spectra (M)</td>
</tr>
<tr>
<td>pa</td>
<td>Set phase angle mode in directly detected dimension (C)</td>
</tr>
<tr>
<td>pal</td>
<td>Set phase angle mode in 1st indirectly detected dimension (C)</td>
</tr>
<tr>
<td>pacosy</td>
<td>Plot automatic COSY analysis (C)</td>
</tr>
<tr>
<td>pad</td>
<td>Preacquisition delay (P)</td>
</tr>
<tr>
<td>padpt</td>
<td>Perform adept analysis and plot resulting spectra (C)</td>
</tr>
<tr>
<td>page</td>
<td>Submit plot and change plotter page (C)</td>
</tr>
<tr>
<td>page</td>
<td>Name of page (P)</td>
</tr>
<tr>
<td>panellevel</td>
<td>Display level for VnmrJ interface pages (P)</td>
</tr>
<tr>
<td>pap</td>
<td>Plot out “all” parameters (C)</td>
</tr>
<tr>
<td>par2d</td>
<td>Create 2D acquisition, processing, and display parameters (M)</td>
</tr>
<tr>
<td>par3d</td>
<td>Create 3D acquisition, processing, and display parameters (M)</td>
</tr>
<tr>
<td>par3rf</td>
<td>Get display templates for 3rd rf channel parameters (M)</td>
</tr>
<tr>
<td>par4d</td>
<td>Create 4D acquisition parameters (M)</td>
</tr>
<tr>
<td>paramedit</td>
<td>Edit a parameter and its attributes with user-selected editor (C)</td>
</tr>
<tr>
<td>paramvi</td>
<td>Edit a parameter and its attributes with vi editor (M)</td>
</tr>
<tr>
<td>pards</td>
<td>Create additional parameters used by down sampling (M)</td>
</tr>
<tr>
<td>parfidss</td>
<td>Create parameters for time-domain solvent subtraction (M)</td>
</tr>
<tr>
<td>parfix</td>
<td>Update parameter sets (M)</td>
</tr>
<tr>
<td>parlc</td>
<td>Create parameters for LC-NMR experiments (M)</td>
</tr>
<tr>
<td>parl2d</td>
<td>Create parameters for 2D peak picking (M)</td>
</tr>
<tr>
<td>parlp</td>
<td>Create parameters for linear prediction (M)</td>
</tr>
<tr>
<td>parmax</td>
<td>Parameter maximum values (P)</td>
</tr>
<tr>
<td>parmin</td>
<td>Parameter minimum values (P)</td>
</tr>
<tr>
<td>paros</td>
<td>Create additional parameters used by over sampling (M)</td>
</tr>
<tr>
<td>parstep</td>
<td>Parameter step size values (P)</td>
</tr>
<tr>
<td>parversion</td>
<td>Version of parameter set (P)</td>
</tr>
<tr>
<td>path3d</td>
<td>Path to currently displayed 2D planes from a 3D data set (P)</td>
</tr>
<tr>
<td>paxis</td>
<td>Plot horizontal LC axis (M)</td>
</tr>
<tr>
<td>Pbox</td>
<td>Pulse shaping software (U)</td>
</tr>
<tr>
<td>pbox_bw</td>
<td>Define excitation band (M)</td>
</tr>
<tr>
<td>pbox_bws</td>
<td>Define excitation band for solvent suppression (notch) pulses (M)</td>
</tr>
<tr>
<td>pbox_dmf</td>
<td>Extract dmf value from pbox.cal or Pbox shape file (M)</td>
</tr>
<tr>
<td>pbox_dres</td>
<td>Extract dres value from pbox.cal or Pbox shape file (M)</td>
</tr>
<tr>
<td>pbox_name</td>
<td>Extract name of last shape generated by Pbox from pbox.cal (M)</td>
</tr>
<tr>
<td>pbox_pw</td>
<td>Extract pulse length from pbox.cal or Pbox shape file (M)</td>
</tr>
<tr>
<td>pbox_pwr</td>
<td>Extract power level from Pbox.cal or Pbox shape file (M)</td>
</tr>
<tr>
<td>pbox_pwrf</td>
<td>Extract fine power level from pbox.cal or Pbox shape file (M)</td>
</tr>
<tr>
<td>pboxget</td>
<td>Extract Pbox calibration data (M)</td>
</tr>
</tbody>
</table>
pboxpar | Add parameter definition to the Pbox.inp file (M)
pboxrst | Reset temporary Pbox variables (M)
pboxunits | Converts to Pbox default units (M)
pcon | Plot contours on a plotter (C)
pcss | Calculate and show proton chemical shifts spectrum (M)
peak | Find tallest peak in specified region (C)
peak2d | Return information about maximum in 2D data (C)
pen | Select a pen or color for drawing (C)
pexp1 | Plot exponential or polynomial curves (C)
pexpladd | Add another diffusion analysis to current plot (M)
pfgon | Pulsed field gradient amplifiers on/off control (P)
pfww | Plot FIDs in whitewash mode (C)
pge | Convert parameter set to PGE pulse sequence (M)
pge_calib | Calibrate gradient strengths for PGE pulse sequence (M)
pge_data | Extract data from single element of PGE pulse sequence (M)
pge_output | Output results from PGE pulse sequence (M)
pge_process | Automated processing of data from PGE pulse sequence (M)
pge_results | Calculate diffusion constant for integral region (M)
pge_setup | Set up gradient control parameters for PGE pulse sequence (M)
ph | Set phased mode in directly detected dimension (C)
ph1 | Set phased mode in 1st indirectly detected dimension (C)
ph2 | Set phased mode in 2nd indirectly detected dimension (C)
phase | Change frequency-independent phase (P)
phase1 | Phase selection (P)
phase2 | Phase selection for 3D acquisition (P)
phase3 | Phase selection for 4D acquisition (P)
phasing | Control update region during interactive phasing (P)
phfid | Zero-order phasing constant for the np FID (P)
phfid1 | Zero-order phasing constant for ni interferogram (P)
phfid2 | Zero-order phasing constant for ni2 interferogram (P)
Phosphorus | Set up parameters for 31P experiment (M)
pi3ssbsq | Set up pi/3 shifted sinebell-squared window function (M)
pi4ssbsq | Set up pi/4 shifted sinebell-squared window function (M)
pin | Pneumatics Router Interlock (P)
pl2vast | Plots of integral regions (M)
pi | Plot integral amplitudes below spectrum (C)
pir | Plot normalized integral amplitudes below spectrum (M)
pl | Plot spectra (C)
pl2d | Plot 2D spectra in whitewash mode (C)
plt2darg | Plot 2D arguments (P)
plane | Currently displayed 3D plane type (P)
plapt | Plot APT-type spectra automatically (M)
plarray | Plotting macro for arrayed 1D spectra (M)
plate_glue | Define a glue order for plotting and display (U)
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>plc</td>
<td>Plot a carbon spectrum (M)</td>
</tr>
<tr>
<td>plcosy</td>
<td>Plot COSY- and NOESY-type spectra automatically (M)</td>
</tr>
<tr>
<td>pldept</td>
<td>Plot DEPT data, edited or unedited (M)</td>
</tr>
<tr>
<td>plfid</td>
<td>Plot FIDs (C)</td>
</tr>
<tr>
<td>plfit</td>
<td>Plot deconvolution analysis (M)</td>
</tr>
<tr>
<td>plgrid</td>
<td>Plot a grid on a 2D plot (M)</td>
</tr>
<tr>
<td>plh</td>
<td>Plot proton spectrum (M)</td>
</tr>
<tr>
<td>plhet2dj</td>
<td>Plot heteronuclear J-resolved 2D spectra automatically (M)</td>
</tr>
<tr>
<td>plhom2dj</td>
<td>Plot homonuclear J-resolved 2D spectra automatically (M)</td>
</tr>
<tr>
<td>plhxcor</td>
<td>Plot X,H-correlation 2D spectrum (M)</td>
</tr>
<tr>
<td>pll</td>
<td>Plot a line list (M)</td>
</tr>
<tr>
<td>pll2d</td>
<td>Plot results of 2D peak picking (C)</td>
</tr>
<tr>
<td>plotport</td>
<td>Port number to use to lock out multiple ProTune processes (P)</td>
</tr>
<tr>
<td>plot</td>
<td>Automatically plot spectra (M)</td>
</tr>
<tr>
<td>plot1d</td>
<td>Plotting macro for simple (non-arrayed) 1D spectra (M)</td>
</tr>
<tr>
<td>plot2d</td>
<td>Plot 2D spectra (M)</td>
</tr>
<tr>
<td>plotfile</td>
<td>Plot to a file (M)</td>
</tr>
<tr>
<td>plothref</td>
<td>High resolution plot output preparation (M)</td>
</tr>
<tr>
<td>plotmanual</td>
<td>Plot manually (M)</td>
</tr>
<tr>
<td>plotlogo</td>
<td>Plots a logo (M)</td>
</tr>
<tr>
<td>plotside</td>
<td>Plot spectrum on side (M)</td>
</tr>
<tr>
<td>plotter</td>
<td>Plotter device (P)</td>
</tr>
<tr>
<td>plottop</td>
<td>Plot spectrum on top (M)</td>
</tr>
<tr>
<td>plottopside</td>
<td>Plot spectrum on top and side (M)</td>
</tr>
<tr>
<td>pip</td>
<td>Plot phosphorus spectrum (M)</td>
</tr>
<tr>
<td>pplanes</td>
<td>Plot a series of 3D planes (M)</td>
</tr>
<tr>
<td>plt2Darg</td>
<td>Plot 2D arguments (P)</td>
</tr>
<tr>
<td>pltext</td>
<td>Plot text file (M)</td>
</tr>
<tr>
<td>pltmod</td>
<td>Plotter display mode (P)</td>
</tr>
<tr>
<td>plvast</td>
<td>Plot VAST data in a stacked 1D-NMR matrix format (M)</td>
</tr>
<tr>
<td>plvast2d</td>
<td>Plot VAST data in a stacked pseudo-2D format (M)</td>
</tr>
<tr>
<td>plww</td>
<td>Plot spectra in whitewash mode (C)</td>
</tr>
<tr>
<td>pmode</td>
<td>Processing mode for 2D data (P)</td>
</tr>
<tr>
<td>poly0</td>
<td>Display mean of the data in regression.inp file (M)</td>
</tr>
<tr>
<td>pp</td>
<td>Decoupler pulse length (P)</td>
</tr>
<tr>
<td>ppa</td>
<td>Plot a parameter list in plain English (M)</td>
</tr>
<tr>
<td>ppcal</td>
<td>Proton decoupler pulse calibration (M)</td>
</tr>
<tr>
<td>ppf</td>
<td>Plot peak frequencies over spectrum (C)</td>
</tr>
<tr>
<td>pph</td>
<td>Print pulse header (M)</td>
</tr>
<tr>
<td>ppmm</td>
<td>Resolution on printers and plotters (P)</td>
</tr>
<tr>
<td>pprofile</td>
<td>Plot pulse excitation profile (M)</td>
</tr>
<tr>
<td>pps</td>
<td>Plot pulse sequence (C)</td>
</tr>
<tr>
<td>presalfa</td>
<td>Specify a delay for longer ring down (P)</td>
</tr>
<tr>
<td>prep</td>
<td>Run prepare acquisition macro (M)</td>
</tr>
<tr>
<td>Presat</td>
<td>Set up parameters for presat 1H experiment (M)</td>
</tr>
<tr>
<td>prescan</td>
<td>Study queue prescan (P)</td>
</tr>
<tr>
<td>prevpl</td>
<td>Display the previous 3D plane (M)</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>prescan_CoilTable</td>
<td>Read or update the CoilTable File (M)</td>
</tr>
<tr>
<td>prescan_tn</td>
<td>Return tn string for a given atomic number (M)</td>
</tr>
<tr>
<td>printer</td>
<td>Printer device (P)</td>
</tr>
<tr>
<td>printfile</td>
<td>Path to the print-to-file image (P)</td>
</tr>
<tr>
<td>printformat</td>
<td>Format of saved-to-file image (P)</td>
</tr>
<tr>
<td>printlayout</td>
<td>Layout of printed image (P)</td>
</tr>
<tr>
<td>printoff</td>
<td>Stop sending text to printer and start print operation (C)</td>
</tr>
<tr>
<td>printon</td>
<td>Direct text output to printer (C)</td>
</tr>
<tr>
<td>printregion</td>
<td>Screen region to be printed (P)</td>
</tr>
<tr>
<td>printsize</td>
<td>Size of printed image (P)</td>
</tr>
<tr>
<td>printsend</td>
<td>Defines where image will print (P)</td>
</tr>
<tr>
<td>probe</td>
<td>Probe type (P)</td>
</tr>
<tr>
<td>probeConnect</td>
<td>Specify which nucleus can be acquired on each RF channel (P)</td>
</tr>
<tr>
<td>Probe_edit</td>
<td>Edit probe for specific nucleus (U)</td>
</tr>
<tr>
<td>probe_edit</td>
<td>Edit probe for specific nucleus (M)</td>
</tr>
<tr>
<td>probe_protection</td>
<td>Probe protection control (P)</td>
</tr>
<tr>
<td>proc</td>
<td>Type of processing on np FID (P)</td>
</tr>
<tr>
<td>proc1</td>
<td>Type of processing on ni interferogram (P)</td>
</tr>
<tr>
<td>proc1d</td>
<td>Processing macro for simple (non-arrayed) 1D spectra (M)</td>
</tr>
<tr>
<td>proc2</td>
<td>Type of processing on ni2 interferogram (P)</td>
</tr>
<tr>
<td>proc2d</td>
<td>Process 2D spectra (M)</td>
</tr>
<tr>
<td>procarray</td>
<td>Process arrayed 1D spectra (M)</td>
</tr>
<tr>
<td>process</td>
<td>Generic automatic processing (M)</td>
</tr>
<tr>
<td>proclplot</td>
<td>Automatically process FIDs (M)</td>
</tr>
<tr>
<td>profile</td>
<td>Set up pulse sequence for gradient calibration (M)</td>
</tr>
<tr>
<td>proj</td>
<td>Project 2D data (C)</td>
</tr>
<tr>
<td>Proton</td>
<td>Set up parameters for 1H experiment (M)</td>
</tr>
<tr>
<td>protune</td>
<td>Macro to start ProTune (M)</td>
</tr>
<tr>
<td>protune</td>
<td>Shell script to start ProTune operation (U)</td>
</tr>
<tr>
<td>protunegui</td>
<td>Macro to start ProTune in graphical user interface (M)</td>
</tr>
<tr>
<td>prune</td>
<td>Prune extra parameters from current tree (C)</td>
</tr>
<tr>
<td>pscale</td>
<td>Plot scale below spectrum or FID (C)</td>
</tr>
<tr>
<td>pseudo</td>
<td>Set default parameters for pseudo-echo weighting (M)</td>
</tr>
<tr>
<td>psg</td>
<td>Display pulse sequence generation errors (M)</td>
</tr>
<tr>
<td>psggen</td>
<td>Compile a user PSG object library (M,U)</td>
</tr>
<tr>
<td>psgset</td>
<td>Set up parameters for various pulse sequences (M)</td>
</tr>
<tr>
<td>psgupdateon</td>
<td>Enable update of acquisition parameters (C)</td>
</tr>
<tr>
<td>psgupdateoff</td>
<td>Prevent update of acquisition parameters (C)</td>
</tr>
<tr>
<td>pshape</td>
<td>Plot pulse shape or modulation pattern (M)</td>
</tr>
<tr>
<td>pshapef</td>
<td>Plot the last created pulse shape (M)</td>
</tr>
<tr>
<td>psr</td>
<td>PostScript High Resolution plotting control (P)</td>
</tr>
<tr>
<td>pslabel</td>
<td>Pulse sequence label (P)</td>
</tr>
<tr>
<td>pslw</td>
<td>PostScript Line Width control (P)</td>
</tr>
<tr>
<td>pssl</td>
<td>Plot Arrayed Numbers (C)</td>
</tr>
<tr>
<td>ptext</td>
<td>Print out a text file (M)</td>
</tr>
<tr>
<td>ptspec3d</td>
<td>Region-selective 3D processing (P)</td>
</tr>
<tr>
<td>ptsval</td>
<td>PTS frequency synthesizer value (P)</td>
</tr>
</tbody>
</table>
p1

Enter pulse width for p1 in degrees (C)

Syntax: p1(flip_angle<,90_pulse_width>)

Description: Calculates the flip time, in μs, given a desired flip angle and the 90° pulse. The value is entered into the pulse width parameter p1.

Arguments: flip_angle is the desired flip angle, in degrees.
90_pulse_width is the 90° pulse, in μs. The default is the value of parameter pw90 if it exists.

Examples: p1(30)
p1(90,12.8)

See also: NMR Spectroscopy User Guide

Related:
- ernst Calculate the Ernst angle pulse (C)
- p1 First pulse width (P)
- pw90 90° pulse width (P)

p1

First pulse width (P)

Description: Length of first pulse in the standard two-pulse sequence.

Values: 0, 0.2 μs to 150,000 μs, in 0.1 μs steps
0.1 μs to 8190 sec, smallest value possible is 0.1 μs, finest increment possible is 12.5 ns.

See also: NMR Spectroscopy User Guide

Related: p1 Enter pulse width p1 in degrees (C)

p1pat

Shape of excitation pulse (P)

Applicability: Systems with imaging capabilities.
Description: Specifies the shape of pulse p1 when used in imaging experiments.
Values: 'hard', 'sinc', 'gauss', 'sech', 'sine', or any shape resident in the system pulse shape library or libraries.

See also: VnmrJ Imaging NMR
Related: p1 First pulse width (P)
pwpul Shape of refocusing pulse (P)

p2pul

Set up sequence for PFG testing (M)

Applicability: Systems with the pulsed field gradient (PFG) module. This sequence is not for NMR applications.

Description: Sets up the PFG two-pulse sequence, a system checkout sequence for PFG installation. Several modes are controlled by the cmd parameter.

- cmd='twinkle' sequentially addresses DACs 0 through 4. On the gradient channel interface, lights become a slow binary counter.
- cmd='pulse' makes a pulse of value gzlvl1 for a time gt1.
- cmd='bipulse' makes a pulse of value gzlvl1 for a time gt1 followed by a pulse of value -gzlvl1 for a time gzlvl1.

For other modes, see the PFG installation manual.

See also: Pulsed Field Gradient Modules Installation

p31

Automated phosphorus acquisition (M)

Syntax: p31<(solvent)>

Description: Prepares parameters for automatically acquiring a standard 31P spectrum. The parameter wexp is set to 'procplot' for standard processing. If p31 is used as the command for automation via the enter command, then the macro au is supplied automatically and should not be entered on the MACRO line of the enter program. However, it is possible to customize the standard p31 macro on the MACRO line by following it with additional commands and parameters. For example, p31 nt=1 will use the standard p31 setup but with only one transient.

Arguments: solvent is the name of the solvent. The default is CDCl3. In automation mode, the solvent is supplied by the enter program.

Examples: p31
p31('DMSO')

See also: NMR Spectroscopy User Guide
Related: au Submit experiment to acquisition and process data (M)
enter Enter sample information for automation run (C)
p3lp Process 1D phosphorus spectra (M)
proc1d Processing macro for simple, non-arrayed 1D spectra (M)
procplot Automatically process FIDs (M)
wexp When experiment completes (P)

p3lp

Process 1D phosphorus spectra (M)

Syntax: p3lp

Description: Processes non-arrayed 1D 31P spectra using a set of standard macros. p3lp is called by the proc1d macro but can also be used directly. Fully automatic processing (up to a point where a spectrum could be plotted) is provided:
Fourier transformation (using preset weighting functions), automatic phasing (aphx macro), automatic integration (integrate macro, if required only), vertical scale adjustment (vsadjc macro), avoiding excessive noise (noislm macro), threshold adjustment (thadj macro), and referencing to the TMS signal, if present (tmsref macro).

See also: *NMR Spectroscopy User Guide*

Related:

- **aphx**: Perform and check automatic phasing (M)
- **integrate**: Automatically integrate 1D spectrum (M)
- **noislm**: Avoids excessive noise (M)
- **p3l**: Automated phosphorus acquisition (M)
- **procl1d**: Automatically process non-arrayed 1D fids (M)
- **thadj**: Adjust threshold (M)
- **tmsref**: Reference spectrum to TMS line (M)
- **vsadjc**: Adjust vertical scale for carbon spectra (M)

pa

Set phase angle mode in directly detected dimension (C)

Description: Selects the phase angle mode by setting the parameter dmg='pa'. In the phase angle display mode, each real point in the displayed spectrum is calculated from the phase angle of the real and imaginary points comprising each respective complex data point. The phase angle also takes into account the phase parameters rp and lp.

For 2D data, if pmode='partial' or pmode='' (two single quotes with no space in between), pa has an effect on the data prior to the second Fourier transform. If pmode='full', pa acts in concert with the commands pal, av1, pwr1, or ph1 to yield the resultant contour display for the 2D data.

See also: *NMR Spectroscopy User Guide*

Related:

- **av**: Set abs. value mode in directly detected dimension (C)
- **dmg**: Data display mode in directly detected dimension (P)
- **ft**: Fourier transform 1D data (C)
- **ft1d**: Fourier transform along f2 dimension (C)
- **ft2d**: Fourier transform 2D data (C)
- **lp**: First-order phase in directly detected dimension (P)
- **pal**: Set phase angle mode in 1st indirectly detected dimension (C)
- **ph**: Set phased mode in directly detected dimension (C)
- **pmode**: Processing mode for 2D data (P)
- **pwr**: Set power mode in directly detected dimension (C)
- **pwr1**: Set power mode in 1st indirectly detected dimension (C)
- **rp**: Zero-order phase in directly detected dimension (P)
- **wft**: Weight and Fourier transform 1D data (C)
- **wft1d**: Weight and Fourier transform f2 of 2D data (M)
- **wft2d**: Weight and Fourier transform 2D data (M)

pal

Set phase angle mode in 1st indirectly detected dimension (C)

Description: Selects the phase angle spectra display mode along the first indirectly detected dimension by setting the parameter dmg1 to the string value 'pal'. If the parameter dmg1 does not exist, pal will create it and set it to 'pal'.

In the phase angle mode, each real point in the displayed trace is calculated from the phase angle of the real and imaginary points comprising each respective complex data point. For hypercomplex data, the phase angle uses the real-real and imaginary-real points from each respective hypercomplex data point. The phase angle also takes into account the phase parameters rpl and lpl.
The `pa1` command is only needed if mixed-mode display is desired. If the parameter `dmg1` does not exist or is set to the null string, the display mode along the first indirectly detected dimension defaults to the display mode of the directly detected dimension (characterized by the parameter `dmg`). For the contour display of multidimensional data, the result of `pa1` is the same as for traces provided that `pmode='partial'` or `pmode=''`.

See also: *NMR Spectroscopy User Guides*

Related:
- `av1` Set abs. value mode in 1st indirectly detected dimension (C)
- `dmg1` Data display mode in 1st indirectly detected dimension (P)
- `lp1` First-order phase in 1st indirectly detected dimension (P)
- `pa` Set phase angle mode in directly detected dimension (C)
- `ph1` Set phased mode in 1st indirectly detected dimension (C)
- `pmode` Processing mode for 2D data (P)
- `pwr1` Set power mode in 1st indirectly detected dimension (C)
- `rp1` Zero-order phase in 1st indirectly detected dimension (P)

pacosy

Plot automatic COSY analysis (C)

Description: Automatically analyzes and plots a COSY data set with `fn=fn1` and `sw=sw1`. Symmetrization of the data with the command `foldt` is recommended, but not required. First, select a proper threshold and perform a 2D line listing with the command `ll2d`. Next, plot the 2D data with the contour plot command `pcon`; leaving enough room at the left side of the plot for the connectivity table. Then, `pacosy` will analyze the data and plot the connectivities on the plotter. `pacosy` gets its input from the file `ll2d.out` in the current experiment directory. The command `acosy` performs the same analysis and displays the connectivities on the screen.

See also: *NMR Spectroscopy User Guide*

Related:
- `acosy` Automatic analysis of COSY data (C)
- `fn` Fourier number in directly detected dimension (P)
- `fn1` Fourier number in 1st indirectly detected dimension (P)
- `foldt` Fold COSY-like spectrum along diagonal axis (C)
- `hcosy` Automated proton and COSY acquisition (M)
- `ll2d` Automatic and interactive 2D peak picking (C)
- `pcon` Plot contours on plotter (C)
- `relayh` Set up parameters for COSY pulse sequence (M)
- `sw` Spectral width in directly detected dimension (P)
- `sw1` Spectral width in 1st indirectly detected dimension (P)

pad

Preacquisition delay (P)

Description: Each NMR experiment starts with a single delay time equal to `pad` over and above the delay `d1` that occurs before each transient. Normally, `pad` is set to a small, nominal time (0.5 seconds) to allow any hardware changes that may be required at the start of the acquisition to “settle in.” During experiments in which the temperature is changed, the acquisition starts `pad` seconds after the temperature regulation system comes to regulation. Since the sample temperature does not actually come to equilibrium for some time after that, it is generally desirable to increase `pad` to perhaps 300 seconds. This is especially true when running experiments involving arrays of temperatures. The `pad` parameter is most useful for running kinetics experiments. For example, `pad=0,3600,3600,3600,3600` will run an experiment immediately when `go` is typed (`pad=0`), then wait an hour (3600 seconds), run the second experiment, etc.
Values: 0,0.1 μs to 8190 sec in 12.5 ns steps
0.02 μs to 150,000 sec in 0.1 μs steps.

See also: *NMR Spectroscopy User Guide; VnmrJ Walkup*

Related:
- **di** First delay (P)
- **go** Submit experiment to acquisition (C)

padept

Perform adept analysis and plot resulting spectra (C)

Syntax: `padept<(<'noll'>,<,'coef'>,<,'theory'>)>`

Description: Performs the *adept* analysis and plots the resulting spectra with a scale and the assigned line listing. Leave enough space at the left end of the display for the line list.

Arguments: The following arguments can be supplied in any order:

- `'noll'` is a keyword that specifies no line listing.
- `'coef'` is a keyword that causes the combination coefficients to be printed.
- `'theory'` is a keyword that causes the theoretical coefficients rather than optimized coefficients to be used.

Examples: `padept('noll','coef')`

See also: *NMR Spectroscopy User Guide*

Related:
- **adept** Automatic DEPT analysis and spectrum editing (C)
- **autodept** Automated complete analysis of DEPT data (M)
- **cdept** Automated carbon and DEPT acquisition (C)
- **Dept** Set up parameters for DEPT experiment
- **deptproc** Process DEPT data (M)
- **hcdept** Automated proton, carbon, and DEPT acquisition (C)
- **pldept** Plot DEPT data, edited or unedited (M)

page

Submit plot and change plotter page (C)

Syntax: `page<(<number_pages>,,'clear'|file>)>`

Description: Submits the current plotter file, which has been created by all previous plotter commands, and changes the paper after the plot has been completed. Actual plotting is controlled by the *vnmrplot* script in the *bin* subdirectory of the system directory. The *page* command can also clear the current plotter file or save the data to a specified file name.

Arguments: `number_pages` is the number of pages to move the plotter forward. The default is 1. If `number_pages` is 0, *page* submits the plot but does not change the paper.

- `'clear'` is a keyword to clear the plot made thus far; that is, clear the data in the current plotter file.
- `file` is the name of a file to save the plot for import into a document. If the file already exists, it is overwritten.

Examples:

- `page`
- `page(0)`
- `page('clear')`
- `page('myplotfile')`

See also: *NMR Spectroscopy User Guide*

Related: **vnmrplot** Plot files (U)
Name of page (P)

Description: Specifies the page of a sample. It is saved with a study.

Related: cqsavestudy Macro to save study queue parameters (M)
 notebook Notebook name (P)
 samplename Sample name (P)
 studypar Study parameters (P)

Display level for VnmrJ interface pages (P)

Description: Determines which VnmrJ interface pages are available under the tabs in the parameter page area. The higher the number, the more pages are available. The only time panellevel is changed is during the login process of an operator in the Walkup interface. For the Walkup interface, the value is set by the VnmrJ Administrator (default is 10).

Values: 0-9 — shows the minimum number of pages.
 No shim, lock, or processing, and minimal parameter control is available. This may be used for routine automation users.
 10-29 — typical for a basic Walkup user.
 Shim and lock are available only if there is a sample changer. Basic processing is available. Pages are not fully populated, allowing control of a few basic parameters.
 30-100 — typical for the system owner.
 All pages are available and fully populated.

See also: VnmrJ Installation and Administration

Related: operator Operator name (P)
 operatorlogin Sets workspace and parameters for the operator (M)

Plot out “all” parameters (C)

Syntax: pap(<template>,<x>,<y>,<character_size>)>

Description: Plots a parameter list containing “all” parameter names and values.

Arguments: template is the name of a template that controls the display. The default is the string parameter ap, which can be modified using paramvi('ap'). See the manual User Programming for rules on building a template.

x is the starting position in the x direction of the plot on the paper, in mm. The default is a preset value.

y is the starting position in the y direction of the plot on the paper, in mm. If y is specified, the x position must be also. The default is a preset value.

character_size is the character size of the list and is specified as a multiplier. The default is 0.70 (not available on all plotters or printers acting as plotters).

Examples:

```
pap
pap(wcmax-40)
pap(10,wc2max*.9)
pap('newpap',wcmax–50,100,1.4)
```

See also: NMR Spectroscopy User Guide, User Programming

Related: ap Print out “all” parameters (C)
 ap “All” parameters display control (P)
 hpa Plot parameters on special preprinted chart paper (C)
par2d

Create 2D acquisition, processing, and display parameters (M)

Description: Creates the acquisition parameters \(ni, sw1, \) and \(phase \), which can be used to acquire a 2D data set. `par2d` also creates any missing processing and display parameters for the \(ni \) (or second) dimension, including `f1coef`, `reffrq1`, `reffpos1`, and `reffsource1`. The `par2d` macro is functionally the same as `addpar('2d')`.

See also: NMR Spectroscopy User Guide

Related:
- `addpar` Add selected parameters to the current experiment (M)
- `f1coef` Coefficient to construct F1 interferogram (P)
- `ni` Number of increments in 1st indirectly detected dimension (P)
- `phase` Phase selection (P)
- `reffrq1` Reference frequency of reference line in 1st indirect dimension (P)
- `reffpos1` Position of reference line in 1st indirect dimension (P)
- `reffsource1` Center frequency in 1st indirect dimension (P)
- `set2d` General setup for 2D experiments (M)
- `sw1` Spectral width in 1st indirectly detected dimension (P)

par3d

Create 3D acquisition, processing, and display parameters (M)

Description: Creates the acquisition parameters \(ni2, sw2, d3, \) and \(phase2 \) that can be used to acquire a 3D data set. `par3d` also creates any missing processing or display parameters for the \(ni2 \) (or third) dimension, including `f2coef`, `fiddc3d`, `specdc3d`, and `ptspec3d`. The `par3d` macro is functionally the same as `addpar('3d')`.

See also: NMR Spectroscopy User Guide

Related:
- `addpar` Add selected parameters to the current experiment (M)
- `d3` Incremented delay in 2nd indirectly detected dimension (P)
- `f2coef` Coefficient to construct F2 interferogram (P)
- `fiddc3d` 3D time-domain dc correction (P)
- `ni2` Number of increments in 2nd indirectly detected dimension (P)
- `phase2` Phase selection for 3D acquisition (P)
- `ptspec3d` Region-selective 3D processing (P)
- `specdc3d` 3D spectral drift correction (P)
- `sw2` Spectral width in 2nd indirectly detected dimension (P)

par3rf

Get display templates for 3rd rf channel parameters (M)

Applicability: Systems with a second decoupler.

Description: Retrieves the `dg2` and modified `ap` display templates from the parameter set `s2pul3rf` in the system `parlib` directory. These two templates support the display of second decoupler acquisition parameters and 3D acquisition and processing parameters.

See also: User Programming

Related:
- `ap` “All” parameters display control (P)
- `dg2` Control dg2 parameter group display (P)

par4d

Create 4D acquisition parameters (M)

Applicability: Systems with a third decoupler.
Description: Creates the acquisition parameters \texttt{ni3}, \texttt{sw3}, \texttt{d4}, and \texttt{phase3} that can be used to acquire a 4D data set. The \texttt{par4d} macro is functionally the same as \texttt{addpar('4d')}.

See also: \textit{NMR Spectroscopy User Guide}

Related:
\begin{itemize}
\item \texttt{addpar} Add selected parameters to the current experiment (M)
\item \texttt{d4} Incremented delay for 3rd indirectly detected dimension (P)
\item \texttt{ni3} Number of increments in 3rd indirectly detected dimension (P)
\item \texttt{phase3} Phase selection for 4D acquisition (P)
\item \texttt{sw3} Spectral width in 3rd indirectly detected dimension (P)
\end{itemize}

\textbf{paramedit} \textit{Edit a parameter and its attributes with user-selected editor (C)}

Syntax: \texttt{paramedit(parameter<,tree>)}

Description: Opens a parameter file for editing with a user-selected text editor. The default editor is \texttt{vi}. If \texttt{vi} is used as the editor, \texttt{paramedit} is functionally the same as the \texttt{paramvi} command. To select another editor, set the UNIX environmental variable \texttt{vnmreditor} to the editor name (change \texttt{.login} line setenv \texttt{vnmreditor old_editor} to become setenv \texttt{vnmreditor new_editor} (e.g., setenv \texttt{vnmreditor emacs}) and make sure a script with the prefix \texttt{vnmr}_ followed by the name of the editor is placed in the \texttt{bin} subdirectory of the system directory (e.g., \texttt{vnmr_emacs}). The script file makes adjustments for the type of graphic interface in use.

Scripts in the software release include \texttt{vnmr_vi} and \texttt{vnmr_textedit}. To create other scripts, refer to the \texttt{vnmr_vi} script for non-window editor interfaces and to \texttt{vnmr_textedit} for window-based editor interfaces. The \texttt{vnmreditor} variable must be set before starting VnmrJ.

Arguments: \texttt{parameter} is the name of the parameter file to be edited.
\texttt{tree} is a keyword for one of the parameter trees 'current', 'global', or 'processed'. The default is 'current'.

Examples: \texttt{paramedit('ap')}
\texttt{paramedit('b','global')}

See also: \textit{NMR Spectroscopy User Guide}; \textit{User Programming}

Related:
\begin{itemize}
\item \texttt{paramvi} Edit a parameter and its attributes with \texttt{vi} editor (M)
\item \texttt{vi} Edit text file with the \texttt{vi} text editor (C)
\end{itemize}

\textbf{paramvi} \textit{Edit a parameter and its attributes with \texttt{vi} editor (M)}

Syntax: \texttt{paramvi(parameter<,tree>)}

Description: Opens a parameter file for editing using the UNIX \texttt{vi} text editor. The parameter file contains various attributes of the parameter in a format documented in the manual \textit{User Programming}. Be sure you understand the format before modifying the parameter because if an error in the format is made, the parameter will not load. When the editor is exited, the modified parameter is reloaded into the system.

Arguments: \texttt{parameter} is the name of the parameter file to be edited.
\texttt{tree} is a keyword for one of the parameter trees 'current', 'global', or 'processed'. The default is 'current'.

Examples: \texttt{paramvi('ap')}
\texttt{paramvi('b','global')}
See also: *NMR Spectroscopy User Guide, User Programming*

Related:
- **create** Create new parameter in a parameter tree (C)
- **destroy** Destroy a parameter (C)
- **destroygroup** Destroy parameters of a group in a tree (C)
- **display** Display parameters and their attributes (C)
- **fread** Read parameters from file and load them into a tree (C)
- **fsave** Save parameters from a tree to a file (C)
- **groupcopy** Copy parameters of group from one tree to another (C)
- **paramedit** Edit a parameter and its attributes with user-selected editor (C)
- **prune** Prune extra parameters from current tree (C)
- **setgroup** Set group of a parameter in a tree (C)
- **setlimit** Set limits of a parameter in a tree (C)
- **setprotect** Set protection mode of a parameter (C)
- **vi** Edit text file with the vi text editor (C)

pards
Create additional parameters used by downsampling (M)
Description: Creates the parameters `downsamp`, `dscoef`, `dsfb`, `dslsfrq`, and `filtfile` necessary for digital filtering and downsampling. The `pards` macro is functionally the same as `addpar('downsamp')`.
See also: *NMR Spectroscopy User Guide*

Related:
- **addpar** Add selected parameters to current experiment (M)
- **downsamp** Downsampling factor applied after digital filtering (P)
- **dscoef** Digital filter coefficients for downsampling (P)
- **dsfb** Digital filter bandwidth for downsampling (P)
- **dslsfrq** Bandpass filter offset for downsampling (P)
- **filtfile** File of FIR digital filter coefficients (P)
- **movedssw** Set downsampling parameters for selected spectral region (M)

parfidss
Create parameters for time-domain solvent subtraction (M)
Description: Creates solvent subtraction parameters `ssfilter`, `sslsfrq`, `ssntaps`, and `ssorder`. Entering `addpar('ss')` is functionally equivalent to `parfidss`.
In a 1D transform, subtraction of the zero-frequency component from the time-domain data, usually in the context of solvent subtraction, is selected by setting `ssorder` and `ssfilter` to desired values and entering `wft`:

- The zfs (zero-frequency suppression) option is selected if both `ssfilter` and `ssorder` are set to a value other than “Not Used.”

- The lfs (low-frequency suppression) option is selected if `ssfilter` is set to a value other than “Not Used” and `ssorder` is set to “Not Used.”

- The zfs and lfs options are both turned off if `ssfilter` is set to “Not Used.”

The zfs option leads to the following series of processing events: (1) the raw FID is frequency-shifted by `sslsfrq` Hz, (2) the raw FID is subjected to a low-pass digital filter, (3) the filtered FID is fit to a polynomial of order `ssorder`, (4) the polynomial function is subtracted from the raw FID, and (5) the resulting FID is frequency-shifted by −`sslsfrq` Hz.

The lfs option does not include a polynomial fit (step 3 of the zfs option), which leads to the following series of processing events: (1) the raw FID is frequency-shifted by `sslsfrq` Hz, (2) the raw FID is subjected to a low-pass digital filter, (3) the filtered FID is directly subtracted from the raw FID, (4) the resulting FID is frequency-shifted by −`sslsfrq` Hz.
The quality of filtering with zfs diminishes rapidly as the solvent peak moves off the exact center of the digital filter. It may be necessary to adjust lsfrq or sslsfrq to move the solvent peak to within ±0.2 Hz of the center of the filter to obtain optimal solvent suppression. The lfs option is less sensitive to small offsets, but typically removes or distorts peaks near to the solvent peak.

In a 2D transform, solvent correction to the t2 FIDs is invoked in the same manner with the ft1d, ft2d, wft1d, and wft2d commands and with the ft2da, ft1da, wft2da, and wft1da macros.

In a 3D transform, solvent suppression works on t3 FIDs of 3D spectra just like in the 1D and 2D cases.

See also: *NMR Spectroscopy User Guide*

Related:
- addpar: Add selected parameters to the current experiment (M)
- ft: Fourier transform 1D data (C)
- ft1d: Fourier transform along f2 dimension (C)
- ft2d: Fourier transform 2D data (C)
- ft3d: Perform a 3D Fourier transform on a 3D FID data set (M,U)
- lsfrq: Frequency shift of the fn spectrum in Hz (P)
- ntype3d: N-type peak selection in f1 or f2 (P)
- ssfilter: Full bandwidth of digital filter to yield a filtered FID (P)
- ssfrq: Center of solvent-suppressed region of spectrum (P)
- ssorder: Order of polynomial to fit digitally filtered FID (P)
- ssntaps: Number of coefficients to be used in the digital filter (P)
- wft: Weight and Fourier transform 1D data (C)

parfix

Update parameter sets (M)

Description: Corrects upper limits, lower limits, and step sizes of a number of parameters in the current experiment. In addition, the template parameter dgs is updated. This is automatically done via the macro fixpar if the parameter parversion is less than 4.3. parfix is used by the macro updatepars to correct saved data. This macro has been applied to all parameters as of VNMR version 4.3 and should be run on older parameter sets (e.g., rtp('pars') svp('pars') update a parameter set named pars).

See also: *NMR Spectroscopy User Guide*

Related:
- ap: “All” parameters display control (P)
- dgs: Control dgs parameter group display (P)
- fixpar: Correct parameter characteristics in experiment (M)
- parversion: Version of parameter set (P)
- updatepars: Update all parameter sets saved in a directory (M)

parlc

Create parameters for LC-NMR experiments (M)

Applicability: Systems with LC-NMR accessory.

Description: Creates the following parameters used for a variety of LC-NMR experiments: curscan, dtrig, inject, ntrig, and savefile. The parlc macro also creates ni and sw1 (if they don’t exist) for use in isocratic runs. Finally, it creates a display parameter dglc, so that the dg (‘dglc’) command (or the equivalent macro dglc) can be used to display all the LC-related parameters.

Note that parlc can be used without worrying about losing existing values or attributes; if the parameters already exist, they are left untouched.

See also: *NMR Spectroscopy User Guide*

Related:
- curscan: Scan currently in progress (P)
- dglc: Control LC-NMR parameter display (P)
parll2d

Create parameters for 2D peak picking (M)

Description: Creates additional parameters th2d and xdiag for use with 112d 2D peak picking program. parll2d is functionally the same as addpar('112d').

See also: NMR Spectroscopy User Guide

Related: addpar Add selected parameters to the current experiment (M)
112d Automatic and interactive 2D peak picking (C)
th2d Threshold for integrating peaks in 2D spectra (P)
xdiag Threshold for excluding diagonal peaks when peak picking (P)

parlp

Create parameters for linear prediction (M)

Syntax: parlp<(dimension)>

Description: Creates parametrized options for linear prediction (LP) in the current experiment. The display template for the dglp macro is also created if necessary. parlp is functionally the same as addpar('lp').

Arguments: dimension is the dimension of a multidimensional data set. The default is to create the LP parameters lpalg, lpopt, lpfilt, lpnupts, strtlp, lpext, strtext, lpext, and lpprint.

parlp(1) creates LP parameters lpalg1, lpopt1, lpfilt1, lpnupts1, strtlp1, lpext1, strtext1, lpext1, and lpprint1.
addpar('lp',1) is functionally equivalent to parlp(1).

parlp(2) creates LP parameters lpalg2, lpopt2, lpfilt2, lpnupts2, strtlp2, lpext2, strtext2, lpext2, and lpprint2.
addpar('lp',2) is functionally equivalent to parlp(2).

Examples: parlp
parlp(1)

See also: NMR Spectroscopy User Guide

Related: lpalg LP algorithm for np dimension (P)
lpext LP data extension for np dimension (P)
lpfilt LP coefficients to calculate for np dimension (P)
lpnupts LP number of data points for np dimension (P)
lpopt LP algorithm data extension for np dimension (P)
lpprint LP print output for np dimension (P)
lptrace LP output spectrum for np dimension (P)
proc Type of processing on np FID (P)
proc1 Type of processing on ni interferogram (P)
proc2 Type of processing on ni2 interferogram (P)
strtext Starting point for LP data extension for np dimension (P)
strtlp Starting point for LP calculation for np dimension (P)

parmax

Parameter maximum values (P)

Description: An array that holds the maximum values of other parameters. The maximum value of a parameter is an index into the array, and more than one parameter can have the same index into parmax. Several global parameters set in the Spectrometer Configuration window are part of parmax. To display all parmax values, enter display('parmax','systemglobal').
parmin

Parameter minimum values (P)

Description: An array that holds the minimum values for other parameters. The minimum value of a parameter is the index into the parmin array. More than one parameter may have the same index into the array. To display all the values in parmin, enter `display('parmin', 'systemglobal')`.

See also: *User Programming*

Related:
- `config` Display current configuration and possibly change it (M)
- `display` Display parameters and their attributes (C)
- `paramedit` Edit a parameter and its attributes with user-selected editor (C)
- `paramvi` Edit a parameter and its attributes using vi text editor (M)
- `parmin` Parameter minimum values (P)
- `parstep` Parameter step size values (P)

paros

Create additional parameters used by oversampling (M)

Description: Creates the parameters `def_osfilt`, `filtfile`, `oscoef`, `osfb`, `osfilt`, `oslsfrq`, and `oversamp` for oversampling and digital filtering. paros is functionally the same as `addpar('oversamp')`.

See also: *NMR Spectroscopy User Guide*

Related:
- `addpar` Add selected parameters to current experiment (M)
- `def_osfilt` Default value of `osfilt` parameter (P)
- `filtfile` File of FIR digital filter coefficients (P)
- `oscoef` Digital filter coefficients for oversampling (P)
- `osfb` Digital filter bandwidth for oversampling (P)
- `osfilt` Oversampling filter for real-time DSP (P)
- `oslsfrq` Bandpass filter offset for oversampling (P)
- `oversamp` Oversampling factor for acquisition (P)

parstep

Parameter step size values (P)

Description: An array that holds the step size values for other parameters. The step size value of a parameter is the index into the array. More than one parameter can have the same index into parstep. Several configuration parameters set in the Spectrometer Configuration window are part of parstep. To display all parstep values, enter `display('parstep', 'systemglobal')`.

See also: *User Programming*

Related:
- `config` Display current configuration and possibly change it (M)
- `display` Display parameters and their attributes (C)
- `paramedit` Edit a parameter and its attributes with user-selected editor (C)
- `paramvi` Edit a parameter and its attributes using vi text editor (M)
- `parmax` Parameter maximum values (P)
- `parmin` Parameter minimum values (P)
parversion
Version of parameter set (P)

Description: Stores the version of a parameter set. When a parameter set is updated with `updatepars` or `parfix`, `parversion` is set to 4.3 to indicate that fact. When a parameter set is retrieved into an experiment, `fixpar` checks `parversion` to determine if other parameters need to be updated using `parfix`.

See also: *NMR Spectroscopy User Guide*

Related: `fixpar` Correct parameter characteristics in experiment (M)
`parfix` Update parameter sets (M)
`updatepars` Update all parameter sets saved in a directory (M)

path3d
Path to currently displayed 2D planes from a 3D data set (P)

Description: Stores the absolute path to the current 3D data directory tree. If `path3d` does not exist, it is created by the macro `par3d`. The command `select`, as well as the many macros that make use of `select`, require `path3d` in order to know where the 2D planes extracted from a 3D data set can be found.

`path3d` is set automatically by the macros `ft3d` and `getplane`:

- `ft3d` sets `path3d` to `curexp/datadir3d` if `ft3d` is not supplied with a directory path for the transformed 3D data. If `ft3d` is supplied with such a directory path (e.g., `/home/data/test3D`), `path3d` is set equal to that directory path. In this case, the 3D spectral data would reside in the directory `/home/data/test3D/data`.

- `getplane` sets `path3d` to `curexp/datadir3d` if `getplane` is not supplied with a directory path to the transformed 3D data. If `getplane` is supplied with such a directory path (e.g., `/home/data/test3D`), `path3d` is set equal to that directory path. In this case, the extracted 3D planes would reside in the directory `/home/data/test3D/extr`.

See also: *NMR Spectroscopy User Guide*

Related: `dplane` Display a 3D plane (M)
`dproj` Display a 3D plane projection (M)
`dsplanes` Display a series of 3D planes (M)
`ft3d` Perform a 3D Fourier transform on a 3D FID data set (M)
`getplane` Extract planes from a 3D spectral set (M)
`nextpl` Display the next 3D plane (M)
`par3d` Create 3D acquisition, processing, display parameters (C)
`plane` Currently displayed 3D plane type (P)
`plplanes` Plot a series of 3D planes (M)
`prevpl` Display the previous 3D plane (M)
`select` Select a spectrum or 2D plane without displaying it (C)

paxis
Plot horizontal LC axis (M)

Applicability: Systems with the LC-NMR accessory.

Syntax: `paxis(time, major_tic, minor_tic)`

Description: Plots a horizontal LC axis. Horizontal axes are assumed to be used with “LC plots” of an entire LC run are labeled accordingly. It is assumed that relevant parameters (e.g., `sc`, `wc`, `vo`, `vp`) have not been changed after plotting the data.

Arguments: `time` is the time scale, in minutes (decimal values are fine), of the axis.
`major_tic` is spacing, in minutes (decimal values are fine), of major tics.
`minor_tic` is spacing, in minutes (decimal values are fine), of minor tics.
P

See also: NMR Spectroscopy User Guide

Pbox Pulse shaping software (U)

Syntax: Pbox file options

Description: Main Pbox (Pandora’s Box) program for the generation of shape files for RF and gradients. (See NMR Spectroscopy User Guide manual for description of interactive Pbox usage).

Arguments: file is the name of a shape file.

options is any of the Pbox parameters initialized by the ‘-’ sign and followed by the parameter value. The following options can be in any order and combinations:

- b time Activates Bloch simulator, sets simtime, in sec.
- c Calibrate only, do not create a shape file.
- f file Set name of the output file.
- h wave Print wave file header.
- i wave Print wave file parameters.
- l ref_pw90 Length, in μs, of reference pw90 pulse.
- o List options.
- p ref_pwr Reference power level, in dB.
- r file Reshape Pbox pulse.
- s stepsize Define length, in μs, of a single step in waveform.
- t wave Print wave title.
- w wavestr Set wave data string.
- v Run in verbose mode. Also print Pbox version.
- value Sets reps to value.

Examples:
Pbox -i eburp2
Pbox newshape -wc 'eburp1 450 -1280.0' -1
Pbox sel.RF -w 'eburp1 420 -800' 'eburp1 420 1200'
Pbox -w 'eburp1 200 -1200' -attn e -pl 45 54.2 -b
Pbox tst -w 'esnob 20p 170p' -sfrq 150.02 -refofs 55p
- ref_pwr 45 -ref_pw90 54.2

See also: NMR Spectroscopy User Guide

Related:
cpx Create Pbox shape file (M)
dprofile Display pulse excitation profile from Pbox software (M)
dshape Display pulse shape (M)
dshapef Display last generated pulse shape (M)
dshapei Display pulse shape interactively (M)
cp
open shape definition file for Pbox (M)
pbox_bw Define excitation band (M)
pbox_bws Define excitation band for solvent suppression (notch) pulses (M)
pbox_dmf Extract dmf value from Pbox shape file (M)
pbox_dres Extract dres value from Pbox shape file (M)
pbox_name Extract name of last shape file generated by Pbox (M)
pbox_pw Extract pulse length from Pbox shape file (M)
pbox_pwr Extract pulse power from Pbox shape file (M)
pbox_pwrfl Extract pulse fine power from Pbox (M)
pboxget Extract all calibration data from a Pbox shape file (M)
pboxpar Add parameter definition to the pbox.inp file (M)

pboxrst Reset temporary Pbox/VnmrJ variables (M)

pboxunits Converts to Pbox default units (M)

pph Print pulse header (M)

pprofile Plot pulse excitation profile from Pbox software (M)

pshape Plot pulse shape (M)

pshepe Display pulse shape or modulation pattern interactively (M)

putwave Write a wave into Pbox.inp file (M)

pxset Assign Pbox calibration data to experimental parameters (M)

pxshape Generates a single-band shape file (M)

Pxsim Simulate Bloch profile for a shaped pulse (M)

Pxspy Create shape definition using Fourier coefficients (U)

selex Defines excitation band (M)

setwave Sets a single excitation band in Pbox.inp file (M)

shdec Shaped observe excitation sequence (M)

pbox_bw Define excitation band (M)

Syntax: pbox_bw<(shapename)>

Description: Defines the excitation band from the position of cursors in the graphics window and reports them to user. It also sets r1 to excitation bandwidth and r2 to offset. This macro is used mainly in Pbox menus and macros.

Arguments: shapename is the name of a shape as in wavelib; mainly for use with menus.

See also: NMR Spectroscopy User Guide

Related: Pbox Pulse shaping software (U)

pbox_bws Define excitation band for solvent suppression (notch) pulses (M)

Syntax: pbox_bws<(shapename)>

Description: Defines the excitation band from the position of cursors in the graphics window and reports them to user. It also sets r1 to excitation bandwidth and r2 to offset. Note, the left cursor should be placed on the left side of the excitation band and the right cursor on resonance of the solvent signal. This macro is mainly used in Pbox menus and macros.

Arguments: shapename is the name of a shape file as in wavelib, mainly for use with menus.

See also: NMR Spectroscopy User Guide

Related: Pbox Pulse shaping software (U)

pbox_dmf Extract dmf value from pbox.cal or Pbox shape file (M)

Syntax: pbox_dmf<(shapefile.DEC)>::exp_param

Description: Extracts the dmf value from the file shapefile.DEC created by Pbox or, if file name is not provided, from the pbox.cal file containing parameters of the last created Pbox shape file.

Arguments: shapefile.DEC is the name of a shape file.

Examples:

```plaintext
pbox_dmf('myfile.DEC'):mydmf
pbox_dmf:dmf2
```
See also: NMR Spectroscopy User Guide

Related: dmf Decoupler modulation frequency for first decoupler (P)
Pbox Pulse shaping software (U)

pbox_dres Extract dres value from pbox.cal or Pbox shape file (M)
Syntax: pbox_dres<(shapefile.DEC)>:exp_param
Description: Extracts the dres value from the file shapefile.DEC created by Pbox or, if file name is not provided, from the Pbox.cal file containing parameters of the last created Pbox shape file.
Arguments: shapefile.DEC is the name of a shape file.
exp_param is a dres type experiment parameter.
Examples: pbox_dres('myfile.DEC'):mydres
pbox_dres:dres2
See also: NMR Spectroscopy User Guide
Related: dres Tip-angle resolution for first decoupler (P)
Pbox Pulse shaping software (U)

pbox_name Extract name of last shape generated by Pbox from pbox.cal (M)
Syntax: pbox_name:exp_name
Description: Extracts name of the last shape file generated by Pbox and stored in the Pbox.cal file. Note, that the file name extension is not stored explicitly and is not provided by this macro.
Arguments: exp_name returns the name of last shape file.
Examples: pbox_pw:shname
pbox_pw:pwpat
See also: NMR Spectroscopy User Guide
Related: Pbox Pulse shaping software (U)

pbox_pw Extract pulse length from pbox.cal or Pbox shape file (M)
Syntax: pbox_pw<(shapefile.RF)>:exp_param
Description: Extracts pulse length from the file shapefile.RF generated by Pbox or, if file name is not provided, from the pbox.cal file containing parameters of the last created Pbox shape file. Returns the pulse length, in μs.
Arguments: shapefile.RF is the shape file name, including the extension.
exp_param is a pw type experiment parameter.
Examples: pbox_pw('myfile.RF'):softpw
pbox_pw:selpw
See also: NMR Spectroscopy User Guide
Related: Pbox Pulse shaping software (U)

pbox_pwr Extract power level from Pbox.cal or Pbox shape file (M)
Syntax: pbox_pwr<(shapefile.ext)>:exp_param
Description: Extracts the power level from the file shapefile.ext generated by Pbox or, if file name is not provided, from the pbox.cal file containing parameters of the last created Pbox shape file. Returns the power level, in dB.
Related: dmft Decoupler modulation frequency for first decoupler (P)
Pbox Pulse shaping software (U)

Related:

Related:
Pbox Pulse shaping software (U)
exp_param parameter will not be changed by this macro if the parameter is previously set to 'n' (not used).

Arguments: shapefile.ext is the name of the shape file.
exp_param is a power type experiment parameter.

Examples: pbox_pwr('myfile.DEC'):mypwr
pbox_pwr:dpwr2

See also: NMR Spectroscopy User Guide
Related: Pbox Pulse shaping software (U)

pbox_pwr

Extract fine power level from pbox.cal or Pbox shape file (M)

Syntax: pbox_pwr<(shapefile.ext)>:exp_param

Description: Extracts the fine power level from the file shapefile.ext generated by Pbox or, if file name is not provided, from the pbox.cal file containing parameters of the last created Pbox shape file. Returns the value of fine power, in dB. Note that the parameter will not be changed by this macro if it was previously set to 'n' (not used).

Arguments: shapefile.ext is the name of the shape file.
exp_param is a fine power type experiment parameter.

Examples: pbox_pwr('myfile.DEC'):mypwrf
pbox_pwr:dpwrf

See also: NMR Spectroscopy User Guide
Related: Pbox Pulse shaping software (U)

pboxget

Extract Pbox calibration data (M)

Syntax: pboxget<(shfile.ext)>:$name,$pw,$pwr,$pwrf,$dres,$dmf

Description: Extracts calibration data from the file shfile.ext generated by Pbox or, if a file name is not provided, from the pbox.cal file containing parameters of the last created Pbox shape file. Returns shape name and the values of total pulse length (in μs), power (dB), fine power, dres, and dmf. The parameter will not be changed by this macro if the parameter was previously set to 'n' (not used).

Arguments: shfile.ext is the name of the shape file, including the extension.
nname is the experiment parameter receiving the shape name (without the extension).
pw is the experiment parameter receiving the total pulse length, in μs.
pwr is the experiment parameter receiving the power level, in dB.
pwrf is the experiment parameter receiving the fine power level.
dres is the experiment parameter receiving the decoupler resolution.
dmf is the experiment parameter receiving the decoupler modulation frequency.

Examples: pboxget('myfile.DEC'):dseq,r1,dpwr,dpwrf,dres,dmf
pboxget('selshape.RF'):pwpat,selpw,selpwr
pboxget:dseq2,r1,dpwr2,dpwrf2,dres2,dmf2

See also: NMR Spectroscopy User Guide
Related: Pbox Pulse shaping software (U)
pboxpar Add parameter definition to the Pbox.inp file (M)

Syntax: pboxpar(param,value)

Description: Adds a parameter definition to the Pbox.inp file.

Arguments: param is the parameter name

description is the value of the parameter.

Examples: pboxpar('name','myfile.DEC')
pboxpar('bsim','y')
pboxpar('T1', 0.24)

See also: NMR Spectroscopy User Guide

Related: Pbox Pulse shaping software (U)

pboxrst Reset temporary Pbox variables (M)

Description: Resets r1=0, r2=0, r3=0, r4=0, n2='n', n3=' ', and adds some standard comment lines to the Pbox.inp file. This macro is used in menus and other Pbox macros.

See also: NMR Spectroscopy User Guide

Related: Pbox Pulse shaping software (U)

pboxunits Converts to Pbox default units (M)

Syntax: pboxunits

Description: Used by Pbox menus to scale parameters related to time or frequency down to Pbox default units (Hz or seconds) before the parameter is stored in the Pbox.inp file.

See also: NMR Spectroscopy User Guide

Related: Pbox Pulse shaping software (U)

pcon Plot contours on a plotter (C)

Syntax: pcon<(<'pos'|'neg'>,<,'noaxis'>,<,levels'>,<,spacing>)>

Description: Plots positive and negative peaks of a contour plot display using different colors. Specifically, if maxpen is set for n pens, positive peaks are plotted using colors 1 through (n+1)/2, and negative peaks are plotted using colors ((n+1)/2)+1 through n (i.e., half the colors for each, plus one extra for positive if an odd number of pens is specified). Pen 1 is always used for the axes, and the lowest contour of the positive peaks is also plotted with pen1. In all cases, the pen colors are cycled if more contours are to be plotted than there are pens available.

To plot both negative and positive contours of a phase-sensitive spectrum on a monochrome device such as a LaserJet or a plotter with a single pen, different numbers of contours may be plotted for the different sign. For example, pcon('pos',10,1,4) pcon('neg',1) will plot ten closely spaced positive contours and one negative contour.

Arguments: 'pos' is a keyword specifying that phase-sensitive spectra plot positive peaks only. The default is to plot both positive and negative peaks.

'neg' is a keyword specifying that phase-sensitive spectra plot negative peaks only. The default is to plot both positive and negative peaks.

'noaxis' is a keyword to omit outlining the plot and omit plotting the horizontal and vertical axes.

levels is maximum number of contour levels to plot. The default is 4.
spacing is relative intensity of successive contour levels. The default is 2.

Examples:
- `pcon`
- `pcon(4, 1.4)`
- `pcon('pos', 'noaxis')`
- `pcon('neg', 3)`

See also: *NMR Spectroscopy User Guide*

Related:
- `dpcon` Display plotted contours (C)
- `maxpen` Maximum number of pens to use (P)

pcss

Calculate and show proton chemical shifts spectrum (M)

Syntax: `pcss(<threshold>,<max_cc>,<max_width>)`

Description: Calculates and shows the proton chemical shifts spectrum. The `dsp` command is used to display the results. The list of chemical shifts is saved in the file `pcss.outpar`. The original spectrum can be calculated by the `wft` command.

Arguments:
- `threshold` sets the level whether a point belongs to a peak or is noise. The default is that `pcss` automatically calculates the threshold.
- `max_cc` is the maximum allowable coupling constant in the spectrum. The default is 20 Hz.
- `max_width` is the maximum width of a spin multiplet in the spectrum. The default is 60 Hz.

Examples:
- `pcss`
- `pcss(10)`
- `pcss(9, 20, 80)`

See also: *NMR Spectroscopy User Guide*

Related:
- `do_pcss` Calculate proton chemical shifts spectrum (C)
- `dsp` Display pulse sequence (C)
- `wft` Weight and Fourier transform 1D data (C)

peak

Find tallest peak in specified region (C)

Syntax: `peak:<(min_freq,max_freq)>:<height,freq>`

Description: Returns the height and frequency of the tallest peak in the selected region, including any referencing (i.e., the same frequency that you would measure by placing a cursor on the peak). A spectrum need not actually be displayed for `peak` to work.

Arguments:
- With no return arguments, `peak` displays on the screen information about peak height and frequency. If two cursors are displayed, `peak` without arguments finds the tallest peak between the cursors.
- `min_freq` is minimum frequency limit of the region to be searched. The default value is `sp`.
- `max_freq` is maximum frequency limit, in Hz, of the region to be searched. The default value is `sp + wp`.
- `height` returns the height, in mm, of the tallest peak in the selected region.
- `freq` returns the frequency, in Hz, of the tallest peak in the selected region.

Examples:
- `peak:$ht,$freq`
- `peak(0, 2000):r3`
- `peak:$ht,cr`
See also: User Programming

Related: sp Start of plot (P)
wp Width of plot (P)

peak2d
Return information about maximum in 2D data (C)

Syntax: peak2d:$maximum_intensity<,$trace,$point>

Description: Searches the area defined by sp, wp, $sp1$, and $wp1$ in a 2D data set for a maximum intensity.

Arguments:
- $maximum_intensity$ returns the maximum intensity value found.
- $trace$ returns the trace number of the maximum. The parameter trace defines whether f_1 or f_2 traces are counted.
- $point$ returns the data point number of the maximum on that trace.

See also: NMR Spectroscopy User Guide

Related:
- sp Start of plot (P)
- sp1 Start of plot in 1st indirectly detected dimension (P)
- trace Mode for n-dimensional data display (P)
- wp Width of plot (P)
- wp1 Width of plot in 1st indirectly detected dimension (P)

pen
Select a pen or color for drawing (C)

Syntax: pen(<'graphics'|'plotter',><'xor'|'normal',>pen|color)

Description: Selects the pen number for a plotter or the color for the graphics screen. This command is part of a line drawing capability that includes the move and draw commands. move sets the coordinates from which the line starts. draw draws a line from that point to the new coordinates specified by draw. Refer to the description of draw for examples of using the line drawing capability.

Arguments:
- 'graphics' and 'plotter' are keywords selecting the output device. The default is 'plotter'. The output selected is passed to subsequent pen, move, or draw commands and remains active until a different output is specified.
- 'xor' and 'normal' are keywords selecting the drawing mode for the 'graphics' output device. In the 'xor' mode, if a line is drawn such that one or more points of the line are in common with a previously drawn line, the common points are erased. In the 'normal' mode, the common points remain. The mode selected is passed to subsequent pen, draw, or move commands and remains active until a different mode is specified. The default mode is 'normal'.
- pen is the plotter pen number: 'pen1', 'pen2', 'pen3', etc.
- color is the active color for the graphics screen: 'red', 'green', 'blue', 'cyan', 'magenta', 'yellow', 'black', or 'white'.

Examples:
- pen('pen2')
- pen('graphics','red')

See also: NMR Spectroscopy User Guide

Related:
- draw Draw line from current location to another location (C)
- move Move to an absolute location (C)
pexpl
Plot exponential or polynomial curves (C)

Syntax:
pexpl<(<options,><line1,line2, ...>)>

Description:
Plots exponential curves resulting from T_1, T_2, or kinetics analysis. Also plots polynomial curves from diffusion or other types of analysis. The analyze.out file is the data input file used to make the plot. Refer to the expl entry for the format of this file. The parameters sc, wc, sc2, and wc2 control the size of the plot.

Arguments:
options are any of the following keywords:

- 'linear', 'square', and 'log' provide for plotting of the data points against the square or log of the data. 'linear' controls x-axis scale, 'square' controls the y-axis. The default is 'linear'.
- 'link' causes the data points to be connected rather than a plot of the theoretical curve.
- 'nocurve' produces a plot of data points only.
- 'oldbox' plots an additional curve on an existing plot. Only the first data set in analyze.out is plotted. It causes the program to get box and scale description from expfit.out in the current experiment.
- 'file' followed by a file name replaces analyze.out as the input.

Examples:
pexpl
pexpl(1,3,6)

See also:
NMR Spectroscopy User Guide, User Programming

Related:
expl
Display exponential or polynomial curves (C)

sc
Start of chart (P)

sc2
Start of chart in second direction (P)

wc
Width of chart (P)

wc2
Width of chart in second direction (P)

pexpladd
Add another diffusion analysis to current plot (M)

Applicability:
Systems with the diffusion option.

Syntax:
pexpladd(integral_region)

Description:
Adds results of another diffusion analysis to the currently plotted results.

Arguments:
integral_region specifies the number of the region whose results are to be added to the existing plot.

Examples:
pexpladd(1)

See also:
NMR Spectroscopy User Guide

Related:
expl
Display exponential or polynomial curves (C)

pexpl
Plot exponential or polynomial curves (C)

expladd
Add another diffusion analysis to current display (M)

pfgon
Pulsed field gradient amplifiers on/off control (P)

Applicability:
Systems with pulsed field gradient (PFG) modules.

Description:
A global string parameter controlling the X, Y, and Z gradients for the PFG current amplifiers. Entering su or go sets the amplifiers at the current value of pfgon. For pfgon to take effect, gradtype must equal p, q, l, t, or u for the corresponding X, Y, or Z gradient, and a su or a go must be issued.
Values: A three-character string, with the first character controlling the X gradient, the second the Y gradient, and the third the Z gradient. For each gradient, setting the value to y turns on an amplifier and setting the value to n turns it off. For example, pfgon='nny' turns on only the PFG amplifier on the Z channel, and pfgon='nnn' turns off the PFG amplifiers on all channels.

See also: NMR Spectroscopy User Guide

pfww

Plot FIDs in whitewash mode (C)

Syntax: pfww(<start><,finish><,step><,'all'|'imag'>)

Description: Plots FIDs in whitewash mode (after the first FID, each FID is blanked out in regions in which it is behind an earlier FID). The position of the first FID is governed by parameters wc, sc, and vpf.

Arguments: start is the index of a particular FID for arrayed 1D or 2D data sets. For multiple FIDs, start is the index of the first FID.
finish is the index of the last FID for multiple FIDs.
step specifies the increment for the FID index. The default is 1.
'all' is a keyword to plot all of the FIDs. This is the default.
'imag' is a keyword to plot only the imaginary FID channel. The default is 'all'.

Examples: pfww
pfww(4,10,2,'imag')

See also: NMR Spectroscopy User Guide

Related: dfs Display stacked FIDs (C)
dfww Display FIDs in whitewash mode (C)
plfid Plot FIDs (C)
sc Start of chart (P)
vpf Current vertical position of FID (P)
w Width of chart (P)

pge

Convert parameter set to PGE pulse sequence (M)

Applicability: Systems with the diffusion option.

Description: Adds all necessary parameters to perform the PGE (Pulse Gradient Experiment) pulse sequence, taking those parameters from the file /vnmr/parlib/pge.

See also: NMR Spectroscopy User Guide

Related: pge_calib Calibrate gradient strengths for PGE pulse sequence (M)
pge_data Extract data from single element of PGE pulse sequence (M)
pge_output Output results from PGE pulse sequence (M)
pge_process Automated processing of data from PGE pulse sequence (M)
pge_results Calculate diffusion constant for integral region (M)
pge_setup Set up gradient control parameters for PGE pulse sequence (M)

pge_calib

Calibrate gradient strengths for PGE pulse sequence (M)

Applicability: Systems with the diffusion option.
Description: Calibrates the parameters grad_cw_coef and grad_p_coef, which relate the DAC values (in DAC units) to the gradient strengths (in gauss/cm). Given a diffusion constant measurement (made with pge_results) for a known diffusion constant, pge_calib then adjusts the calibration parameters to produce the correct diffusion constant.

See also: NMR Spectroscopy User Guide

Related: pge Calibrate gradient strengths for PGE pulse sequence (M)
pge_results Calculate diffusion constant for integral region (M)

pge_data Extract data from single element of PGE pulse sequence (M)

Applicability: Systems with the diffusion option.

Syntax: pge_data(array_index)

Description: Extracts integral information from a currently displayed element of a PGE (Pulse Gradient Experiment) and writes the results in the current experiment directory as the file info_#, where # is the value of the array_index argument (e.g., if array_index is 5, the file is info_5)

Arguments: array_index is the number of the array element from which the data is extracted.

Examples: pge_data(5)

See also: NMR Spectroscopy User Guide

Related: pge Calibrate gradient strengths for PGE pulse sequence (M)

pge_output Output results from PGE pulse sequence (M)

Applicability: Systems with the diffusion option.

Description: Prints the calculated results from the PGE (Pulse Gradient Experiment) pulse sequence on a printer and plots the graphs of calculated decay curves.

See also: NMR Spectroscopy User Guide

Related: pge Calibrate gradient strengths for PGE pulse sequence (M)

pge_process Automated processing of data from PGE pulse sequence (M)

Applicability: Systems with the diffusion option.

Syntax: pge_process

Description: Performs full automated processing of data from a PGE (Pulse Gradient Experiment) pulse sequence.

See also: NMR Spectroscopy User Guide

Related: pge Calibrate gradient strengths for PGE pulse sequence (M)

pge_results Calculate diffusion constant for integral region (M)

Applicability: Systems with the diffusion option.

Syntax: pge_results(integral_region<,reference_region>)

Description: Calculates a diffusion coefficient based on a single integral region in the spectrum (if one input argument) or calculates diffusion coefficient of an integral region consisting of two components (if two input arguments).

Arguments: integral_region is the number of the integral region on which to perform the analysis.
reference_region is the number of the integral region used to get the value of the diffusion coefficient.

Examples:
- `pge_results(2)`
- `pge_results(1,3)`

See also: *NMR Spectroscopy User Guide*

Related:
- `pge` Calibrate gradient strengths for PGE pulse sequence (M)

pge_setup
Set up gradient control parameters for PGE pulse sequence (M)

Applicability: Systems with the diffusion option.

Syntax:
- `pge_setup<('no')>`

Description: Prompts the user for the values of the `g_max`, `g_min`, `g_steps`, `g_array`, `nt_first`, `nt_array`, and other parameters for the PGE (Pulse Gradient Experiment) pulse sequence. These parameters are then used to calculate the `grad_p1` and `nt` arrays.

Arguments:
- `'no'` is a keyword to turn off prompting the user and instead use the current values of the parameters to calculate the `grad_p1` and `nt` arrays.

Examples:
- `pge_setup`
- `pge_setup('no')`

See also: *NMR Spectroscopy User Guide*

Related:
- `pge` Calibrate gradient strengths for PGE pulse sequence (M)

ph
Set phased mode in directly detected dimension (C)

Description: Selects the phased mode by setting the parameter `dmg='ph'`. In the *phased spectra display mode*, each real point in the displayed spectrum is calculated from a linear combination of the real and imaginary points comprising each respective complex data point. The coefficients for this linear combination are derived from the phase parameters `rp` and `lp`.

For 2D data, if `pmode='partial'` or `pmode=''` (two single quotes with no space in between), `ph` has an effect on the data prior to the second Fourier transform. If `pmode='full'`, `ph` acts in concert with the commands `ph1`, `av1`, or `pwr1` to yield the resultant contour display for the 2D data.

See also: *NMR Spectroscopy User Guide*

Related:
- `av` Set abs. value mode in directly detected dimension (C)
- `av1` Set abs. value mode in 1st indirectly detected dimension (C)
- `dmg` Data display mode in directly detected dimension (P)
- `ft` Fourier transform 1D data (C)
- `ft1d` Fourier transform along f2 dimension (C)
- `ft2d` Fourier transform 2D data (C)
- `lp` First-order phase in directly detected dimension (P)
- `pa` Set phase angle mode in directly detected dimension (C)
- `pal` Set phase angle mode in 1st indirectly detected dimension (C)
- `ph1` Set phased mode in 1st indirectly detected dimension (C)
- `ph2` Set phased mode in 2nd indirectly detected dimension (C)
- `pmode` Processing mode for 2D data (P)
- `pwr` Set power mode in directly detected dimension (C)
- `pwr1` Set power mode in 1st indirectly detected dimension (C)
- `rp` Zero-order phase in directly detected dimension (P)
- `wft` Weight and Fourier transform 1D data (C)
- `wft1d` Weight and Fourier transform f2 of 2D data (M)
- `wft2d` Weight and Fourier transform 2D data (M)
ph1

Set phased mode in 1st indirectly detected dimension (C)

Description: Selects the phased spectra display mode along the first indirectly detected dimension by setting the parameter \(\text{dmg1} \) to the string value 'ph1'. If the parameter \(\text{dmg1} \) does not exist, ph1 will create it and set it to 'ph1'.

In the phased mode, each real point in the displayed trace is calculated from a linear combination of the real and imaginary points comprising each respective complex data point. For hypercomplex data, the linear combination uses the real-real and imaginary-real points from each respective hypercomplex data point. The coefficients for this linear combination are derived from the phase parameters \(\text{rp1} \) and \(\text{lp1} \).

The ph1 command is only needed if mixed-mode display is desired. If the parameter \(\text{dmg1} \) does not exist or is set to the null string, the display mode along the first indirectly detected dimension defaults to the display mode of the directly detected dimension (characterized by the parameter \(\text{dmg} \)). For the contour display of multidimensional data, the result of ph1 is the same as for traces provided that \(\text{pmode} = \text{partial} \) or \(\text{pmode} = '' \).

See also: NMR Spectroscopy User Guide

Related:
- \(\text{av1} \) Set abs. value mode in 1st indirectly detected dimension (C)
- \(\text{dmg1} \) Data display mode in 1st indirectly detected dimension (P)
- \(\text{lp1} \) First-order phase in 1st indirectly detected dimension (P)
- \(\text{pa} \) Set phase angle mode in directly detected dimension (C)
- \(\text{pal} \) Set phase angle mode in 1st indirectly detected dimension (C)
- \(\text{ph} \) Set phased mode in directly detected dimension (C)
- \(\text{pmode} \) Processing mode for 2D data (P)
- \(\text{pwr1} \) Set power mode in 1st indirectly detected dimension (C)
- \(\text{rp1} \) Zero-order phase in 1st indirectly detected dimension (P)

ph2

Set phased mode in 2nd indirectly detected dimension (C)

Description: Selects phased spectrum display mode processing along the second indirectly detected dimension by setting the parameter \(\text{dmg2} = \text{ph2} \). If \(\text{dmg2} \) does not exist or is set to the null string, ph2 creates \(\text{dmg2} \) and sets it to 'ph2'.

In the phased mode, each real point in the displayed trace is calculated from a linear combination of the real and imaginary points comprising each respective complex data point. For hypercomplex data, the linear combination uses the real-real and imaginary-real points from each respective hypercomplex data point. The coefficients for this linear combination are derived from the phase parameters \(\text{rp2} \) and \(\text{lp2} \).

The ph2 command is only needed if mixed-mode display is desired. If the parameter \(\text{dmg2} \) does not exist or is set to the null string, the display mode along the second indirectly detected dimension defaults to the display mode of the directly detected dimension (characterized by the parameter \(\text{dmg} \)). For the contour display of multidimensional data, the result of ph2 is the same as for traces provided that \(\text{pmode} = \text{partial} \) or \(\text{pmode} = '' \).

See also: NMR Spectroscopy User Guide

Related:
- \(\text{av2} \) Set abs. value mode in 2nd indirectly detected dimension (C)
- \(\text{dmg2} \) Data display mode in 2nd indirectly detected dimension (P)
- \(\text{ft1d} \) Fourier transform along f2 dimension (C)
- \(\text{ft2d} \) Fourier transform 2D data (C)
- \(\text{lp2} \) First-order phase in 2nd indirectly detected dimension (P)
- \(\text{ph} \) Set phased mode in directly detected dimension (C)
- \(\text{pmode} \) Processing mode for 2D data (P)
- \(\text{pwr2} \) Set power mode in 2nd indirectly detected dimension (C)
- \(\text{rp2} \) Zero-order phase in 2nd indirectly detected dimension (P)
phase

Change frequency-independent phase \(rp \) (M)

Syntax: phase(phase_change)

Description: Changes the phase of all peaks in the spectrum by adding a value to the current \(rp \) value. Any excess over 360° is removed.

Arguments: phase_change is the value to be added to the current \(rp \) value (i.e., new \(rp = old \ rp + \text{phase_change} \)).

Examples: phase(45)

See also: NMR Spectroscopy User Guide

Related: \(rp \) Zero-order phase in directly detected dimension (P)

phase

Phase selection (P)

Description: Selects the phase cycling that determines the experiment type. To create the parameters phase, ni, and sw for acquisition of a 2D data set in the current experiment, enter `addpar('2d')`.

Values: The following values are generally used in experiments with phase cycling. For more details, see the specific pulse sequence.

- phase=0 selects an absolute-value 2D experiment.
- phase=1, 2 selects the required two components of a hypercomplex (States-Haberkorn) experiment.
- phase=3 selects TPPI (Time Proportional Phase Incrementation).

See also: NMR Spectroscopy User Guide

Related: addpar Add selected parameters to the current experiment (M)
cosyps Set up parameters for phase-sensitive COSY (M)
Dqcosy Set up parameters for double quantum filtered COSY (M)
Hmqc Set up parameters for HMQC pulse sequence (M)
Hmqcr Set up parameters for HMQCR pulse sequence (M)
Inadqt Set up parameters for INADEQUATE pulse sequence (M)
Mqcosy Set up parameters for MQCOSY pulse sequence (M)
Noesy Set up parameters for NOESY pulse sequence (M)
Roezy Set up parameters for ROESY pulse sequence (M)
Tocsy Set up parameters for TOCSY pulse sequence (M)

phase1

Phase of first pulse (P)

Applicability: Systems with a solids NMR module.

Description: Controls the first pulse phase in the cycle, in multipulse experiments.

See also: NMR Spectroscopy User Guide

Related: br24 Set up BR24 multiple pulse experiment (M)
flipflop Set up sequences for multipulse (M)

phase2

Phase selection for 3D acquisition (P)

Description: Selects phase cycling type for 3D data acquisitions. Also selects the phase of the second pulse in the sequence set up by `flipflop`. To create the parameters phase2, d3, ni2, and sw2 for acquisition of a 3D data set in the current experiment, enter `addpar('3d')`.

See also: NMR Spectroscopy User Guide; User Guide: Solid-State NMR

Related: addpar Add selected parameters to the current experiment (M)
d3 Incremented delay for 2nd indirectly detected dimension (P)
phase3 Phase selection for 4D acquisition (P)

Description: Selects phase cycling type for 4D data acquisitions. To create the parameters phase3, d4, ni3, and sw3 for acquisition of a 4D data set in the current experiment, enter addpar('4d').

See also: NMR Spectroscopy User Guide

Related: addpar Add selected parameters to the current experiment (M)
d4 Incremented delay for 3rd indirectly detected dimension (P)
ni3 Number of increments in 3rd indirectly detected dimension (P)
par4d Create 4D acquisition parameters (C)
sw3 Spectral width in 3rd indirectly detected dimension (P)

phasing Control update region during interactive phasing (P)

Description: Controls the percentage of the spectrum updated during interactive phasing using the ds command.

Values: 10 to 100, in percent, where 100 causes the entire spectrum to be updated, and 20 causes the area between the two vertical cursors to be updated.

See also: NMR Spectroscopy User Guide

Related: ds Display a spectrum (C)

phfid Zero-order phasing constant for the np FID (P)

Description: Specifies the angle of zero-order rotation. This zero-order rotation is executed as a part of retrieving the time-domain data into the active region of the memory and can be used instead of the parameter rp applied to the frequency-domain data. phfid is used only in a complex phase rotation.

phfid (and related parameters lsfid and lsfrq) operate on complex np FID data, referred to as the t2 dimension in a 2D experiment or as the t3 dimension in a 3D experiment. phfid is in the processing group and is properly handled through the wti display.

Values: -360.0 to +360.0, in degrees; 'n'

See also: NMR Spectroscopy User Guide

Related: dfid Display a single FID (C)
ds Display a spectrum FID (C)
ft Fourier transform 1D data (C)
ft1d Fourier transform along f2 dimension (C)
ft2d Fourier transform 2D data (C)
lsfid Number of complex points to left-shift the np FID (P)
lsfrq Frequency shift of the fn spectrum in Hz (P)
np Number of data points (P)
phfid1 Zero-order phasing constant for ni interferogram (P)
phfid2 Zero-order phasing constant for ni2 interferogram (P)
rp Zero-order phase in directly detected dimension (P)
wft Weight and Fourier transform 1D data (C)
wft1d Weight and Fourier transform f2 of 2D data (M)
wft2d Weight and Fourier transform 2D data (M)
wti Interactive weighting (C)
phfid1
Zero-order phasing constant for ni interferogram (P)

Description: Specifies the angle of zero-order rotation. This zero-order rotation is executed as a part of retrieving the time-domain data into the active region of the memory and can be used instead of the parameter \(rp1 \) applied to the frequency-domain data. \(\text{phfid1} \) is used in a complex phase rotation for complex \(t_1/t_2 \) interferograms and in a hypercomplex phase rotation for hypercomplex \(t_1/t_2 \) interferograms.

\(\text{phfid1} \) (and related parameters \(\text{lsfid1} \) and \(\text{lsfrq1} \)) operate on \(ni \) interferogram data, both hypercomplex and complex. \(ni \) interferogram data are referred to as the \(t_1 \) dimension in both a 2D and a 3D experiment. \(\text{phfid1} \) is in the processing group and is properly handled through the \(\text{wti} \) display; that is, a \(\text{wti} \) operation on an \(ni \) interferogram applies the parameters \(\text{phfid1}, \ \text{lsfid1}, \) and \(\text{lsfrq1} \), if selected, to the time-domain data prior to the Fourier transformation.

Values: \(-360.0 \) to \(+360.0\), in degrees; 'n'.

See also: *NMR Spectroscopy User Guide*

Related:
- \(\text{lsfid1} \) Number of complex points to left-shift the \(ni \) interferogram (P)
- \(\text{lsfrq1} \) Frequency shift of the \(fn1 \) spectrum in Hz (P)
- \(\text{ni} \) Number of increments in 1st indirectly detected dimension (P)
- \(\text{phfid} \) Zero-order phasing constant for \(np \) FID (P)
- \(\text{phfid2} \) Zero-order phasing constant for \(ni2 \) interferogram (P)
- \(\text{rp1} \) Zero-order phase in 1st indirectly detected dimension (P)
- \(\text{wti} \) Interactive weighting (C)

phfid2
Zero-order phasing constant for ni2 interferogram (P)

Description: Specifies the angle of zero-order rotation. This zero-order rotation is executed as a part of retrieving the time-domain data into the active region of the memory and can be used instead of the parameter \(rp2 \) applied to the frequency-domain data. \(\text{phfid2} \) is used in a complex phase rotation for complex \(t_1/t_2 \) interferograms and in a hypercomplex phase rotation for hypercomplex \(t_1/t_2 \) interferograms.

\(\text{phfid2} \) (and related parameters \(\text{lsfid2} \) and \(\text{lsfrq2} \)) operate on \(ni2 \) interferogram data, both hypercomplex and complex. \(ni2 \) interferogram data are referred to as the \(t_2 \) dimension in a 3D experiment. \(\text{phfid2} \) is in the processing group and is properly handled through the \(\text{wti} \) display.

Values: \(-360.0 \) to \(+360.0\), in degrees; 'n'.

See also: *NMR Spectroscopy User Guide*

Related:
- \(\text{lsfid2} \) Number of complex points to left-shift \(ni2 \) interferogram (P)
- \(\text{lsfrq2} \) Frequency shift of the \(fn2 \) spectrum in Hz (P)
- \(\text{ni2} \) Number of increments in 2nd indirectly detected dimension (P)
- \(\text{phfid} \) Zero-order phasing constant for \(np \) FID (P)
- \(\text{phfid1} \) Zero-order phasing constant for \(ni \) interferogram (P)
- \(\text{rp2} \) Zero-order phase in 2nd indirectly detected dimension (P)
- \(\text{wti} \) Interactive weighting (C)

Phosphorus
Set up parameters for \(^{31}\text{P} \) experiment (M)

Description: Set up parameters for \(^{31}\text{P} \) experiment.

pi3ssbsq
Set up pi/3 shifted sinebell-squared window function (M)

Syntax: \(\text{pi3ssbsq} \left(<t1_inc>, <t2_inc> \right) \)
Description: Sets up a pi/3 unshifted sinebell-squared window function in 1, 2, or 3 dimensions. The macro checks whether the data is 1D, 2D, and 3D.

Arguments:

- \(t1_inc \) is the number of \(t1 \) increments. The default is \(ni \).
- \(t2_inc \) is the number of \(t2 \) increments. The default is \(ni2 \).

See also: *NMR Spectroscopy User Guide*

Related:

- **pi4ssbsq**: Set up pi/4 unshifted sinebell-squared window function (M)
- **ni**: Number of increments in 1st indirectly detected dimension (P)
- **ni2**: Number of increments in 2nd indirectly detected dimension (P)
- **pi4ssbsq**: Set up pi/4 shifted sinebell-squared window function (M)
- **sqcosine**: Set up unshifted cosine-squared window function (M)
- **sqsinebell**: Set up unshifted sinebell-squared window function (M)

\[\text{pi4ssbsq}\ \langle\langle t1_inc\rangle, t2_inc\rangle\rangle \]

Description: Sets up a pi/4 unshifted sinebell-squared window function in 1, 2, or 3 dimensions. The macro checks whether the data is 1D, 2D, and 3D.

Arguments:

- \(t1_inc \) is the number of \(t1 \) increments. The default is \(ni \).
- \(t2_inc \) is the number of \(t2 \) increments. The default is \(ni2 \).

See also: *NMR Spectroscopy User Guide*

Related:

- **gaussian**: Set up unshifted Gaussian window function (M)
- **ni**: Number of increments in 1st indirectly detected dimension (P)
- **ni2**: Number of increments in 2nd indirectly detected dimension (P)
- **pi3ssbsq**: Set up pi/3 shifted sinebell-squared window function (M)
- **sqcosine**: Set up unshifted cosine-squared window function (M)
- **sqsinebell**: Set up unshifted sinebell-squared window function (M)

\[\text{pin} \]

Pneumatics Router Interlock (P)

Applicability: Direct Drive systems

Description: This parameter controls the effect of a Pneumatics Router Fault. The Pneumatic Router can fault in four ways:

- Intake pressure < 20 psi
- Solids narrow bore stack temperature fault
- VT air flow exceeded.
- Power supply fault

When either of these fault occur, and interrupt alerts the console of the problem and this parameter determines how the fault is handled. Once a fault is registered, all subsequent acquisitions will see the error according to ‘pin’. The error must be cleared and re-armed with sethw(‘pneufault’,’clear’)

Values:

- ’n’ -- the fault is ignored
- ’w’ -- a warning msg is printed, acquisition continues
- ’y’ -- an error msg is printed, acquisition is aborted

Related:

- **tin**: Temperature interlock (P)
- **vtairflow**: VT air flow (P)
- **vtairlimits**: VT air flow limits (P)
pintvast Plots of integral regions (M)
Applicability: Systems with VAST accessory.
Syntax: pintvast (last)
Description: pintvast plots the integrals of the partial regions of each spectra from wells 0 to last.
Arguments: last is the number last sample well. The default is 96.
See also: NMR Spectroscopy User Guide
Related: intvast Builds text file the integral regions (M)

pir Plot integral amplitudes below spectrum (C)
Description: Plots integral amplitudes below the appropriate spectral regions.
See also: NMR Spectroscopy User Guide
Related: dpf Display peak frequencies over spectrum (C)
dpir Display integral amplitudes below spectrum (C)
dpirn Display normalized integral amplitudes below spectrum (M)
pirn Plot normalized integral amplitudes below spectrum (M)
ppf Plot peak frequencies over spectrum (M)

pirn Plot normalized integral amplitudes below spectrum (M)
Description: Equivalent to the command pir except that the sum of the integrals is normalized to the value of the parameter ins.
See also: NMR Spectroscopy User Guide
Related: dpirn Display normalized integral amplitudes below spectrum (C)
ins Integral normalization scale (P)
pir Plot integral amplitudes below spectrum (C)

piv Plot integral values below spectrum (M)
Syntax: piv<vertical_position>
Description: Labels integrals with a bracket below the spectrum and a vertical number indicating the integral value. See dpiv for description and use.
Related: dpir Display integral amplitudes below spectrum (C)
dpiv Display integral amplitudes below spectrum (M)
dpirn Display normalized integral amplitudes below spectrum (C)
dpivn Display normalized integral amplitudes below spectrum (M)
pirn Plot normalized integral amplitudes below spectrum (C)
pir Plot integral amplitudes below spectrum (C)
pivn Plot normalized integral amplitudes below spectrum (M)

pivn Plot normalized integral values below spectrum (M)
Syntax: pivn<vertical_position>
Description: Labels integrals with a bracket below the spectrum and a vertical number indicating the integral value. See dpiv for description and use.
Related: dpir Display integral amplitudes below spectrum (C)
dpiv Display integral amplitudes below spectrum (M)
Plot spectra (C)

Syntax: \textit{pl(<\texttt{start},\texttt{finish},\texttt{step}>)<,'int'>,<,'all'>,\texttt{options}>)}

Description: Plots one or more spectra. When a single spectrum is plotted, integral plotting is controlled by the parameter \textit{intmod} as follows: \textit{intmod='off'} turns off the integral plot, \textit{intmod='full'} plots the entire integral, and \textit{intmod='partial'} plots every other integral region.

For arrayed 1D spectra or for 2D spectra, a particular trace can be plotted by supplying the index number as an argument. For 2D data sets, spectra can be plotted from either the \texttt{f1} or \texttt{f2} domain by setting the parameter \textit{trace} to \texttt{'f1'} or \texttt{'f2'}, respectively. After the command \texttt{ft1d}, interferogram can be plotted by setting \textit{trace='f1'} and then typing \texttt{pl}. Multiple spectra can be plotted by supplying the indexes of the first and last spectra.

The position of the first spectrum is governed by the parameters \textit{wc}, \textit{sc}, and \textit{vp}. For 1D data, subsequent spectra are positioned relative to the preceding spectrum by the vertical and horizontal offset parameters \textit{vo} and \textit{ho}. For 2D data, \textit{ho} defines the total horizontal offset between the first and last spectrum. Also for 2D data, \textit{vo} is inactive while the parameter \textit{wc2} defines the total vertical offset between the first and last spectrum.

The parameter \textit{cutoff}, if it exists and is active, defines the distance above and below the current vertical position \textit{vp} at which peaks are truncated. By arraying \textit{cutoff} to have two different values, truncation limits above and below the current vertical position can be controlled. For example, \texttt{cutoff=50} truncates peaks at \texttt{vp+50} mm and \texttt{vp–50} mm. \texttt{cutoff=50,10} truncates peaks at \texttt{vp+50} mm and \texttt{vp–10} mm.

Arguments: \texttt{start} is the index of a particular trace for arrayed 1D or 2D spectra. For multiple spectra, \texttt{start} is the index of the first spectrum. \texttt{finish} is the index of the last spectrum for multiple spectra. \texttt{step} specifies the increment for the spectral index. The default is 1. \texttt{'int'} is a keyword that specifies displaying only the integral, independently of the value of \textit{intmod}. \texttt{'all'} is a keyword to plot all of the spectra. This value is the default. \texttt{options} can be any of the following keywords:

- \texttt{'top'} or \texttt{'side'} cause the spectrum to be plotted either above or at the left edge of a contour plot. This assumes that the parameters \textit{sc}, \textit{wc}, \textit{sc2}, and \textit{wc2} are used in position to set the contour plot.
- \texttt{'dodc'} causes all spectra to be drift corrected independently.
- \texttt{'pen1'}, \texttt{'pen2'}, \texttt{'pen3'}, etc. specify a pen number on a plotter.

Examples: \texttt{pl}\par \texttt{pl(1,6,2)}

See also: \textit{NMR Spectroscopy User Guide}

Related: \texttt{cutoff} \hspace{1cm} Data truncation limit (P)\par \texttt{dssa} \hspace{1cm} Display stacked spectra automatically (C)\par \texttt{daww} \hspace{1cm} Display spectra in whitewash mode (C)
pl2d
Plot 2D spectra in whitewash mode (C)

Syntax: pl2d<('nobase'|'fill'|'fillnb')>

Description: Plots a stacked plot of 2D spectra in whitewash mode (after the first spectra, each spectra is blanked out in regions in which it is behind an earlier spectra). Color does not represent intensity (unlike dcon), since intensity can be seen visually, but instead successive traces are displayed in different colors so that color represents frequency. The horizontal offset parameter ho is not active for this command.

Arguments: 'nobase' is a keyword to activate th to suppress intensity below th.
'fill' is a keyword to fill in the peaks. Note that if 'fill' (or 'fillnb') is used, th operates linearly and not logarithmically (with factors of 2) as it does in contour or color intensity displays.
'fillnb' is a keyword to combine base suppression and peak filling.

Examples: pl2d
pl2d('nobase')

See also: NMR Spectroscopy User Guide

Related: dcon Display noninteractive color intensity map (C)
da2d Display 2D spectra in whitewash mode (C)
daww Display spectra in whitewash mode (C)
ho Horizontal offset (P)
plww Plot spectra in whitewash mode (C)

plane
Currently displayed 3D plane type (P)

Description: Stores the type of 3D plane currently displayed within VnmrJ. If plane does not exist, it is created by the macro par3d. The command select, as well as the many macros that make use of select, requires the parameter plane to exist for 3D data sets and to contain an appropriate value.

plane is set automatically by the macro getplane; it can also be set by the macro ft3d if automatic plane extraction is requested at the end of the 3D FT. The order of priority for the plane types is 'f1f3', 'f2f3', and then 'f1f2'. In other words, if getplane is requested to extract the f1f3 and the f2f3 planes, plane will be set to 'f1f3'. plane can also be set manually.

Values: 'f1f3', 'f3f1', 'f2f3', 'f3f2', 'f1f2', or 'f2f1'
See also: *NMR Spectroscopy User Guide*

Related:
- `dplane` Display a 3D plane (M)
- `dproj` Display a 3D plane projection (M)
- `dplanes` Display a series of 3D planes (M)
- `ft3d` Perform a 3D Fourier transform on a 3D FID data set (M,U)
- `getplane` Extract planes from a 3D spectral set (M)
- `nextpl` Display the next 3D plane (M)
- `par3d` Create 3D acquisition, processing, display parameters (C)
- `path3d` Number of complex points to left-shift np FID (P)
- `plplanes` Plot a series of 3D planes (M)
- `prevpl` Display the previous 3D plane (M)
- `select` Select a spectrum or 2D plane without displaying it (C)

`plapt` Plot APT-type spectra automatically (M)

Syntax: `plapt<(13Cexp_number)>`

Description: Automatically plots APT spectra. The APT spectrum is plotted on top of a standard carbon spectrum if either an experiment with such data is specified or if a file C13 is found in `curexp+/subexp`. If neither such a subfile is found nor an experiment with standard carbon data is specified, the APT spectrum is plotted alone.

Arguments: `13Cexp_number` specifies the number, from 1 to 9, of an experiment with a standard 13C spectrum.

Examples:
- `plapt`
- `plapt(2)`

See also: *NMR Spectroscopy User Guide*

Related:
- `curexp` Current experiment directory (P)

`plarray` Plotting macro for arrayed 1D spectra (M)

Description: A generic macro for plotting arrayed 1D spectra. `plarray` is called by the `plot` macro, but can also be used directly. For the plot layout, `procarray` distinguishes between arrays with few elements (6 or less), which will be stacked vertically (no horizontal offset), and spectra with many (greater than 6) elements. Those are stacked horizontally by default, unless there are too many lines, in which case a diagonally stacked display is chosen. Horizontal stacking is mostly adequate for pulse and power calibrations, where there are usually few lines only; diagonally stacked displays/plots are frequently chosen for T_1 and T_2 experiments on entire spectra, often with many lines.

The automatic stacking mode can be overridden by creating and setting a string parameter `stackmode` in the startup macro or before calling `procplot` or `procarray`. Possible values for `stackmode` are 'horizontal', 'vertical', or 'diagonal'. DEPT-type spectra can, in principle, also be processed with `procarray`, but no DEPT editing occurs, of course.

See also: *NMR Spectroscopy User Guide*

Related:
- `aexppl` Automatic expansion plot (M)
- `plc` Plot carbon spectrum (M)
- `plh` Plot proton spectrum (M)
- `plot` Automatically plot spectra (M)
- `procarray` Process arrayed 1D spectra (M)
- `stackmode` Stack control for processing arrayed 1D spectra (P)
plate_glue Define a glue order for plotting and display (U)

Applicability: Systems with VAST accessory

Description: In a Unix terminal or shell window type plate_glue. The glue order is determined by clicking on the wells to be displayed. Save the glue order file in the user's vnmrsys/templates/glue directory.

See also: NMR Spectroscopy User Guide

Related: davast2d Display VAST data in a pseudo-2D format (M)
plvast Plot VAST data in a stacked 1D-NMR matrix (M)
plvast2d Plot VAST data in a pseudo-2D format (M)

plc Plot a carbon spectrum (M)

Syntax: plc<(pltmod)>

Description: Plots a carbon spectrum based on the parameters pltmod (the options 'off', 'full', and 'fixed' are implemented) and intmod ('off', 'full', and 'partial' are implemented). Peak frequency labels, in ppm, are usually plotted.

Arguments: pltmod is an alternate value of pltmod for this macro only. The value of the pltmod parameter is not changed.

Examples: plc plc('full')

See also: NMR Spectroscopy User Guide

Related: intmod Integral display mode (P)
pltmod Plotter display mode (P)

plcosy Plot COSY- and NOESY-type spectra automatically (M)

Syntax: plcosy(<'pos'|'neg'>,<levels,<spacing,<exp1D>>>)

Description: Automatically plots 2D COSY- and NOESY-type spectra (homonuclear correlated spectra). Features include the following:

• Keeps the orientation (f1, f2) of the spectrum on the screen.
• Plot area is optimized.
• Number of contour levels and their spacing can be selected.
• Negative or positive contours can be suppressed.
• 1D traces can be plotted along both axes; such 1D traces are taken from a full (or reduced) 1D spectrum in an other experiment, or from a subfile from within the current experiment.
• Works correctly for expansions.
• 1D traces can be suppressed, allowing a larger area for the 2D spectrum.
• 1D spectrum can be in any experiment.
• With phase-sensitive spectra using a plotter with one pen or a printer such as a LaserJet, if 'pos' or 'neg' are not selected, seven positive levels (or the specified number of positive contours) and one negative level are plotted, to distinguish positive and negative signals.

In multiexperiment mode, for the first plot, the experiment with the 1D spectrum should be specified (at least if it is not in exp1). From then on, the 1D spectrum will be stored within the experiment with the 2D spectrum, which allows much faster switching between spectra and also frees the other (1D)
experiment for other tasks. Because of this internal storage, the exp1D argument is not required for subsequent plots.

Arguments:

'pos' is a keyword to plot only positive contours.

'neg' is a keyword to plot only negative contours.

levels is the number of contour levels. The default is 7.

spacing is the spacing between the contours. The default is 2.

exp1D is the experiment in which the proton 1D spectrum resides. This can be a full 1D spectrum, but the referencing must be the same as for the 2D. A negative number suppresses the proton trace. The default is from a subfile.

Examples:

plcosy
plcosy(12,1.5)
plcosy('pos',7,2,3)
plcosy(7,2,-1)
plcosy('neg')

See also: *NMR Spectroscopy User Guide*

pldept

Plot DEPT data, edited or unedited (M)

Description: Plots out DEPT data, either edited or not edited.

See also: *NMR Spectroscopy User Guide*

Related:

adept Automatic DEPT analysis and spectrum editing (C)

autodept Automated complete analysis of DEPT data (M)

deptproc Process DEPT data (M)

padept Perform adept analysis and plot resulting spectra (C)

plfido

Plot FIDs (C)

Syntax: `plfido(<<start>>,<<finish>>,step)<<all'|'imag'>,<<pen>>)

Description: Plots one or more FIDs. The position of the first FID is governed by the parameters *wc*, *sc*, and *vpf*. A subsequent FID is positioned relative to the preceding FID by the vertical and horizontal offset parameters *vo* and *ho*.

Arguments:

start is the index of a particular FID for arrayed 1D or 2D data sets. For multiple FIDs, *start* is the index of the first FID.

finish is the index of the last FID for multiple FIDs. To include all FIDs, set *start* to 1 and *finish* to the parameter *arraydim* (see example).

step specifies the increment for the FID index. The default is 1.

'*all*' is a keyword to plot all of the FIDs. This is the default.

'*imag*' is a keyword to plot the imaginary FID channel only. The default is '*all*'.

pen is a keyword with the plotter pen number: '*pen1*', '*pen2*', '*pen3*', etc. The default is '*pen1*'.

Examples: `plfido(1,arraydim,3)`

See also: *NMR Spectroscopy User Guide*

Related:

arraydim Dimension of experiment (P)

dfs Display stacked FIDs (C)

dfww Display FIDs in whitewash mode (C)

ho Horizontal offset (P)

sc Start of chart (P)

vo Vertical offset (P)
plfit

Plot deconvolution analysis (M)

Description: Produces a complete output plot of a deconvolution analysis, plotting the observed spectrum, the full calculated spectrum, each individual component, as well as the numerical results of the analysis.

See also: NMR Spectroscopy User Guide

Related:
fitspec Perform spectrum deconvolution (C)
showfit Display numerical results of deconvolution (M)
usemark Use “mark” output as deconvolution starting point (M)

plgrid

Plot a grid on a 2D plot (M)

Syntax: (1) plgrid(<<spacing><,,><pen>)>
(2) plgrid<(start_f2,incr_f2,start_f1,incr_f1<,pen>)>

Description: Plots grid lines over a 2D plot.

Arguments:
- spacing specifies the approximate spacing of the grid lines, in cm. The default is intervals of approximately 1 cm, rounded so that the intervals fall at a multiple of 1, 2, or 5 (in Hz) or 1p, 2p, or 5p (in ppm).
- pen is a keyword with the plotter pen number: 'pen1', 'pen2', 'pen3', etc. The default is 'pen1'.
- start_f2, incr_f2, start_f1, incr_f1 define the starting and increment frequencies in both f2 and f1 for a grid. Add the p suffix to a value to enter it in ppm (see last example below).

Examples:
- plgrid
- plgrid(2)
- plgrid('pen5')
- plgrid(1.5,'pen2')
- plgrid(1p,0.5p,3p,0.5p)

See also: NMR Spectroscopy User Guide

Related: grid Draw a grid on a 2D display (C)

plh

Plot proton spectrum (M)

Syntax: plh<(pltmod)>

Description: Plots a proton spectrum based on the parameters pltmod (the options 'off', 'fixed', 'full', and 'variable' are implemented) and intmod ('off', 'full', and 'partial' are implemented).

Arguments: pltmod is an alternate value of the parameter pltmod for this macro only. The value of the pltmod parameter is not changed.

Examples:
- plh
- plh('full')

See also: NMR Spectroscopy User Guide

Related:
intmod Integral display mode (P)
pltmod Plotter display mode (P)
sp Start of plot (P)
wp Width of plot (P)
plhet2dj Plot heteronuclear J-resolved 2D spectra automatically (M)

Syntax:
plhet2dj<('pos'|'neg',levels,spacing,exp1D)>

Description: Automatically plots 2D spectra of type HET2DJ (heteronuclear J-resolved 2D spectra) with the following features:
- Displayed portion of the spectrum is plotted in f2-mode
- Plot area is optimized
- Number of contour levels and their spacing can be selected
- Negative or positive contours can be suppressed
- A 1D trace can be plotted along the f2 axis; such a 1D trace is taken from a full (or reduced) 1D spectrum in an other experiment, or from a file from within the current experiment.
- Expansions are handled correctly
- The 1D trace can be suppressed, which allows using a larger area for the 2D spectrum
- The 1D spectrum can be in any experiment
- With phase-sensitive spectra, if 'pos' or 'neg' are not selected and the plotter has only one pen (also for printers like the LaserJet), the specified number of positive contours are plotted (default is 7), but only one negative level, to distinguish positive and negative signals.

In multiexperiment mode, for the first plot the experiment with the 1D spectrum should be specified (at least if it is not in exp1). From then on, the 1D spectrum is stored within the experiment with the 2D spectrum, which allows much faster switching between the spectra and also frees the other 1D experiment for other tasks. Because of this internal storage, the exp1D argument is not required for subsequent plots.

Arguments:
- 'pos' is a keyword to only plot positive contours
- 'neg' is a keyword to only plot negative contours
- levels is the number of contour levels. The default is 7.
- spacing is the spacing between the contours. The default is 2.
- exp1D is the number from 1 to 9 of the experiment in which the 1D spectrum resides. This can be a full 1D spectrum, but the referencing must be the same as for the 2D. A negative number will suppress the 1D trace. The default is 1 (for exp1).

Examples:
plhet2dj
plhet2dj(12,1.5)
plhet2dj('pos',7,2,3)
plhet2dj(7,2,-1)

See also: NMR Spectroscopy User Guide

plhom2dj Plot homonuclear J-resolved 2D spectra automatically (M)

Syntax:
(1) plhom2dj<levels,spacing,exp1D>
(2) plhom2dj('pos'|'neg',levels,spacing,exp1D)

Description: Automatically plots 2D spectra of type HOM2DJ (homonuclear J-resolved 2D spectra). Features include the following:
- The displayed portion of the spectrum is plotted in f2-mode
- The plot area is optimized
- Number of contour levels and their spacing can be selected
• Negative or positive contours can be suppressed
• A 1D trace can be plotted along the f2 axis; such a 1D trace is taken from a full (or reduced) 1D spectrum in an other experiment, or from a file from within the current experiment.
• It also works correctly for expansions
• The 1D trace can be suppressed, which allows using a larger area for the 2D spectrum
• The 1D spectrum can be in any experiment
• With phase-sensitive spectra, if 'pos' or 'neg' are not selected and the plotter has only 1 pen (also for printers like the LaserJet) 7 or the specified number of positive contours are plotted, but only one negative level, to distinguish positive and negative signals.

In multiexperiment mode, for the first plot the experiment with the 1D spectrum should be specified (at least if it is not in exp1). From then on, the 1D spectrum will be stored within the experiment with the 2D spectrum, which allows much faster switching between the spectra and also frees the other (1D) experiment for other tasks. Because of this internal storage, the exp1D argument is not required for subsequent plots.

Arguments:

levels is the number of contour levels. The default is 7.
spacing is the spacing between the contours. The default is 2.
exp1D is a number from 1 to 9 for the experiment in which the 1D spectrum resides. The spectrum can be a full 1D spectrum but the referencing must be the same as for the 2D. A negative number will suppress the 1D trace. The default is 1 (for exp1).
'pos' specifies only plot positive contours.
'neg' specifies only plot negative contours.

Examples:
plhom2dj
plhom2dj(25, 1.2)
plhom2dj('pos', 7, 2, 3)
plhom2dj(7, 2, -1)

See also: NMR Spectroscopy User Guide

plhxcor

Plot X,H-correlation 2D spectrum (M)
Syntax: plhxcor(<'pos'|'neg'><,><levels<,spacing <,<exp1D_H<,exp1D_X>>>>)

Description: Automatically plots 2D spectra of type HETCOR, COLOC, HMQC, HMBC (direct and indirect detection). Features include the following:
• Keeps the orientation (f1, f2) of the spectrum on the screen.
• Plot area is optimized.
• Number of contour levels and their spacing can be selected.
• Negative or positive contours can be suppressed.
• 1D proton and X traces can be plotted along both axes; such 1D traces are taken from full (or reduced) 1D spectra in other experiments or subfile within the current experiment.
• Works correctly for expansions.
• 1D traces can be suppressed, allowing a larger area for the 2D spectrum.
• 1D spectra can be in any experiment.

Arguments: 'pos' is a keyword to plot only positive contours.
'neg' is a keyword to plot only negative contours.
levels is the number of contour levels. The default is 7.
spacing is the spacing between the contours. The default is 2.
exp1D_H is a number from 1 to 9 of the experiment in which the proton 1D spectrum resides; this can be a full 1D spectrum, but the referencing must be the same as for the 2D. A negative number will suppress the proton trace. The default is a subfile in the current experiment.
exp1D_X is a number from 1 to 9 of the experiment in which the X 1D spectrum resides. A negative number suppresses the X trace. The default is a subfile in the current experiment.

Examples:
plhxcor(12,1.5)
plhxcor(7,2,3)
plhxcor(7,2,1,3)
plhxcor('pos',7,2,-1,3)
plhxcor(7,2,-1,-1)
plhxcor('neg')

See also: NMR Spectroscopy User Guide
Related: hetcor Set up parameters for HETCOR pulse sequence (M)

p11
Plot a line list (M)
Syntax: p11<(x,y,minimum_y)>
Description: Produces a columnar line list on a plotter, similar to what would appear on a printer. p11 is quite different from the alternative method of plotting peak frequencies using ppf. The output of p11 is automatically formatted into multiple columns, depending on the number of lines.

Arguments:
x is the x position of the upper left of the line list.
y is the y position of the upper left of the line list.
minimum_y is the minimum y at which to reset back to top.

Examples:
p11
p11(20,150)
p11(5,wc2max*.8,wc2max*.5)

See also: NMR Spectroscopy User Guide
Related: ppf Plot peak frequencies over spectrum (M)

p112d
Plot results of 2D peak picking (C)
Syntax: p112d<(options)>
Description: Plots the results of applying the 112d command to pick 2D peaks in a 2D spectrum or a 2D plane of a 3D spectrum. Refer to the description of 112d for a description of the process and the options available.

See also: NMR Spectroscopy User Guide
Related: 112d Automatic and interactive 2D peak picking (C)

plockport
Port number to use to lock out multiple ProTune processes (P)
Syntax: plockport=<value>
Description: The parameter must be created as a real local parameter before it can be used. The parameter is used to override a default port number that is used internally in ProTune to prevent two Java ProTune process from running simultaneously.

See also: NMR Spectroscopy User Guide
Related: 112d Automatic and interactive 2D peak picking (C)
plot

Automatically plot spectra (M)

Description: A universal plotting macro normally called through the `procplot` macro (which by itself serves as processing and plotting facility for automatic experiments). `plot` can also be used directly by the user who then doesn't have to remember specific plotting macros. Of course, the specialized macros can still be called directly if the user know their names.

The main purpose of `plot` is to automatically call the correct specialized plotting macro, depending on the user definition or otherwise on the type of data in the experiment. A plotting macro is selected automatically as follows:

- APT spectra: `plapt`
- Other, non-arrayed 1D data: `plot1d`
- DEPT type arrayed spectra: `pldept`
- Other arrayed 1D spectra: `plarray`
- J-resolved 2D spectra: `pl2dj`
- Homonuclear correlation 2D spectra: `plcosy`
- Heteronuclear correlation 2D spectra: `plhxcor`

Other types of 2D spectra (mostly multiple-quantum 2D spectra such as 2D-INADEQUATE) are not plotted automatically at this time. For phase-sensitive 2D spectra, automatic plotting is only provided if they were acquired using the method described by States, Haberkorn, and others; TPPI spectra are not covered.

Note that plot macros in general should not adjust the phase, the vertical scale, or change the integral size and reset points; these are assumed to be adjusted either by hand or by a suitable processing macro like `procplot` and the macros called therein. The plotting macros only make adjustments in order to make spectrum and parameters fit onto the page the desired way.

See also: *NMR Spectroscopy User Guide*

Related:
- `apptype` Application type (P)
- `execpars` Set up the exec parameters (M)
- `execplot` Execute plotting macro (P)
- `plapt` Plot APT spectra (M)
- `plarray` Plot arrays (M)
- `plcosy` Plot homonuclear 2D correlation spectra (M)
- `pldept` Plot DEPT type spectra (M)
- `plhxcor` Plot heteronuclear correlation spectra (M)
- `plot1d` Plot 1D spectra (M)
- `plt2Darg` Plot 2D arguments (P)
- `procplot` Automatically process FIDs (M)

plot1d

Plotting macro for simple (non-arrayed) 1D spectra (M)

Description: A generic macro for plotting non-arrayed 1D spectra using a set of standard macros. `plot1d` is called by the `plot` macro, but can also be used directly. `plot1d` first tries to find a specific macro (e.g., `plh`, `plc`, `plp`) for the current observe nucleus. If such a macro exists, it is called. If a nucleus-specific macro is not found in the command path, a “minimal” 1D plot is produced.
See also: *NMR Spectroscopy User Guide*

Related:
- `plc` Plot carbon spectrum (M)
- `ph` Plot proton spectrum (M)
- `plp` Plot phosphorus spectrum (M)
- `plot` Automatically plot spectra (M)

plot2D

Plot 2D spectra (M)

Syntax:

```
plot2D('pos'|'neg'|'both',levels,spacing,  \
       'top'|'notop'|'proj','side'|'noside'|'proj')
```

Description: Checks for the presence of appropriate proton or carbon high-resolution spectra in the directory `userdir+/data/`+sample and decides to plot high resolution spectra or a projection depending on whether or not the proton or carbon spectrum exists.

Arguments: The `plot2D` macro accepts the following arguments:

- `'pos'` keyword to plot positive contours
- `'neg'` keyword to plot negative contours.
- `'both'` keyword to plot both positive and negative contours.
- `levels` number of levels to be plotted.
- `spacing` spacing between contour levels.
- `'top'` keyword to plot a high-resolution spectrum on the top.
- `'notop'` keyword to plot a non-high-resolution spectrum or projection.
- `'proj'` keyword to plot a projection on top.
- `'side'` keyword to plot a high-resolution spectrum on the side.
- `'noside'` keyword to plot a non-high-resolution spectrum or projection.
- `'proj'` keyword that plots a projection on the side.

Examples:

```
plot2D('pos',2,5,'top','side')
```

See also: *NMR Spectroscopy User Guide*

Related:
- `plot` Automatically plot spectra (M)
- `plotside` Plot spectrum on side (M)
- `plottop` Plot spectrum on top (M)
- `plottopside` Plot spectrum on top and side (M)

plotfile

Plot to a file (M)

Syntax:

```
plotfile('argument')
```

Description: plots automatically to a file. Supported output formats are: `ps`, `pdf`, `jpg`, `pcl`, `hpgl` and `png`.

Arguments:

- `auto` — plots automatically.
- `manual` — plots contents of printer queue to a file.
- `Path and file name` — plots to specified file in the directory specified.
 Plots to the data directory using the supplied name if no path is specified.

Examples:

```
plotfile('xxx.fid/myplotfile.PDF') plots will go into saved data directory.
plotfile('myplotfile.PDF') - plots will go to vnmrsys/plots if FID has not been saved.
```
plothiresprep High resolution plot output preparation (M)
Description: Required for the operation of the "Plot HiRes..." popup window to interactively use plottop/plotside of spectra in work spaces EXPn - creates necessary variables.

plotmanual Plot manually (M)
Description: Makes correct choice of printer (for preview) and correct alignment with respect to parameter output, resets back screen to original size & position based on selections made on the Plot page.

plotlogo Plots a logo (M)
Description: Plots a logo Varian logo using image file located in /vnmr/iconlib/ varianlogo.gif or a custom logo from location specified in the parameter plotlogo.
Reads value for doplotlogo(n/y), plotlogox(x dimension image), and plotlogoy(y dimensions image), and image file in iconlib.

plotpreview Creates temporary plots of the current plot output (M)
Syntax: plotpreview<('argument')>
Description: Creates preview of the output from auto-plotting the current spectrum and starts an Acrobat PDF reader. The preview output can be saved in PS, PDF, PCL, HPGL, JPG or PNG formats.
Arguments: no argument — creates preview of whatever is ready to send to the plotter.
auto — creates preview of auto-plot based upon plot macro
manual — creates preview of the contents of the print queue.

plotside Plot spectrum on side (M)
Description: Plots projection or high-resolution spectrum on the side of a 2D spectrum. plotside is used with plot2D and is not useful by itself.
See also: NMR Spectroscopy User Guide
Related: plot2D Plot 2D spectra (M)

plotter Plotter device (P)
Description: Sets the plotter in use on the system.
Values: A string with entries such as 'DraftPro', 'ThinkJet_96', 'LaserJet_300', 'jim', 'varian1', and 'Laser1'.
See also: NMR Spectroscopy User Guide
Related: setplotdev Return characteristics of a named plotter (C)
showplotter Show list of currently defined plotters and printers (M)

plottop Plot spectrum on top (M)
Description: Plots projection or high resolution spectra on the top of a 2D spectrum. plottop is used with plot2D and is not useful by itself.
See also: NMR Spectroscopy User Guide
Related: plot2D Plot 2D spectra (M)
plottopside Plot spectrum on top and side (M)

Description: Plots projection or high-resolution spectrum on the top and side of a 2D spectrum. plottopside is used with plot2D and is not useful by itself.

See also: *NMR Spectroscopy User Guide*

Related: plot2D Plot 2D spectra (M)

plp Plot phosphorus spectrum (M)

Syntax: \texttt{plp<(\textsl{pltmod})>}

Description: Plots a phosphorus spectrum based on the parameters \textsl{pltmod} (the options 'off', 'full', and 'fixed' are implemented) and \textsl{intmod} ('off', 'full', and 'partial' are implemented). Peak frequency labels, in ppm, are usually plotted.

Arguments: \textsl{pltmod} is an alternate value of \textsl{pltmod} for this macro only. The value of the \textsl{pltmod} parameter is not changed.

Examples: \texttt{plp}
\texttt{plp('full')}

See also: *NMR Spectroscopy User Guide*

Related: intmod Integral display mode (P)

plh Plot proton spectrum (M)

pltmod Plotter display mode (P)

plplanes Plot a series of 3D planes (M)

Syntax: \texttt{plplanes(start_plot, stop_plot<,'pos'|'neg'>,<,number_levels><,spacing>)}

Description: Creates the 2D contour plots for a subset of the 3D planes specified by the parameter \textsl{plane}.

Arguments: \textsl{start_plot} specifies the number, greater than 0, of the 3D plane with which plotting is to begin. \textsl{stop_plot} specifies the number of the 3D plane with which plotting is to end. If \textsl{start_plot} is greater than \textsl{stop_plot}, only the first plane, whose number is \textsl{start_plot}, is plotted. The range of \textsl{stop_plot} depends on the value of the parameter \textsl{plane}:
 - if \textsl{plane}='f1f3', \textsl{stop_plot} is between 0 and \textsl{fn2}/2
 - if \textsl{plane}='f2f3', \textsl{stop_plot} is between 0 and \textsl{fn1}/2
 - if \textsl{plane}='f1f2', \textsl{stop_plot} is between 0 and \textsl{fn}/2

\textsl{pos} is a keyword specifying that phase-sensitive spectra plot positive peaks only. The default is to plot both positive and negative peaks.

\textsl{neg} is a keyword specifying that phase-sensitive spectra plot negative peaks only. The default is to plot both positive and negative peaks.

\textsl{levels} is maximum number of contour levels to plot. The default is 4.

\textsl{spacing} is relative intensity of successive contour levels. The default is 2.

Note that the optional arguments \textsl{pos} | \textsl{neg}, \textsl{number_levels}, and \textsl{spacing} are for the VnmrJ plotting command \texttt{pcon}.

Examples: \texttt{plplanes(1,3)}
\texttt{plplanes(2,3,'pos',4)}
See also: *NMR Spectroscopy User Guide*

Related:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dplane</td>
<td>Display a 3D plane (M)</td>
</tr>
<tr>
<td>dproj</td>
<td>Display a 3D plane projection (M)</td>
</tr>
<tr>
<td>dpplanes</td>
<td>Display a series of 3D planes (M)</td>
</tr>
<tr>
<td>getplane</td>
<td>Extract planes from 3D spectral data set (M)</td>
</tr>
<tr>
<td>nextpl</td>
<td>Display the next 3D plane (M)</td>
</tr>
<tr>
<td>path3d</td>
<td>Path to currently displayed 2D planes from a 3D data set (P)</td>
</tr>
<tr>
<td>pltext</td>
<td>Plot text file (M)</td>
</tr>
<tr>
<td>plane</td>
<td>Currently displayed 3D plane type (P)</td>
</tr>
<tr>
<td>prevpl</td>
<td>Display the previous 3D plane (M)</td>
</tr>
</tbody>
</table>

plt2Darg
Plot 2D arguments (P)

Applicability: Liquids

Description: Specifies options for contours and 1D projections on 2D plots, used by the `plot2D` macro. The plot options are selected on the Defaults page in the Acquire folder for most 2D sequences.

Related: `plot2D`
Plot 2D spectra (M)

pltext
Plot text file (M)

Syntax: `pltext<(<file><,x<,y<,width>>>>)>`
`<:$x_next,$y_next,$y_increment>`

Description: Plots a text file.

Arguments:
- **file** is the name of a text file. The default is the current experiment text file.
- **x** and **y** are coordinates, in mm, of the first line of text. This positions the location of the output. The default is the upper left-hand corner of the page.
- **width** is the maximum column text width, in characters. `pltext` uses a word wrap to make the text fit into the width specified.
- **$x_next** and **$y_next** are the coordinates where the start of the next line would have been plotting. This is useful for subsequent character plotting.
- **$y_increment** is the vertical increment between lines.

Examples:

- `pltext`
- `pltext(wcmax-70)`
- `pltext(userdir+'/exp3/text')`
- `pltext(100,100)`
- `pltext(userdir+'/exp4/text',200,200,24)`
- `pltext:$x,$y,$dy`

See also: *NMR Spectroscopy User Guide*

Related:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dplane</td>
<td>Display a 3D plane (M)</td>
</tr>
<tr>
<td>dproj</td>
<td>Display a 3D plane projection (M)</td>
</tr>
<tr>
<td>dpplanes</td>
<td>Display a series of 3D planes (M)</td>
</tr>
<tr>
<td>getplane</td>
<td>Extract planes from 3D spectral data set (M)</td>
</tr>
<tr>
<td>nextpl</td>
<td>Display the next 3D plane (M)</td>
</tr>
<tr>
<td>path3d</td>
<td>Path to currently displayed 2D planes from a 3D data set (P)</td>
</tr>
<tr>
<td>pltext</td>
<td>Plot text file (M)</td>
</tr>
<tr>
<td>plane</td>
<td>Currently displayed 3D plane type (P)</td>
</tr>
<tr>
<td>prevpl</td>
<td>Display the previous 3D plane (M)</td>
</tr>
</tbody>
</table>

pltmod
Plotter display mode (P)

Description: Controls plotting of a proton, carbon, or phosphorus spectrum.

Values:
- `'off'` sets no plotting.
- `'fixed'` takes **sp** and **wp** as is.
- `'full'` adjusts **sp** and **wp** to plot the full spectrum.
'variable' adjusts \textit{sp} and \textit{wp} to plot only the region of interest.

\textbf{See also:} \textit{NMR Spectroscopy User Guide}

\textbf{Related:}\n\begin{itemize}
 \item \textit{pic} \hspace{1cm} \textit{Plot carbon spectrum (M)}
 \item \textit{plh} \hspace{1cm} \textit{Plot proton spectrum (M)}
 \item \textit{plp} \hspace{1cm} \textit{Plot phosphorus spectrum (M)}
 \item \textit{sp} \hspace{1cm} \textit{Start plot (P)}
 \item \textit{wp} \hspace{1cm} \textit{Width of plot (P)}
\end{itemize}

\textbf{plvast} \hspace{1cm} \textit{Plot VAST data in a stacked 1D-NMR matrix format (M)}

\textbf{Applicability:} Systems with the VAST accessory.

\textbf{Syntax:} \texttt{plvast\{display order, number of columns plotted\}}

\textbf{Description:} \texttt{plvast} arranges and plots the traces from a reconstructed 2D data set (see \texttt{vastglue}) as an array of 1D spectra in a convenient format (as a matrix of 1D spectra). If no arguments are provided, the number of rows and columns are determined by the periodicity of the display order. For example, if a block of 96 spectra, as is typical for a microtiter-plate, have been acquired using VAST automation, the spectra is plotted in a matrix 8 rows and 12 columns.

The default is to plot the spectra from 1 through \texttt{arraydim} (the number of spectra in the 2D data set). An optional argument (\texttt{plvast(##)}) allows one to specify that only spectra from 1 through \texttt{##} should be plotted.

\textbf{Arguments:} \\display_order \hspace{1cm} \textit{display order} is optional and its default value is the glue order as listed in \texttt{glueorderarray}.

\textit{number of columns plotted} \hspace{1cm} \textit{The default value of is deduced by examining the periodicity of the requested display order. The number of columns plotted can entered as the second argument or as the first argument if the default display order is used.}

\textbf{Examples:}\n\begin{itemize}
 \item \texttt{plvast}
 \item \texttt{plvast(12)}
 \item \texttt{plvast(‘glue_file’, 4)}
\end{itemize}

\textbf{See also:} \textit{NMR Spectroscopy User Guide}

\textbf{Related:}\n\begin{itemize}
 \item \texttt{dsast2d} \hspace{1cm} \textit{Display VAST data in a pseudo-2D format (M)}
 \item \texttt{dsvast} \hspace{1cm} \textit{Display VAST data in a stacked 1D-NMR matrix (M)}
 \item \texttt{plvast2d} \hspace{1cm} \textit{Plot VAST data in a pseudo-2D format (M)}
 \item \texttt{plate_glue} \hspace{1cm} \textit{define a display order (U)}
\end{itemize}

\textbf{plvast2d} \hspace{1cm} \textit{Plot VAST data in a stacked pseudo-2D format (M)}

\textbf{Applicability:} Systems with the VAST accessory.

\textbf{Syntax:} \texttt{plvast2d\{number\}}

\textbf{Description:} If an array of 1D spectra have been acquired (in particular if a block of 96 spectra has been acquired using VAST automation, especially in a microtiter-plate format) and if these spectra have been glued into a reconstructed 2D dataset (see \texttt{vastglue}), \texttt{plvast2d} will arrange and plot them (on the plotter) in a convenient pseudo-2D format (almost like an LC-NMR chromatogram). Well labels are not attached to the spectra and spectra are plotted with 12 spectra per row.

\textbf{Arguments:} \textit{number} specifies that only spectra from 1 through \texttt{number} should be plotted. The default is to plot all the spectra (from 1 through \texttt{arraydim}).
See also: *NMR Spectroscopy User Guide*

Related:
- `dsast2d` Display VAST data in a pseudo-2D format (M)
- `davast` Display VAST data in a stacked 1D-NMR matrix (M)
- `plvast` Plot VAST data in a stacked 1D-NMR matrix (M)

Plww
Plot spectra in whitewash mode (C)

Syntax:
`plww<(start,finish,step)<,'all'>)>`

Description: Plots one or more spectra in whitewash mode (after the first spectra, each spectra is blanked out in regions in which it is behind an earlier spectra).

Arguments:
- `start` — index of the first spectra when plotting multiple spectra. It is also the index number of a particular trace to be plotted when plotting arrayed 1D spectra or 2D spectra. The default is to plot all spectra.
- `finish` — index of the last spectra when plotting multiple spectra.
- `step` — increment for the spectral index when plotting multiple spectra, default is 1.
- `'all'` — (default) keyword to plot all spectra in the array.

See also: *NMR Spectroscopy User Guide*

Related:
- `dss` Display stacked spectra (C)
- `daww` Display spectra in whitewash mode (C)
- `p1` Plot spectra (C)

Pmode
Processing mode for 2D data (P)

Description: Specifies the type of 2D spectral data that the 2D Fourier transform (FT) will yield. `pmode` is in the processing group.

Values:
- `' ' (null string, shown by two single quotes with no space in between) specifies a processing mode in which it is not possible to change either the `f2` or `f1` display mode after the 2D FT. If the `f2` display mode has been set to phased (`dmg='ph'`), each `f2` spectrum is phase rotated using the phase constants `rp` and `lp` prior to the FT along the second dimension. If the `f2` display mode has been set to power (`dmg='pwr'`) or absolute-value (`dmg='av'`), however, the `f2` spectrum is not processed any further after the first FT. The complex `t1` interferograms are handled in a similar manner. If the `f1` display mode has been set to phased (`dmg1='ph1'`), each `f1` spectrum is phased using the phase constants `rp1` and `lp1`. If the display mode has been set to power (`dmg1='pwr1'`) or to absolute value (`dmg1='av1'`), the appropriate magnitude calculation is performed, with the result being placed in the real part of the appropriate complex datum and a 0 being placed in the imaginary part. At the end of the 2D transform, the spectral data file `datdir/data` is reduced from complex data to real data ("VnmrJ REDUCE" display message).
- `'partial'` specifies a processing mode in which it is not possible to change the `f2` display mode after the 2D FT. It is possible, however, to select between the three `f1` display modes without having to reprocess the 2D data. If the `f2` display mode has been set to phased (`dmg='ph'`), each `f2` spectrum is phase rotated using the phase constants `rp` and `lp` prior to FT along the second dimension. If the `f2` display mode is set to power (`dmg='pwr'`) or absolute value (`dmg='av'`), the `f2` spectrum is not processed any further after the first FT. Regardless of the requested `f1` display mode, no further processing is performed by `ft2d` on the `f1` spectra after the second FT. The calculations on 2D spectral data necessary to achieve the requested `f1` display mode are performed by `dcon` or `dconi`. If `pmode` does not exist, it is assigned a value of 'partial' internal to VnmrJ.
'full' specifies a processing mode in which it is possible to select between the three display modes for each dimension without having to reprocess the 2D data. Regardless of any requested display mode, no display mode processing is performed by `ft2d` on the t_2 spectra after the first or second FT.

The hypercomplex data structure for the 2D time domain data is:

$$\{\text{Re}(t_1)\text{Re}(t_2), \text{Re}(t_1)\text{Im}(t_2), \text{Im}(t_1)\text{Re}(t_2), \text{Im}(t_1)\text{Im}(t_2)\}$$

and is experimentally composed by the pulse sequence generation arraying mechanism. The hypercomplex data structure for the t_1 interferograms is:

$$\{\text{Re}(t_1)\text{Re}(F_2), \text{Re}(t_1)\text{Im}(F_2), \text{Im}(t_1)\text{Re}(F_2), \text{Im}(t_1)\text{Im}(F_2)\}$$

where Re represents the real part and Im represents the imaginary part. A hypercomplex FT along t_1 yields a hypercomplex 2D spectrum with the following data structure per hypercomplex point:

$$\{\text{Re}(F_1)\text{Re}(F_2), \text{Re}(F_1)\text{Im}(F_2), \text{Im}(F_1)\text{Re}(F_2), \text{Im}(F_1)\text{Im}(F_2)\}$$

Note that if `pmode='full'`, the `ft2d` program will require an array index or coefficients for the construction of the t_1 interferograms.

See also: *NMR Spectroscopy User Guide*

Related:
- `av`: Set abs. value mode in directly detected dimension (C)
- `av1`: Set abs. value mode in 1st indirectly detected dimension (C)
- `dcon`: Display noninteractive color intensity map (C)
- `dconi`: Interactive 2D data display (C)
- `dmg`: Data display mode in directly detected dimension (P)
- `dmg1`: Data display mode in 1st indirectly detected dimension (P)
- `ft1d`: Fourier transform along t_2 dimension (C)
- `ft2d`: Fourier transform 2D data (C)
- `ph`: Set phased mode in directly detected dimension (C)
- `ph1`: Set phased mode in indirectly detected dimension (C)
- `pwr`: Set power mode in directly detected dimension (C)
- `pwr1`: Set power mode in 1st indirectly detected dimension (C)
- `wft1d`: Weight and Fourier transform 2D data (C)
- `wft2d`: Weight and Fourier transform 2D data (C)

poly0

Display mean of the data in regression.inp file (M)

Description: Calculates and displays the mean of data in the file `regression.inp`.

See also: *User Programming*

Related:
- `averag`: Calculate average and standard deviation of input (C)
- `expl`: Display exponential or polynomial curves (C)

pp

Decoupler pulse length (P)

Description: Sets the decoupler pulse length for use by pulse sequences such as DEPT, HET2DJ, and HETCOR.

See also: *NMR Spectroscopy User Guide*

Related:
- `AC1-AC9`: Automatic calibration (M)
- `Dept`: Set up parameters for DEPT experiment
- `dhp`: Decoupler high-power control with class C amplifier (P)
- `dpwr`: Power level for first decoupler with linear amplifier (P)
- `hetcor`: Set up parameters for HETCOR pulse sequence (M)
ppa
Plot a parameter list in plain English (M)

Syntax:
ppa<(x<,y>)>

Description: Plots parameters in plain English (instead of in a table with parameter names and their values as plotted by the parameter pap).

Arguments:
- x controls the x offset, in mm, from the lower left of the plot to the starting position (upper left) of the parameter list. The default is a preset position on the page (upper left corner).
- y controls the y offset, in mm, from the lower left of the plot to the starting position (upper left) of the parameter list. Default is a preset position on the page (upper left corner).

Examples:
- ppa
- ppa(10)
- ppa(wcmax-80,wc2max*.9)

See also: NMR Spectroscopy User Guide

Related:
- bpa Plot boxed parameters (M)
- hpa Plot parameters on special preprinted chart paper (C)
- pap Plot out “all” parameters (C)
- pltext Plot a text file (M)

ppcal
Proton decoupler pulse calibration (M)

Description: Proton decoupler pulse calibration for DEPT, HETCOR, INEPT, etc.

See also: NMR Spectroscopy User Guide

Related:
- AC1S-AC11S Automatic calibration (M)
- d2pul Set up parameters for D2PUL pulse sequence (M)
- Dept Set up parameters for DEPT experiment
- hetcor Set up parameters for HETCOR pulse sequence (M)
- inept Set up parameters for INEPT pulse sequence (M)

ppf
Plot peak frequencies over spectrum (C)

Syntax:
(1) ppf<(<'noll'>,<,'pos'>,<,noise_mult><,'top'>)>
(2) ppf<(<'noll'>,<,'pos'>,<,noise_mult><,'leader'><,length>)>

Description: Plots peak frequencies, in units specified by the axis parameter, in the plotter device. Only those peaks greater than th high are selected. Two basic modes of label positioning are available: labels placed at the top, with long “leaders” extending down to the tops of the lines (syntax 1 using the ‘top’ keyword), or labels positioned just above each peak, with short leaders (syntax 2 using the ‘leader’ keyword). The default is short leaders.

Arguments:
- ‘noll’ is a keyword to plot frequencies using the last previous line listing.
- ‘pos’ is a keyword to plot positive peaks only (‘noneg’ is the same as ‘pos’).
- noise_mult is a numerical value that determines the number of noise peaks plotted for broad, noisy peaks. The default is 3. A smaller value results in more peaks, a larger value results in fewer peaks, and a value of 0.0 results in a line listing containing all peaks above the threshold th. Negative values of
noise_mult default to 3. The noise_mult argument is inactive when the 'noll' keyword is specified.

'top' is a keyword to plot labels at the top with long leaders. In this mode, the height of labels is varied by changing the parameter wc2.

'leader' is a keyword to plot labels positioned just above each peak with short leaders.

length specifies the leader length, in mm, if labels are positioned just above each peak. The default length is 20 mm.

Examples:

ppf('pos')
ppf('leader',30)
ppf('top','noll')
ppf('pos',0.0,'leader',30)

See also: NMR Spectroscopy User Guide

Related:

axis Axis label for displays and plots (P)
dpf Display peak frequencies over spectrum (C)
dpir Display integral amplitudes below spectrum (C)
dpirn Display normalized integral amplitudes below spectrum (M)
pir Plot integral amplitudes below spectrum (C)
pirn Plot normalized integral amplitudes below spectrum (M)

pph

Print pulse header (M)

Syntax: pph(file)

Description: Prints out the shape file header (i.e., all lines starting with #).

Arguments: file is the name of the shape file, including the extension.

Examples: pph('shgrad.GRD')

See also: NMR Spectroscopy User Guide

Related: Pbox Pulse shaping software (U)

ppmm

Resolution on printers and plotters (P)

Description: An internal software parameter, selected automatically based on the plotter configuration, that contains the resolution in dots/mm on raster graphics printers. On pen plotters, ppmm contains the resolution of points drawn. On PostScript printers, ppmm adjusts linewidths.

pprofile

Plot pulse excitation profile (M)

Syntax: pprofile<(axisflag<,profile<,shapefile>>)>

Description: Plots the X, Y and Z excitation (inversion) profile for a pulse shape that has been generated with the Pbox software. If shape names is not provided, the last simulation data stored in the shapelib/pbox.sim file are plotted.

Arguments: The axisflag and profile arguments can be given in any order.

axisflag is 'y' to display the full spectrum and a frequency scale, or 'n' to suppress the scale and spectrum. The default is 'n'.
profile is a character string identifying the desired profile. 'xyz' selects X, Y, and Z (inversion) profiles; 'xy' selects only the excitation (transverse) profiles; 'x' selects only the X transverse excitation profile; and 'z' selects only the inversion profile. The default is 'xyz'.
shapefile is the name of a *.RF or *.DEC file, including the extension.
Examples: pprofile
 pprofile('y','x')
 pprofile('xy','n','softpls.RF')

See also: *NMR Spectroscopy User Guide*

Related:
 dprofile Display pulse excitation profile (M)
 Pbox Pulse shaping software (U)

pps

Plot pulse sequence (C)

Syntax: **pps<(file<,x,y,width,height)>)**

Description: Plots pulse sequences. The plotted picture consists of three to five parts. At the top is the transmitter pulse sequence. Below that is the decoupler pulse sequence. Next is the second decoupler pulse sequence or gradients, depending on the program. At the bottom is the status.

The parameter of each pulse is plotted if its length is less than 30 letters. The value of each pulse is also plotted. If its value is less than zero, a question mark "?" is plotted. The time units are displayed as letters (s, m, or u). The height of pulses are plotted according to their power level.

Arguments:
 file specifies the pulse sequence to be plotted. The default is **seqfil**.
 x, y specifies the start of the plotting position with respect to the lower-left corner of the plotter.
 width, height are in proportion to **wcmax** and **wc2max**.

Examples:
 pps
 pps('s2pul')
 pps(3,50)

See also: *NMR Spectroscopy User Guide*

Related:
 dps Display pulse sequence (C)
 seqfil Pulse sequence name (P)
 wcmax Maximum width of chart (P)
 wc2max Maximum width of chart in second direction (P)

prealfa

Specify a delay for longer ring down (P)

Applicability: Inova systems with Varian, Inc. Cold Probes

Description: Specify a delay to be used in situations when there is a longer ring down of rf following the last rf pulse.

This parameter is only active when **qcomp='y'**. **prealfa** should be created as a local parameter of type **pulse** or **delay**. This parameter must be created as a local parameter of the type **pulse** for SpinCad Sequences.

If it is desired to use the software computed value for this delay, destroy the **prealfa** parameter.

Values: User set **prealfa** value that may be slightly adjusted by the software to better optimize the DSP parameters.

prep

Run prepare acquisition macro (M)

Applicability: Imaging

Description: Run the prepare acquisition macro specified by the **execprep** parameter. Usually only called from panels.

Related: **execprep** Execute prepare macro (P)
Presat
Set up parameters for presat 1H experiment (M)
Description: Set up parameters for presat 1H experiment with solvent suppression.

prevpl
Display the previous 3D plane (M)
Description: Displays 2D color map of the previous 3D plane in the set of planes defined by the parameters `plane` and `path3d`. For example, if `dplane(40)` has just been executed, `prevpl` results in the display of 3D plane 39 of that set. (If `prevpl` immediately follows the command `dproj`, an error results because there is no 3D plane whose number is −1.) `prevpl` is more efficient than `dplane` or `dproj` because the 3D parameter set (procpar3d) is not loaded into VnmrJ. It is assumed to have already been loaded by, for example, `dplane` or `dproj`.

See also: NMR Spectroscopy User Guide

Related: `dplane` Display a 3D plane (M)
`dproj` Display a 3D plane projection (M)
`dsplanes` Display a series of 3D planes (M)
`getplane` Extract planes from a 3D spectral data set (M)
`nextpl` Display the next 3D plane (M)
`path3d` Path to currently displayed 2D planes from a 3D data set (P)
`plane` Currently displayed 3D plane type (P)
`plplanes` Plot a series of 3D planes (M)

prescan
Study queue prescan (P)
Description: This parameter keeps track of the type and status of the prescans in the study queue.

Related: `cqexp` Load experiment from protocol (M)
`cqrset` Reset study queue parameters (M)
`sqexp` Load experiment from protocol (M)
`sqreset` Reset study queue parameters for imaging (M)

prescan_CoilTable
Read or update the CoilTable File (M)
Syntax: `prescan_CoilTable(action, rfcoil)`
Description: Manages the CoilTable file in `~/vnmrsys`. Reads information about `rfcoil` into the global parameter `coil_param`; updates/adds information for `rfcoil` from `coil_param`; removes the `rfcoil` entry from CoilTable.

Arguments: actions for the specified `rfcoil` are:
`read`
`add`
`update`
`remove`

Examples: `prescan_CoilTable('read','main')`

prescan_tn
Return tn string for a given atomic number (M)
Syntax: `prescan_tn(number):str`
Description: Returns `tn` string for a given atomic number; for H1, C13, F19, P31, Na23, Xe129 only.

Arguments: `Number` is the atomic number.
str is a string that can be assigned to tn.

Examples: prescan_tn(23):tn

printer Printer device (P)
Description: Selects the printer in use on the system.
Values: A string with entries such as 'ThinkJet_96', 'LaserJet_300', 'jim', 'varian1', and 'Laser1'.
See also: NMR Spectroscopy User Guide
Related: showplotter Show list of currently defined plotters and printers (M)

printfile Path to the print-to-file image (P)
Description: Defines the path where an image is saved if it is printed to a file.

printformat Format of saved-to-file image (P)
Description: The format of the image to be printed to a file.
Values: 'jpeg', 'gif', 'tiff', 'bmp'

printlayout Layout of printed image (P)
Description: The layout of the printed image.
Values: 'portrait' or 'layout'

printoff Stop sending text to printer and start print operation (C)
Syntax: printoff<('clear'|file)>
Description: Stops redirection of output to printer caused by the printon command and starts the print operation. The command printoff must be entered to obtain output on the printer. Actual printing is controlled by the vnmrprint script in the bin subdirectory of the system directory. printoff can also clear the data in the current print file or save data to a specified file name (i.e., print or plot to a file).
Arguments: 'clear' is a keyword to clear the print file made so far.
file specifies the name of a file to save the printout. If the file already exists, it is overwritten.
Examples: printoff
printoff('clear')
printoff('vnmrsys/papers/peaks.list')
See also: NMR Spectroscopy User Guide
Related: printon Direct text output to printer (C)
vnmrprint Print text files (U)

printon Direct text output to printer (C)
Description: Sends information to the printer that is normally displayed in the text window. After using printon, output from commands that use the text window, such as dg and cat, is sent to the printer and does not appear on the screen. The value of the parameter printer is used to select which printer is used.
See also: NMR Spectroscopy User Guide

Related:
- cat: Output one or more files to output text window (C)
- dg: Display group of acquisition/processing parameters (C)
- printer: Printer device (P)
- printoff: Stop sending text to printer and start print operation (C)

printregion Screen region to be printed (P)
Description: The region of the screen to be printed or saved to a file.
Values:
- 'vnmrj' -- entire VnmrJ interface.
- 'graphics' -- the graphics area of the VnmrJ interface.
- 'frames' -- selected frames from the graphics area.

printsize Size of printed image (P)
Description: The size of the printed image.
Values:
- 'quarterpage', 'halfpage', 'page'

printsend Defines where image will print (P)
Description: Defines whether the selected image will sent to a file or a printer.
Values: 'file' or 'printer'

probe Probe type (P)
Description: Contains a string with the name of the probe currently in the magnet. This parameter is set automatically when the addprobe macro is entered. The getparam and setparams macros use probe to retrieve and write parameters into the current probe file.

See also: NMR Spectroscopy User Guide

Related:
- addnucleus: Add new nucleus to existing probe file (M)
- addprobe: Create new probe directory and probe file (M)
- getparam: Receive parameter from probe file (M)
- setparams: Write parameter to current probe file (M)

probeConnect Specify which nucleus can be acquired on each RF channel (P)
Applicability: DirectDrive and 400 MR

Syntax:
probeConnect = 'nuc1 nuc2 nuc3...'

Description: Global string parameter that does not exist by default. If present, PSG uses it to determine which RF channel to connect to a given nucleus. The string consists of a series of space-separated nuclei. A nucleus 'X' may be used only once in the string to match any nucleus. The parameter must match the hardware connections. If the parameter does not match the hardware connections or does not exist, default settings are used. Default settings are to use the first channel for tn for high band observe, and the second channel for tn for low band observe.

Values: Any nucleus name used for tn, or 'X'.

Examples:
create('probeConnect','string','global')
probeConnect = 'H1 C13' maps H1 to channel 1, C13 to channel 2
probeConnect = 'H1 P31 X' maps H1 to channel 1, P31 to channel 2, any nucleus to channel 3.
See also: *VnmrJ User Programming*

Probe_edit
Edit probe for specific nucleus (U)

Syntax: (UNIX) `Probe_edit probe nucleus`

Description: Opens a dialog box showing all the parameters related to a specific nucleus from the probe table.

Arguments:
- `probe` is the name of the probe.
- `nucleus` is the specified nucleus from the probe table.

Examples:
- `Probe_edit 5mmSW H1`

Related: `probe_edit`
Edit probe for specific nucleus (M)

Syntax: `probe_edit(probe,nucleus)`

Description: Opens a dialog box showing all the parameters related to a specific nucleus from the probe table.

Arguments:
- `probe` is the name of the probe.
- `nucleus` is the specified nucleus from the probe table.

Examples:
- `probe_edit('5mmSW','H1')`
- `probe_edit(probe,tn)`

Related: **probe_edit**
Edit probe for a specific nucleus (U)

probe_protection
Probe protection control (P)

Description: Controls the power check for probe protection.

See also: NMR Spectroscopy User Guide

proc
Type of processing on np FID (P)

Description: Specifies the type of data processing to be performed upon the np \((t_2)\) FID. Similarly, parameters `proc1` and `proc2` specify the type of data processing on the ni \((t_1)\) and ni2 interferograms, respectively.

All Varian data must be processed along np with a complex Fourier transform (FT). Sequentially sampled Bruker data (the usual case) must be processed along this dimension with a real FT, while simultaneously sampled Bruker data must be processed with a complex FT.

Pure absorptive 2D data collected by the States-Haberkorn (hypercomplex) method must be processed along ni or ni2 with a complex FT.

Pure absorptive 2D data collected by the TPPI method on a Varian spectrometer can be processed in one of two ways, depending upon how the data was collected:
Pure absorptive 2D data collected by TPPI method on a Bruker spectrometer must be processed along \(ni \) with a real FT (i.e., \(proc1='rft' \)).

Values:
- 'ft' specifies complex FT data processing.
- 'rft' specifies real FT data processing.
- 'lp' specifies linear prediction processing on complex data. If 'lp' is selected, additional parameters must be set to fully define how the time-domain data is to be processed; see the description of the addpar command.

See also: NMR Spectroscopy User Guide

Related:
- addpar Add selected parameters to the current experiment (M)
- ni Number of increments in 1st indirectly detected dimension (P)
- np Number of data points (P)
- parlp Create parameters for linear prediction (C)
- phase Phase selection (P)
- phase2 Phase selection for 3D acquisition (P)
- proc1 Type of processing on \(ni \) interferogram (P)
- proc2 Type of processing on \(ni2 \) interferogram (P)

proc1

Type of processing on \(ni \) interferogram (P)

Description: Specifies the type of data processing to be performed upon the \(ni \) \((t_1)\) interferogram (2D). Refer to the description of proc for further information.

Values:
- 'ft' specifies complex Fourier transform (FT) data processing.
- 'rft' specifies real FT data processing.
- 'lp' specifies linear prediction processing on complex data. If 'lp' is selected, additional parameters must be set to fully define how the time-domain data is to be processed; see the description of the addpar command.
- 'ht' specifies Hadamard transform processing. If 'ht' is selected, additional parameters must be set with the addpar command. In addition, the data set must be acquired using a Hadamard pulse sequence.

See also: NMR Spectroscopy User Guide

Related:
- addpar Add selected parameters to the current experiment (M)
- ni Number of increments in 1st indirectly detected dimension (P)
- proc Type of processing on \(np \) FID (P)

proc1d

Processing macro for simple (non-arrayed) 1D spectra (M)

Description: A generic macro for processing non-arrayed 1D spectra using a set of standard macros. proc1d is called by the procplot macro, but can also be used directly. proc1d first tries to find a macro of the form \(\{tn\}p \) with the name of the observe nucleus in lower case (e.g., \(h1p, c13p \)). If such a macro exists, it is called. If such a nucleus-specific macro is not found in the command path, minimal 1D processing is performed (the intent is to provide a well-processed spectrum in most cases): Fourier transformation (using pre-set weighting functions), automatic phasing (aphx macro), automatic integration (integrate macro), vertical scale adjustment (vsadj macro), avoiding excessive noise (noislm macro), and threshold adjustment (thadj macro).
proc1d does not work with arrayed 1D spectra: use deptproc (for DEPT-type spectra) or procarray (for all other arrayed 1D data).

See also: NMR Spectroscopy User Guide

Related:
- aphx: Perform optimized automatic phasing (M)
- c13p: Process 1D carbon spectra (M)
- deptproc: Process arrayed dept type spectra (M)
- hip: Process 1D proton spectra (M)
- integrate: Automatically integrate 1D spectrum (M)
- noislm: Avoids excessive noise (M)
- procarray: Process arrayed 1D spectra (M)
- procplot: Automatically process FIDs (M)
- thadj: Adjust threshold (M)
- vsadj: Adjust vertical scale (M)

proc2

Type of processing on ni2 interferogram (P)

Description: Specifies the type of data processing to be performed upon the ni2 interferogram (3D). Refer to the description of proc for further information.

Values: 'ft' specifies complex Fourier transform (FT) data processing.
- 'rft' specifies real FT data processing.
- 'lp' specifies linear prediction processing on complex data. If 'lp' is selected, additional parameters must be set to fully define how the time-domain data is to be processed; see the description of the addpar command.

See also: NMR Spectroscopy User Guide

Related:
- addpar: Add selected parameters to the current experiment (M)
- ni2: Number of increments in 2nd indirectly detected dimension (P)
- proc: Type of processing on np FID (P)

proc2d

Process 2D spectra (M)

Description: A general 2D processing macro that tries to do the appropriate processing for as many types of 2D experiments as possible. It uses wft2da for phase-sensitive spectra, wft2d for absolute-value 2D spectra, wft2d('ptype') for HOM2DJ and COSYPS (absolute value). Symmetric homonuclear correlation spectra (fn=fn1, sw=sw1) in absolute-value mode is symmetrized using foldt. The resulting spectrum is then normalized (adjustment of vs and th) using nm2d and displayed (if not in background mode). proc2d is called as part of the procplot macro, but can also be used directly by the user.

See also: NMR Spectroscopy User Guide

Related:
- fn: Fourier number in the directly detected dimension (P)
- fn1: Fourier number in 1st indirectly detected dimension (P)
- foldt: Fold COSY-like spectrum along diagonal axis (C)
- nm2d: Normalize intensity of 2D spectrum (M)
- procplot: Automatically process FIDs (M)
- sw: Spectral width in the directly detected dimension (P)
- sw1: Spectral width in the 1st indirectly detected dimension (P)
- th: Threshold (P)
- vs: Vertical scale (P)
- wft2d: Weight and Fourier transform 2D data (C)
- wft2da: Weight and Fourier transform for pure absorption 2D data (M)
procarray
Process arrayed 1D spectra (M)

Description: A generic macro for processing arrayed 1D data. It is called within the `procplot` macro, but can also be called directly. It transforms all traces, phase the trace with the largest signal, scale the traces appropriately, and set up the display parameters such that the data can be plotted directly. The plotting is done in a separate macro `plarray` that is also called in the `procplot` macro.

For the display setup, `procarray` distinguishes between arrays with 6 or less elements, which are stacked vertically (no horizontal offset), and spectra with greater than 6 elements, which are stacked horizontally by default, unless there are too many lines, in which case a diagonally stacked display is chosen.

Horizontal stacking is mostly adequate for pulse and power calibrations, where there are usually only a few lines. Diagonally stacked displays and plots are frequently chosen for T_1 and T_2 experiments on entire spectra, often with many lines. The automatic stacking mode can be overridden by creating and setting a string parameter `stackmode` in the startup macro, or before calling `procplot` or `procarray`. Possible values for `stackmode` are 'horizontal', 'vertical', and 'diagonal'. DEPT-type spectra can, in principle, be also processed with `procarray` but, of course, no DEPT editing occurs.

See also: *NMR Spectroscopy User Guide*

Related:
- `deptproc`
 Process arrayed dept type spectra (M)
- `plarray`
 Plot arrayed 1D spectra (M)
- `proc1d`
 Processing macro for simple (non-arrayed) 1D spectra (M)
- `procplot`
 Automatically process FIDs (M)
- `stack`
 Set stacking control parameter (M)
- `stackmode`
 Stack control for processing arrayed 1D spectra (P)

process
Generic automatic processing (M)

Description: Processes a wide range of data types. If the `apptype` parameter is set, it runs the `execprocess` macro if it exists. If the `apptype` parameter is not set it selects a macro depending on the type of data. For simple 1D spectra, `process` looks for a macro of form `{tn}p` with the observe nucleus in lower case (e.g., `h1p`, `c13p`, `f19p`). If no such macro is found, `process` calls `proc1d`, a generic processing macro for 1D spectra. For DEPT type data, `deptproc` is called. For other arrays of 1D spectra, `procarray` is called. For 2D spectra, `proc2d` is called. `process` by itself is called within the `procplot` macro.

See also: *NMR Spectroscopy User Guide*

Related:
- `apptype`
 Application type (P)
- `c13p`
 Processing of 1D carbon spectra (M)
- `deptproc`
 Process array of DEPT spectra (M)
- `execpars`
 Set up the exec parameters (M)
- `execprocess`
 Execute processing macro (P)
- `f19p`
 Processing of 1D fluorine spectra (M)
- `h1p`
 Processing of 1D proton spectra (M)
- `proc1d`
 Automatically process non-arrayed 1D fids (M)
- `proc2d`
 Process 2D spectra (M)
- `procarray`
 Process arrayed 1D spectra (M)
- `procplot`
 Automatically process FIDs (M)
- `tn`
 Nucleus for observe transmitter (P)

procplot
Automatically process FIDs (M)

Syntax: `procplot<(pltmod_value)>`
Description: Universal FID processing macro called usually with `wexp='procplot'` by automatic acquisition macros such as `h1, cl1, hcapt, and hcosy`. The purpose of `procplot` is not the data processing itself, but rather the selection of the appropriate processing macro for a given data set.

First, `procplot` calls a macro `process` that calculates spectra; that macro by itself then selects an appropriate processing macro, like `proc1d` for non-arrayed 1D spectra. Depending whether the parameter `pltmod` is set to 'none' or not, `procplot` then calls `plot`, a universal plotting macro. The setting of the parameter `pltmod` can be temporarily overridden by specifying an alternative value as argument to `procplot`.

One of the concepts behind `procplot` is that the user should never have to modify any processing macro for customizing the processing or the output of automatic experiments or processing; this outcome can happen by selecting a parameter in the calling macro or before calling `procplot`.

Arguments: `pltmod_value` is an alternate value for the parameter `pltmod` that is only used for the current call. The values 'none' and 'off' suppress plotting. The range of possible (active) values for `pltmod_value` depends on the plotting macros. Often, the parameter `pltmod` has no effect other than turning on or off plotting. Note that if only the calculation of a spectrum is desired, it is usually easier to call the `process` macro.

Examples: `procplot`
`procplot('none')`

See also: NMR Spectroscopy User Guide

Related: `deptproc` Process arrayed dept type spectra (M)
`plot` Automatically plot spectra (M)
`pltmod` Determine plot mode (P)
`proc1d` Processing macro for simple (non-arrayed) 1D spectra (M)
`proc2d` Process 2D spectra (M)
`procarray` Process arrayed 1D spectra (M)
`process` Automatically calculate spectra (M)

profile
Set up pulse sequence for gradient calibration (M)

Applicability: Systems with the pulsed field gradients (PFG) module.

Description: Performs an rf and gradient echo sequence that gives a high quality profile of the sample. This sequence is used with the macro `setgcal` to provide gradient strength calibration.

See also: Performa I Pulsed Field Gradient Module Installation; Pulsed Field Gradient Modules Installation; User Programming

Related: `gcal` Gradient calibration constant (P)
`setgcal` Calibrate gradient strength from measured data (M)

proj
Project 2D data (C)

Syntax: `proj(exp_number<,'sum'>,<start<,width>>)`

Description: Projects 2D data onto the axis parallel to the screen x-axis, which can be f1 or f2, depending upon the parameter `trace`. Two projections are available:

- **Summing projection.** The data at each frequency are summed and the result becomes the projection.

- **Skyline projection.** The data are searched and the maximum intensity at any given frequency becomes the intensity in the projection (similar to looking
at the skyline of a city where only the largest building along any given line
of sight is visible).

Phase-sensitive data can be projected, but the resulting projection can only be
displayed in an absolute-value mode

Arguments: `exp_number` is the number of the experiment, from 1 through 9, in which the
resulting spectrum is stored.
'sum' is a keyword to use the summing projection. The default is skyline.
`start` defines the starting trace, in Hz. The default is to project all data.
`width` defines the width of the traces, in Hz, to be projected. The default is to
project all data. If `width` is supplied as zero, a single trace corresponding to the
`start` frequency will be stored.

Examples:
```
proj(3)
proj(5,'sum')
proj(4,3*sfrq,6*sfrq)
```

See also: *NMR Spectroscopy User Guide*
Related: `trace` Select mode for 2D data display (P)

Proton
Set up parameters for ¹H experiment (M)

Description: Set up parameters for ¹H experiment.

protune
Macro to start ProTune (M)

Applicability: Liquids, Walkup, Automation

Syntax:
```
protune(freq1 <, match1 <, freq2 <, match2>>>)
protune('argument',<$nucleus,<$target>>)  
protune('exec', command1 <, command2, ...>)
```

Description: Tunes to frequency `freq1` MHz if the first argument is the frequency in MHz.
Executes a sequence of arbitrary tuning commands if the first argument is the
keyword exec. Any command that can be typed into the command line box in
the ProTune GUI display is allowed.

Arguments: First case:
- `freq1` MHz — first tuning frequency in MHz
- `match1` — % of optimum for the first frequency, 5% is the default
- `freq2` MHz — optional second tuning frequency in MHz
- `match2` — % of optimum for the second frequency, 5% is the default.

Second case:
- 'argument' may have the following values:
 - no argument opens Tune Probe dialog for probe tuning. Select the
 nucleus to tune and how coarse to tune using the
 buttons and menus in the dialog box.
 - 'popup' open ProTune calibration interface.
 - 'calibrate' tune using specified nucleus — `$nucleus` must be
 specified.
 - 'nucleus' — Nucleus to tune to, 'H1', 'C13' ...
 - `$target` — Tune target level, 0.1(finest) to 100 (coarsest), defaults to 5 if no
 value is specified.
Third case:

`exec` — keyword that precedes a command or string of commands.

Examples: `protune('exec', 'setTuneFrequency 0 599.96e6')`
Tunes the probe to 599.96 MHz.

See also: User Guide Liquids and VnmrJ Walkup

Related: `atune` ProTune present (P)
`protunegui` Macro to start ProTune in graphical user interface (M)
`plockport` Port number to use to lock out multiple ProTune processes (P)
`probeConnect` Specify which nucleus can be tuned on each RF channel (P)
`settune` set up tune parameters for automation
`showprotunegui` show the graphical interface while tuning (P)
`tchan` RF channel number used for tuning (P)
`tugain` Receiver gain used in tuning (P)
`tunehf` Tune both H1 and F19 on an HFX probe (M)
`tunewidth` Width of the tuning sweep in Hz (P)
`tunematch` Default match target, in percent of optimum (P)
`tupwr` Transmitter power used in tuning (P)
`tunemethod` Method to use for tuning (P)
```w tuna` Specify when to tune (P)
```w tunedone` What to do after tuning is done (P)
```xmtune` Check tune parameter during automation (M)

**protune**  
Shell script for start ProTune operation (U)

Applicability: Automation

Description: Starts and stops ProTune. Usually called from Protune macros.

See also: *NMR Spectroscopy User Guide* and *VnmrJ Walkup*

Related: `protune` (M) Macro to start ProTune (M)

**protunegui**  
Macro to start ProTune in graphical user interface (M)

Applicability: Liquids, VnmrJ Walkup, Automation

Syntax: `protune('argument',<$nucleus,$target>)`

Description: Starts ProTune in graphical mode.

Arguments: see `protune` (M)

See also: *NMR Spectroscopy User Guide* and *VnmrJ Walkup*

Related: `protune` (M) Macro to start ProTune (M)

**prune**  
Prune extra parameters from current tree (C)

Syntax: `prune(file)`

Description: Destroys parameters in the current parameter tree that are not also defined in the supplied parameter file. `prune` is used to remove leftover parameters from previous experimental setups. Recalling a new parameter set into an experiment has a similar effect and, in general, `prune` is not required.

Arguments: `file` is the path of a parameter file.

Examples: `prune(systemdir+'/parlib/cosyps.par/procpar')`
`prune('/vnmr/par400/stdpar/H1.par/procpar')`
`prune(userdir+'/exp3/curpar')`
See also: *User Programming*

Related:
- `create` Create new parameter in a parameter tree (C)
- `destroy` Destroy a parameter (C)
- `display` Display parameters and their attributes (C)
- `fread` Read parameters from file and load them into a tree (C)
- `fsave` Save parameters from a tree to a file (C)

**pscale**

*Plot scale below spectrum or FID (C)*

**Syntax:**
```
pscale<(<rev><,axis><,label><,vp0><,sp0><,color><,pen>)>
```

**Description:**
Plots a scale under a spectrum or FID.

**Arguments:**
- `rev` – reverses the direction of the scale. That is, the smaller numbers will be at the left side of the scale. If used, `rev` must be the first argument.
- `axis` – If the letter `p`, `h`, `k`, etc. is supplied, it will be used instead of the current value of the parameter `axis`. For an FID scale, if the letter `s`, `m`, or `u` is supplied, it will be used instead of the current value of the parameter `axisf`.
- `label` – If a string of 2 or more characters is supplied, it will be used as the axis label.
- `vp0` – This is supplied as the first real number. It defines the vertical position where the scale is drawn. The default is 5 mm below the current value of the parameter `vp`.
- `sp0` – This is supplied as the second real number. It is a modified start of plot. If, for example, the display is from 347 to 447 hz, but the scale is desired to read 0 to 100 hz., `sp0` would be input as 0.
- `wp0` – This is supplied as the third real number. It is a modified width of plot. If, for example, the display is from 347 to 447 hz, but the scale is desired to read 0 to 550 Units. `sp0` would be input as 0, `wp0` would be 550, and the label would be 'Units'.

An optional color or pen number can be supplied to `dscale` or `pscale`. The available colors and pens are: 'red', 'green', 'blue', 'cyan', 'magenta', 'yellow', 'black', 'white', 'pen1', 'pen2', 'pen3',..., 'pen8'

**Examples:**
```
pscale
pscale(20)
pscale('h',0,'pen2')
pscale('fid','m')
pscale('h',vp-10,0)
```

See also: *NMR Spectroscopy User Guide*

Related:
- `axis` Axis label for displays and plots (P)
- `axisf` Axis label for FID displays and plots (P)
- `dscale` Display scale below spectrum or FID (C)
- `vp` Vertical position of spectrum (P)

**pseudo**

*Set default parameters for pseudo-echo weighting (M)*

**Syntax:**
```
pseudo<(C1,C2,C3,C4)>
```

**Description:**
Generates an initial guess at good weighting parameters for absolute-value 2D experiments. To generate modified guesses, four coefficients are allowed to set the values of the weighting functions.

**Arguments:**
- `C1` sets \( lb = -0.318 / (C1 \cdot at) \). The default value of C1 is 0.0625.
- `C2` sets \( gf = C2 \cdot at \). The default value of C2 is 0.25.
C3 sets \( lb1 = \frac{-0.318}{C3 \cdot (ni/sw1)} \) but is used with 2D experiments only. The default value of C3 is 0.0625.

C4 sets \( gf1 = C4 \cdot (ni/sw1) \) but is used with 2D experiments only. The default value of C4 is 0.25.

Examples:  
\begin{align*}
\text{pseudo} \\
\text{pseudo}(.1, .4, .2, .5)
\end{align*}

See also: *NMR Spectroscopy User Guide*

Related: sinebell Select default parameters for sinebell weighting (M)

**psg**

**Display pulse sequence generation errors (M)**

Description: Helps identify the problem if, after entering `go` or `su`, etc., the message is returned that pulse sequence generation (PSG) aborted abnormally. Any parameters that are not found are listed. This information is stored in the user's directory (`vnmrsys`) in a text file named `psg.error`. If the message “Maximum communication retries exceeded, Experiment unable to be sent” is displayed, a program communications problem is indicated. Consult the system operator for assistance.

See also: *User Programming*

**psggen**

**Compile a user PSG object library (M,U)**

Description: A user PSG (pulse sequence generation) kit is supplied that allows editing low-level pulse sequence code. `psggen` compiles these edits so that subsequent pulse sequence generation with the `seqgen` command uses the customized pulse sequence source.

See also: *User Programming*

**psgset**

**Set up parameters for various pulse sequences (M)**

Syntax:  
`psgset(file,par1,par2,...,parN)`

Description: Sets up parameters for various pulse sequences using information in a `parlib` file. Rather than returning the entire parameter file, `psgset` returns the parameters listed. `psgset`, in general, is never entered from the keyboard but is used as part of experiment setup macros.

Arguments:  
- `file` is the file from the user or system `parlib` that provides information on setting up the parameters listed. The parameters `seqfil` and `pslabel` are set to the supplied file name.
- `par1,par2,...,pN` are 1 to 11 parameters to be returned from `parlib`.

Examples:  
`psgset('cosy','dg','ap','ss','d1','axis','phase')`

See also: *User Programming*

Related: `pslabel` Pulse sequence label (P)  
`seqfil` Pulse sequence name (P)

**psgupdateon**

**Enable update of acquisition parameters (C)**

Description: Permits the interactive updating of acquisition parameters.

See also: *SpinCAD*

Related: `psgupdateoff` Prevent update of acquisition parameters (C)  
`updtparam` Update specified acquisition parameters (C)
psgupdateoff

**Prevent update of acquisition parameters (C)**

Description: Prevents the interactive updating of acquisition parameters.

See also: SpinCAD

Related: psgupdateon Enable update of acquisition parameters (C)
updtparam Update specified acquisition parameters (C)

pshape

**Plot pulse shape or modulation pattern (M)**

Syntax: `pshape<(pattern.ext)>`

Description: Plots the real (X) and imaginary (Y) components of a shaped pulse. Any type of waveform (.RF, .DEC or .GRD) can be plotted.

Arguments: `pattern` is the name of a shape or pattern file specified by an absolute file name, relative file name, or a simple pattern file name. `ext` is a file name extension that specifies the file type. In the case of a simple file name, `dshape` searches for the file in the local directory, then in the user's `shapelib`, and finally in the directory `/vnmr/shapelib`. If `pattern.ext` is not given, `pshape` displays the last created waveform stored in the `pbox.fid` file.

Examples:

```
pshape
pshape('my_shape.DEC')
```

See also: NMR Spectroscopy User Guide

Related: dshape Display the last created pulse shape (M)
Pbox Pulse shaping software (U)

pshapef

**Plot the last created pulse shape (M)**

Description: Plots real (X) and imaginary (Y) components of the last created shaped pulse.

See also: NMR Spectroscopy User Guide

Related: dshape Display the last created pulse shape (M)
Pbox Pulse shaping software (U)

pshr

**PostScript High Resolution plotting control (P)**

Applicability: ALL

Syntax: `pshr=<value>`

Description: Global parameter that controls whether a 1D spectrum is plotted in hi-resolution mode or not. A hi-resolution plot is one in which every data point is represented in the plot. The standard resolution plot determines maximum and minimum values over small regions and plots those. The parameter `pshr` can have the values 1 for hi-res and 0 for standard plot.

Values:

- 0 for standard resolution
- 1 for high resolution.

Related: pl Plot spectra (C)
pslw PostScript Line Width control (P)

pslabel

**Pulse sequence label (P)**

Description: Contains the text to be displayed in the `Seq:` field on the top line of the screen. This string may be different from the pulse sequence name selected with `seqfil`. However, the string in `seqfil` is the name of the pulse sequence.
searched for when an experiment is started. Generally seqfil=pslabell, and when seqfil is set, the system sets pslabel to the same string.

See also: NMR Spectroscopy User Guide
Related: seqfil Pulse sequence name (P)

**pslw**

PostScript Line Width control (P)

Applicability: ALL
Syntax: pslw=<value>
Description: Global parameter that adjusts the line width of PostScript plots.
Values: 0 (narrowest) to 100 (widest) line width.

Related: pl Plot spectra (C)
pshr PostScript High Resolution plotting control (P)

**pssl**

Plot Arrayed Numbers (C)

Syntax: pssl(<options>)
Description: Plots a label for each element in a set of stacked spectra. The label is an integer value from 1 up to the number of spectra in the display.
Arguments: options can be any of the following:
- 'all' is a keyword to display all of the spectra.
- 'int' is a keyword to display only the integral, independently of the value of the parameter intmod
- 'top' or 'side' are keywords that cause the spectrum to be displayed either above or at the left edge, respectively, of a contour plot. This assumes that the parameters sc, wc, sc2, and wc2 are those used to position the contour plot.
- 'dodc' is a keyword for all spectra to be drift corrected independently.
- 'red', 'green', 'blue', 'cyan', 'magenta', 'yellow', 'black', and 'white' are keywords that select a color.
- 'pen1', 'pen2', 'pen2' ... are keywords that pens.
- 'nopars' — prevents the display commands from drawing the parameters at the bottom of the graphics screen.
- 'custom' — uses the parameters shownumx (x position) and shownumy (y position), counting from bottom left of every spectrum.
- 'reverse' — rotate the text by 90° - useful if the arrayed parameter values are long with respect to the width of the individual sub-spectra.
- 'value' — The values of up to two simultaneous arrays are displayed. Diagonal arrays are allowed. The second parameter is shown in different color). The name of the arrayed parameter(s) is also shown. If used on a one-dimensional array representation of a 2D spectrum, ni and phase (in case of phase sensitive 2Ds) parameters are shown.
- 'list=xxx' produces a display of the values contained in the arrayed parameter xxx.
- 'format=yyy' uses the format yyy to control the plot of each label. See the write command for information about formats.
Examples:

```plaintext
pssl
pssl('top','left')
pssl('value','format=%3.1f')
```

See also: *NMR Spectroscopy User Guide*

Related: `dssl` Label a display of stacked spectra (M)

`write` Write formatted text to a device (C)

---

**ptext**

Print out a text file (M)

**Syntax:**

`ptext(file)`

**Description:**

Prints out a text file.

**Arguments:**

`file` is the name of the text file.

**Examples:**

```plaintext
ptext('/vnmr/maclib/ptext')
ptext(curexp+ '/dept.out')
```

See also: *NMR Spectroscopy User Guide*

Related: `curexp` Current experiment directory (P)

`dtext` Display a text file in the graphics window (C)

`lookup` Look up words and lines from a text file (C)

`pltext` Plot a text file (C)

`text` Display text or set new text for current experiment (C)

`textvi` Edit text file of current experiment (M)

`vi` Edit text file with `vi` text editor (C)

---

**ptspec3d**

Region-selective 3D processing (P)

**Description:**

Sets whether region-selective 3D processing occurs. If `ptspec3d` does not exist, it is created by the macro `par3d`. `ptspec3d` is functional at this time only for the $f_3$ dimension. If `ptspec3d='ynn'`, only the currently displayed region of $f_3$ is retained as non-zero values after the $f_3$ transform in the 3D FT. A larger $f_3$ region may be kept to ensure that the number of hypercomplex $f_3$ points is a power of 2; but that portion of the $f_3$ spectrum that is retained outside of the currently displayed region contains only zeroes. This 3D utility can reduce the fully transformed 3D data size by factors of 2 to 4, especially in some of the triple resonance experiments.

**Values:**

A three-character string such as ‘ynn’, ‘yny’, ‘nyy’, etc. The default is ‘nnn’. The first character refers to the $f_3$ dimension (sw, np, fn); the second character, to the $f_1$ dimension (sw1, ni, fn1); and the third character, to the $f_2$ dimension (sw2, ni2, fn2). Each character may take one of two values: ‘n’ for no region-selective processing in the relevant dimension, or ‘y’ for region-selective processing in the relevant dimension.

See also: *NMR Spectroscopy User Guide*

Related: `fiddc3d` 3D time-domain dc correction (P)

`fn` Fourier number in directly detected dimension (P)

`fn1` Fourier number in 1st indirectly detected dimension (P)

`fn2` Fourier number in 2nd indirectly detected dimension (P)

`ft3d` Perform a 3D Fourier transform (M)

`ni` Number of increments in 1st indirectly detected dimension (P)

`ni2` Number of increments in 2nd indirectly detected dimension (P)

`np` Number of data points (P)

`ntype3d` N-type peak selection in $f_1$ or $f_2$ (P)

`par3d` Create 3D acquisition, processing, display parameters (C)

`specdc3d` 3D spectral drift correction (P)
ptsval  PTS frequency synthesizer value (P)
Description: Configuration parameter for the frequency of the PTS synthesizer on each channel. Every broadband system is equipped with a PTS frequency synthesizer as part of broadband frequency generation. The frequency of the unit is marked on its front panel. The value is set for each channel using the Synthesizer label in the Spectrometer Configuration window.
Values: 0 (Not Present choice in Spectrometer Configuration window); 160, 200, 250, 320, 500, 620, 1000 (PTS 160, PTS 200, PTS 250, PTS 320, PTS 500, PTS 620, PTS 1000 choices in Spectrometer Configuration window, respectively).
See also: *VnmrJ Installation and Administration.*
Related: config  Display current configuration and possibly change it (M)
latch  Frequency synthesizer latching (P)
overrange  Frequency synthesizer overrange (P)

pulseinfo  Shaped pulse information for calibration (M)
Syntax: pulseinfo<(shape,pulse_width<,reference_power>)> :width,power
Description: Returns or prints a table with the bandwidth and predicted pulse power settings for a given pulse shape. No parameter settings are changed. The necessary data is contained in the file shapeinfo in the system shapelib subdirectory.
Arguments: shape is the name of the pulse shape. The default is the system interactively prompts the operator for the name of the shape and the duration of the pulse and then prints a table containing the bandwidth of that pulse and the predicted pulse power settings.
pulse_width is the duration of the pulse, in μs.
reference_power is a value, in dB, for power calculations. The default is 55. This value replaces the assumption used for power calculation that pw90 is set for a tpwr of 55.
width returns the bandwidth of that pulse, in Hz.
power returns the predicted 90° pulse power settings.
Examples: pulseinfo('gauss',1000):bw,pwr
See also: *User Programming*
Related: bandinfo  Shaped pulse information for calibration (M)
pw90  90° pulse width (P)
tpwr  Observe transmitter power level with linear amplifiers (P)

pulsetool  RF pulse shape analysis (U)
Syntax: pulsetool <-shape filepath>
Description: Enables examination of shaped rf pulses. It is started from a UNIX window.
Arguments: The optional -shape filepath specifies the name of an rf pulse template file that is displayed when pulsetool is started.
Examples: pulsetool
pulsetool -shape /vnmr/shapelib/sinc.RF
purge  Remove macro from memory (C)

Syntax:    purge<(file)>

Description: Removes one or more macros from memory, freeing extra memory space.

Arguments:  file is the name of a macro file to be removed from memory. The default is to remove all macros that have been loaded into memory.

CAUTION:  The purge command with no arguments should never be called from a macro. The purge command with an argument should never be called by the macro being purged.

Examples:  purge
           purge('_sw')

See also:  User Programming

Related:  macrold       Load a macro into memory (C)

puttxt  Put text file into a data file (C)

Syntax:    puttxt(file)

Description: Copies text from current experiment into a data file.

Arguments:  file is the name of a data file (i.e., a directory with a .fid or .par suffix). Do not include the suffix in the name provided to file.

Examples:  puttxt('mydata')

See also:  NMR Spectroscopy User Guide

Related:  gettxt       Get text file from another file (C)

putwave  Write a wave into Pbox.inp file (M)

Syntax:    putwave(sh,bw,pw,ofs,st,ph,fla,trev,d1,d2,d0)

Description: Sets up a single excitation band in the Pbox.inp file. An unlimited number of waves can be combined by reapplying putwave.

Arguments:  1 to 11 wave parameters in the following predefined order:
            sh is the name of a shape file.
            bw is the bandwidth, in Hz.
            pw is the pulsewidth, in sec.
            ofs is the offset, in Hz.
            st is a number specifying the spin status: 0 for Mz, or 1 for Mxy.
            ph is the phase (or phase cycle, see wavelib/supercycles).
            fla is the flip angle. Note that fla can override the default flip angle.
            trev concerns time reversal. It can be used to cancel time reversal if spin status (st) is set to 1 for Mxy.
            d1 is the delay, in sec, prior the pulse.
            d2 is the delay, in sec, after the pulse.
            d0 is a delay or command prior to d1. If d0=a, the wave is appended to the previous wave.

Examples:  putwave('eburp1')
           putwave('GARP',12000.0)
           putwave('esnob',600,-1248.2,1,90.0,'n','n',0.001)
See also: NMR Spectroscopy User Guide

Related: Pbox Pulse shaping software (U)
setwave Write a wave definition string into the Pbox.inp file (M)

$_{pw}$

**Enter pulse width $pw$ in degrees (C)**

*Syntax:* $pw(\text{flip\_angle},<90\_\text{pulse\_width}>)$

*Description:* Calculates the flip time, in $\mu$s, given a desired flip angle and 90° pulse. The value is entered into the parameter $pw$.

*Arguments:* $\text{flip\_angle}$ is the desired flip angle, in degrees.

$90\_\text{pulse\_width}$ is the 90° pulse length, in $\mu$s. The default is the value of parameter $pw90$, if it exists.

*Examples:* $pw(30)$
$pw(90,12.8)$

See also: NMR Spectroscopy User Guide

Related: ernst Calculate the Ernst angle pulse (C)
$pw$ Pulse width (P)
$pw90$ 90° pulse width (P)

$_{pw}$

**Pulse width (P)**

*Description:* Length of the final pulse in the standard two-pulse sequence. In “normal” 1D experiments with a single pulse per transient, this length is the observe pulse width.

*Values:* 0, 0.1 $\mu$s to 8190 sec, smallest value possible is 0.1 $\mu$s, finest increment possible is 12.5 ns.

See also: NMR Spectroscopy User Guide

Related: p1 First pulse width (P)
$pw$ Enter pulse width parameter $pw$ in degrees (C)

$_{pw90}$

**90° pulse width (P)**

*Description:* Length of the 90° pulse. $pw90$ is not used by pulse sequences directly, but is used by a number of commands to assist in setting up special experiments. $pw90$ is also used by certain output programs to be able to print the value of the pulse width in degrees instead of microseconds. Note that this parameter must be updated by the user and is not automatically determined or magically correct under all circumstances.

*Values:* 0, 0.1 $\mu$s to 8190 sec, smallest value possible is 0.1 $\mu$s, finest increment possible is 12.5 ns.

See also: NMR Spectroscopy User Guide

Related: AC1S-AC11S Autocalibration macros (M)
$pw$ Enter pulse width parameter $pw$ in degrees (C)

$_{pwd}$

**Display current working directory (C)**

*Syntax:* pwd:$<\text{directory}>$

*Description:* Displays the path of the current working directory.

*Arguments:* $\text{directory}$ is a string variable with the path of the current directory.

*Examples:* pwd:$\text{name}$
**pwpat**

**Shape of refocusing pulse (P)**

**Applicability:** Systems with imaging capabilities.

**Description:** Specifies the shape of the refocusing pulse pw in imaging experiments.

**Values:** 'hard', 'sinc', 'gauss', 'sech', 'sine', or any shape resident in the system pulse shape library or libraries.

**See also:** *NMR Spectroscopy User Guide*

**Related:**
- pipat: Shape of an excitation pulse (P)
- pw: Pulse width (P)

**pwr**

**Set power mode in directly detected dimension (C)**

**Description:** Selects the power spectra display mode by setting dmg='pwr'. In the *power mode*, each real point in the displayed spectrum is calculated as the sum of the squares of the real and imaginary points comprising each respective complex data point. All information, including noise, is positive and the relationship between signal and noise is non-linear.

For multidimensional data, pwr has no effect on data prior to the second Fourier transform. If pmode='full', pwr acts in concert with the commands ph1, av1 or pwr1 to yield the resultant contour display for the 2D data.

**See also:** *NMR Spectroscopy User Guide*

**Related:**
- av: Set abs. value mode in directly detected dimension (C)
- av1: Set abs. value mode in 1st indirectly detected dimension (C)
- dmg: Data display mode in directly detected dimension (P)
- ft: Fourier transform 1D data (C)
- ft1d: Fourier transform along f2 dimension (C)
- ft2d: Fourier transform 2D data (C)
- pa: Set phase angle mode in directly detected dimension (C)
- pal: Set phase angle mode in 1st indirectly detected dimension (C)
- ph: Set phased mode in directly detected dimension (C)
- ph1: Set phased mode in 1st indirectly detected dimension (C)
- pmode: Processing mode for 2D data (P)
- pwr1: Set power mode in 1st indirectly detected dimension (C)
- pwr2: Set power mode in 2nd indirectly detected dimension (C)
- wft: Weight and Fourier transform 1D data (C)
- wft1d: Weight and Fourier transform f2 of 2D data (M)
- wft2d: Weight and Fourier transform 2D data (M)

**pwr1**

**Set power mode in 1st indirectly detected dimension (C)**

**Description:** Selects the power spectra display mode along the first indirectly detected dimension by setting dmg1='pwr1'. If the parameter dmg1 does not exist, pwr1 creates it and sets it to 'pwr1'. In the *power mode*, each real point in the displayed trace is calculated as the sum of the squares of the real and imaginary points comprising each respective complex data point. For hypercomplex data, the real-real and imaginary-real points from each respective hypercomplex data...
point are used in the summation. In this mode, all information, including noise, is positive and the relationship between signal and noise is non-linear.

The \texttt{pwr1} command is only needed if mixed-mode display is desired. If the parameter \texttt{dmg1} does not exist or is set to the null string, the display mode along the first indirectly detected dimension defaults to the display mode of the directly detected dimension (characterized by the parameter \texttt{dmg}). For the contour display of multidimensional data, the result of \texttt{pwr1} is the same as for traces, provided that \texttt{pmode='partial'} or \texttt{pmode='}'.

See also: *NMR Spectroscopy User Guide*

\textbf{Related:} \texttt{dmg1} Data display mode in 1st indirectly detected dimension (P)  
\texttt{pa} Set phase angle mode in directly detected dimension (C)  
\texttt{pal} Set phase angle mode in 1st indirectly detected dimension (C)  
\texttt{pmode} Processing mode for 2D data (P)  
\texttt{pwr} Set power mode in directly detected dimension (C)  
\texttt{pwr2} Set power mode in 2nd indirectly detected dimension (C)

\textbf{pwr2} Set power mode in 2nd indirectly detected dimension (C)  

\textbf{Description:} Selects the power spectra display mode along the second indirectly detected dimension by setting \texttt{dmg2='pwr2'}. If \texttt{dmg2} does not exist or is set to the null string, \texttt{pwr2} will create \texttt{dmg2} and set it equal to \texttt{'pwr2'}. In the \textit{power mode}, all information, including noise, is positive and the relationship between signal and noise is non-linear. Each real point in the displayed trace is calculated as the sum of the squares of the real and imaginary points comprising each respective complex data point. For hypercomplex data, the real-real and imaginary-real points from each respective hypercomplex data point are used in the summation.

The \texttt{pwr2} command is only needed if mixed-mode display is desired. If the parameter \texttt{dmg2} does not exist or is set to the null string, the display mode along the second indirectly detected dimension defaults to the display mode of the directly detected dimension (characterized by the parameter \texttt{dmg}). For the contour display of multidimensional data, the result of \texttt{pwr2} is the same as for traces, provided that \texttt{pmode='partial'} or \texttt{pmode='}'.

See also: *NMR Spectroscopy User Guide*

\textbf{Related:} \texttt{av2} Set abs. value mode in 2nd indirectly detected dimension (C)  
\texttt{dmg2} Data display mode in 2nd indirectly detected dimension (P)  
\texttt{ft1d} Fourier transform along \(f_2\) dimension (C)  
\texttt{ft2d} Fourier transform 2D data (C)  
\texttt{ph2} Set phased mode in 2nd indirectly detected dimension (C)  
\texttt{pmode} Processing mode for 2D data (P)  
\texttt{pwr} Set power mode in directly detected dimension (C)

\textbf{pwsadj} Adjust pulse interval time (M)  

\textbf{Applicability:} Systems with waveform generators.  
\textbf{Syntax:} \texttt{pwsadj(shape_file,pulseParameter)}  
\textbf{Description:} Adjusts the pulse interval time so that the pulse interval for the specified shape is an integral multiple of 100 ns. This ensures there is no time truncation error in executing the shaped pulse by waveform generators.  
\textbf{Arguments:} \texttt{shape_file} is a file name of a shaped pulse file. The name can be specified with or without the \texttt{.RF} file extension. \texttt{pwsadj} first looks for the file name specified by \texttt{shape_file} in the user's \texttt{shapelib} directory. If the file
specified is not found there, `pwsadj` then looks in the system `shapelib` directory.

`pulse_parameter` is a string containing the adjusted pulse interval time.

Examples: `pwsadj('pulse12', 'pulseparam')`

See also: *User Programming*

Related: `dmfadj` Adjust decoupler tip-angle resolution time (M)

`dmf2adj` Adjust second decoupler tip-angle resolution time (M)

**pwxcal**

Decoupler pulse calibration (M)

**Description:** Provides an interactive method of selecting the decoupler (first, second, or third) and the nucleus ($^{13}$C, $^{15}$N, or $^{31}$P) to calibrate. The `pwxcal` pulse sequence determines the pulse width characteristics of the probe's decoupler channel(s) in indirect detection or triple resonance experiments. `pwxcal` can also be used to determine the rf field homogeneity of the decoupler.

The parameter `pwx1` is arrayed to calibrate the 90° pulse width on the first decoupler. If a second decoupler is present, the parameter `pwx2` is arrayed to calibrate the 90° pulse width on that decoupler. If a third decoupler is present, the parameter `pwx3` is arrayed to calibrate the 90° pulse width on that decoupler. Other parameters include: `jC13` is the $^{13}$C-$^1$H coupling constant, `jN15` is the $^{15}$N-$^1$H coupling constant, `jP31` is the $^{31}$P-$^1$H coupling constant, and `jname` is a selected calibration nucleus.

See also: *System Administration*

**pxbss**

Bloch-Siegert shift correction during Pbox pulse generation (P)

**Description:** A flag to enable or disable Bloch-Siegert shift correction during the creation of Pbox pulses.

Values: 'y' enable Bloch-Siegert shift correction

'n' disable Bloch-Siegert shift correction

Default value is 'y'.

See also: *NMR Spectroscopy User Guide*

Related: `htfrql` Hadamard frequency list in ni (P)

**pxrep**

Flag to set the level of Pbox reports (P)

**Description:** A flag to set the level of Pbox debug messages displayed at the start of acquisition.

Values: 'y' shows all Pbox reports.

'h' shows the Hadamard matrix.

'n' shows no reports.

Default value is 'nnn'.

See also: *NMR Spectroscopy User Guide*

Related: `htfrql` Hadamard frequency list in ni (P)

**pxset**

Assign Pbox calibration data to experimental parameters (M)

**Syntax:** `pxset <file.ext>`

**Description:** Retrieves experimental settings from a file and assigns them to corresponding experimental parameters using a dialog form. If no file name is provided, `pxset` extracts data from the `Pbox.cal` file that contains the output data of the last created waveform
Arguments: 

file.ext is the name of a shape or pattern file.

Examples: 

pxset
pxset('Pbox.RF')

See also: NMR Spectroscopy User Guide

Related: Pbox Pulse shaping software (U)
pboxget Extract Pbox calibration data (M)

pxshape Generates a single-band shape file (M)

Syntax: pxshape('sh bw/pw ofs st ph fla trev \ 
d1 d2 d0', name, disp)

Description: Generates a single-band waveform based on wave definition provided as a single string of wave parameters.

Arguments: 

A single string of 1 to 12 wave parameters in predefined order. Note that a single quote is required at the start and the end of the entire string, but no single quotes are required surrounding characters and strings inside the entire string.

sh is the name of a shape file.

bw/pw is either the bandwidth, in Hz, or the pulsewidth, in sec.

ofs is the offset, in Hz.

st is a number specifying the spin status: 0 for Mz, or 1 for Mxy.

ph is the phase (or phase cycle, see wavelib/supercycles).

fla is the flip angle. Note that fla can override the default flip angle.

trev is a time reversal. This can be used to cancel time reversal if spin status (st) is set to 1 for Mxy.

d1 is the delay, in sec, prior the pulse.

d2 is the delay, in sec, after the pulse.

d0 is a delay or command prior to d1. If d0=a, the wave is appended to the previous wave.

name is the output file name. An extension is optional and can be used to override an internally defined shape type.

disp is the shape is displayed by default in the graphics window. If disp is set to 'n', the shape is not displayed.

Examples: pxshape('eburp1','myshape.RF')
pxshape('GARP 12000.0','shape2','y')
pxshape('esnob 600.0 -1248.2 n 180.0 n n 0.001','xxx')

See also: NMR Spectroscopy User Guide

Related: Pbox Pulse shaping software (U)

Pxsim Simulate Bloch profile for a shaped pulse (U)

Syntax: Pxsim file <simtime <num_steps <add/sub>>>

Description: Used by the dprofile macro to simulate a Bloch profile for a shaped pulse. Pxsim extracts the information necessary for simulation from the shape header. Only shape files containing this information can be processed.

Arguments: 

file is the name of a shape or pattern file including an .RF or .DEC extension. Pxsim searches for the file in the user's shapelib (~/.vnmrsys/shapelib), and if not found there, it searches in the system shapelib (/vnmr/shapelib).

simtime is the maximum simulation time (in sec) that can be provided.
num_steps is the number of steps in the profile.
add/sub is add (a) or subtract (s) from the previous simulation.

Examples: Pxsim myshape.RF
See also: NMR Spectroscopy User Guide
Related: Pbox Pulse shaping software (U)

Pxspy

Create shape definition using Fourier coefficients (U)

Syntax: Pxspy file

Description: An interactive program that converts shaped pulse files into a Fourier series and produces an output file pbox.cf in the user’s shapelib (~/vnmrsys/shapelib), which can be used to create a wave definition file in the wavelib directory. Pxspy can also be used to convert hard pulse decoupling sequences into soft (“cool”) decoupling waveforms. The resulting Fourier coefficients can depend on the number of points in the waveform.

Arguments: file is the name of a shape or pattern file, including an .RF, .DEC, or .GRD extension. The name can be given as a relative name, absolute name, or as a simple name (i.e., with a path). If given as a simple name, Pxspy searches for the file in the user’s shapelib (~/vnmrsys/shapelib), and then if not found there, it searches in the system shapelib (vnmr/shapelib).

Examples: Pxspy myshape.RF
Pxspy /vnmr/shapelib/myshape.RF
Pxspy ~/.vnmrsys/shapelib/myshape.RF

See also: NMR Spectroscopy User Guide
Related: Pbox Pulse shaping software (U)
qcomp  Longer dead time for longer ring down (P)

Applicability:  Inova systems with Varian, Inc. Cold Probes

Description:  Global parameter to handle longer ring down times following the rf pulse. This is only active if \( \text{dsp} = 'i' \) or if \( \text{dsp} = 'r' \) and \( \text{fsq} = 'y' \). The dead time is calculated by the software and the DSP parameters are appropriately adjusted for flat baseline and good phase properties. If it is necessary to use a user specified delay, create the \( \text{prealfa} \) parameter. \( \text{qcomp} \) is not effective in explicit acquisition experiments. Not compatible with \( \text{srof2} \).

Values:  \( \text{qcomp} = 'y' \) triggers a longer dead time before the receiver is gated on for the acquisition.

Related:  \( \text{prealfa} \)  Specify a delay for longer ring down (P)
\( \text{dsp} \)  Type of DSP for data acquisition (P)

QKexp  Set up quick experiment (M)

Syntax:  \( \text{QKexp(\text{arguments})} \)

Description:  Set up parameters for quick experiment for a chained acquisition. Multiple arguments can be given to define the chain. Default parameter values are used by the macro and or the probe file is used.

Examples:
\( \text{QKexp('PROTON','COSY','HMQC')} \)
\( \text{QKexp('PROTON','CARBON','HETCOR','gCOSY')} \)

qtune  Tune probe using swept-tune graphical tool (C)

Syntax:  \( \text{qtune<\text{\{}\text{gain},\text{\}}\text{\}}\)>

Description:  Displays a real-time graph showing reflected power versus frequency for tuning probes. If the acquisition system has been recently rebooted, enter \( \text{su} \) before running \( \text{qtune} \). Refer to the manual \textit{NMR Spectroscopy User Guide} for a detailed description of this tool.

Arguments:  gain specifies the gain value, typically 20 to 50. The default is 50.
power specifies the power value, typically 60 to 70. The default is 60.

Examples:
\( \text{qtune}\)  
\( \text{qtune(20)} \)
\( \text{qtune(38,65)} \)

See also:  \textit{NMR Spectroscopy User Guide}

Related:  \( \text{tugain} \)  Amount of receiver gain used by \( \text{qtune} \) (P)
\( \text{su} \)  Submit a setup experiment to acquisition (M)
\( \text{tune} \)  Assign frequencies (C)
Display the value of an individual parameter (C)

Syntax:  parameter_name< [index]>?

Description:  The question mark displays the current numerical or string value of a parameter when the parameter name is followed by a question mark. No change is made to the value of the parameter. To display an individual element of an parameter array, provide the index in square brackets (e.g., nt[3]? might display “nt[3]=2”)

Certain parameters can be “turned off” by setting the parameter to ‘n’. The display of a parameter that is turned off will be the phrase “Not Used” followed by the actual value in parentheses. For example, if lb is set to 1.5 and then set to ‘n’, entering lb? will display lb= Not Used (1.5). Such a parameter can be “turned on” by setting it to ‘y’. It will then have its prior value.

To show a parameter’s array of values or learn about its attributes, use the display command.

Arguments:  index is the integer for a selected member of an arrayed parameter.

Examples:  lb?
sw?
pw[2]?

See also:  *NMR Spectroscopy User Guide*

Related:  display  Display parameters and their attributes (C)
          getvalue  Get value of a parameter in a tree (C)
r Recall display parameter set (M)
rc(n) Recall some display parameters (C)
r1-r7 Real-value storage for macros (P)
ra Resume acquisition stopped with sa command (C)
rcrwt Weighting for different receivers (P)
react Recover from error conditions during werr processing (M)
readallshims Read all shims from hardware (M)
readbrutape Read Bruker data files from 9-track tape (U)
readfile Read the contents of a text file into two parameters (C)
readhw Read current values of acquisition hardware (C)
readlk Read current lock level (C)
readparam Read one of more parameters from a file (C)
readultra Read shim coil setting for Ultra nmr shim system (M)
real Create a real variable without a value (C)
recon_all Reconstruct images from 2D MRI fid data (C)
record Record keyboard entries as a macro (M)
redor1 Set up parameters for REDOR1 pulse sequence (M)
redosy Restore 2D DOSY display from sub experiment (M)
reff1 Reference f2 Indirect Dimension from Observe Dimension (M)
reff2 Reference f2 Indirect Dimension from Observe Dimension (M)
reffrq Reference frequency of reference line (P)
reffrq1 Reference freq. of reference line in 1st indirect dimension (P)
reffrq2 Reference freq. of reference line in 2nd indirect dimension (P)
refpos Position of reference frequency (P)
refpos1 Position of reference frequency in 1st indirect dimension (P)
refpos2 Position of reference frequency in 2nd indirect dimension (P)
refsource1 Center frequency in 1st indirect dimension (P)
refsource2 Center frequency in 2nd indirect dimension (P)
region Divide spectrum into regions (C)
relayh Set up parameters for RELAYH pulse sequence (M)
rename Move and/or rename a file (C)
reqparcheck Flag which enables/disables required parameters (P)
reqparclear Clears the parameters in required parameter list (M)
reqparlist List of required parameters (P)
reqpartest Tests whether required parameters are set (M)
resetf3 Reset parameters after a partial 3D Fourier transform (M)
resetplotter Reset plotter to system plotter (M)
resolv Set resolution enhancement parameters (M)
restorenuctable Calculate and (Re-)store accurate nuctable (M)
resume Resume paused acquisition queue (C)
return Terminate execution of a macro (C)
rev System software revision level (P)
revedate System software preparation date (P)
#### Recall display parameter set (M)

**Syntax:**

1. `rset_number`
2. `r(set_number)`

**Description:** Recalls the parameters `sp, wp, sp1, wp1, sp2, wp2, sc, wc, sc2, wc2, ho, vo, vs, and ai/nm` of a selected display parameter set. Not recalled are phase

---

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rband</td>
<td>RF band in use (P)</td>
</tr>
<tr>
<td>rb1k</td>
<td>Reverse FID block (C)</td>
</tr>
<tr>
<td>rchannel</td>
<td>Independent control of RF channel selection (P)</td>
</tr>
<tr>
<td>rfchtype</td>
<td>Type of RF channel (P)</td>
</tr>
<tr>
<td>rfdatal</td>
<td>Reverse FID data (C)</td>
</tr>
<tr>
<td>rf1</td>
<td>Reference peak position in directly detected dimension (P)</td>
</tr>
<tr>
<td>rf11</td>
<td>Reference peak position in 1st indirectly detected dimension (P)</td>
</tr>
<tr>
<td>rf12</td>
<td>Reference peak position in 2nd indirectly detected dimension (P)</td>
</tr>
<tr>
<td>rfp</td>
<td>Reference peak frequency in directly detected dimension (P)</td>
</tr>
<tr>
<td>rfp1</td>
<td>Reference peak freq. in 1st indirectly detected dimension (P)</td>
</tr>
<tr>
<td>rfp2</td>
<td>Reference peak freq. in 2nd indirectly detected dimension (P)</td>
</tr>
<tr>
<td>rftrace</td>
<td>Reverse FID trace (C)</td>
</tr>
<tr>
<td>rftype</td>
<td>Type of RF generation (P)</td>
</tr>
<tr>
<td>rfwg</td>
<td>RF waveform generator (P)</td>
</tr>
<tr>
<td>right</td>
<td>Set display limits to right half of screen (C)</td>
</tr>
<tr>
<td>rights</td>
<td>Determine an operator’s specified right (C)</td>
</tr>
<tr>
<td>rinput</td>
<td>Input data for a regression analysis (M)</td>
</tr>
<tr>
<td>rl</td>
<td>Set reference line in directly detected dimension (M)</td>
</tr>
<tr>
<td>rl1</td>
<td>Set reference line in 1st indirectly detected dimension (M)</td>
</tr>
<tr>
<td>rl2</td>
<td>Set reference line in 2nd indirectly detected dimension (M)</td>
</tr>
<tr>
<td>rm</td>
<td>Delete file (C)</td>
</tr>
<tr>
<td>rmdir</td>
<td>Remove directory (C)</td>
</tr>
<tr>
<td>rmsAddData</td>
<td>Add transformed data files with weighting (U)</td>
</tr>
<tr>
<td>Roesy</td>
<td>Convert the parameter to a ROESY experiment (M)</td>
</tr>
<tr>
<td>Roesy1d</td>
<td>Convert the parameter set to a Roesy1d experiment (M)</td>
</tr>
<tr>
<td>rof1</td>
<td>Receiver gating time preceding pulse (P)</td>
</tr>
<tr>
<td>rof2</td>
<td>Receiver gating time following pulse (P)</td>
</tr>
<tr>
<td>rof3</td>
<td>Receiver gating time following T/R switch (P)</td>
</tr>
<tr>
<td>rotate</td>
<td>Rotate 2D data (C)</td>
</tr>
<tr>
<td>rotorsync</td>
<td>Rotor synchronization (P)</td>
</tr>
<tr>
<td>rp</td>
<td>Zero-order phase in directly detected dimension (P)</td>
</tr>
<tr>
<td>rp1</td>
<td>Zero-order phase in 1st indirectly detected dimension (P)</td>
</tr>
<tr>
<td>rp2</td>
<td>Zero-order phase in 2nd indirectly detected dimension (P)</td>
</tr>
<tr>
<td>rt</td>
<td>Retrieve FIDs (M)</td>
</tr>
<tr>
<td>rtcmx</td>
<td>Return Spinsight data into current experiment (C)</td>
</tr>
<tr>
<td>rtp</td>
<td>Retrieve parameters (M)</td>
</tr>
<tr>
<td>rts</td>
<td>Retrieve shim coil settings (C)</td>
</tr>
<tr>
<td>rttmp</td>
<td>Retrieve experiment data from experiment subfile (M)</td>
</tr>
<tr>
<td>rtx</td>
<td>Retrieve parameters based on rtx rules (C)</td>
</tr>
</tbody>
</table>
parameters, drift correction parameters, integral reset parameters, and reference parameters. This allows, for example, saving a set of display parameters, adjusting the phase or drift correction, and later recalling the display parameters without undoing the new phase or drift correction.

Arguments: `set_number` is the number, from 1 to 9, of a display parameter set.

Examples: `r2`
`r(3)`

See also: *NMR Spectroscopy User Guide*

Related: `ai` Select absolute intensity mode (C)
`fr` Full recall of a display parameter set (M)
`ho` Horizontal offset (P)
`nm` Select normalized intensity mode (C)
`s` Save display parameters as a set (M)
`sc` Start of chart (P)
`sc2` Start of chart in second direction (P)
`sp` Start of plot in directly detected dimension (P)
`sp1` Start of plot in 1st indirectly detected dimension (P)
`sp2` Start of plot in 2nd indirectly detected dimension (P)
`vo` Vertical offset (P)
`vs` Vertical scale (P)
`wc` Width of chart (P)
`wc2` Width of chart in second direction (P)
`wp` Width of plot in directly detected dimension (P)
`wp1` Width of plot in 1st indirectly detected dimension (P)
`wp2` Width of plot in 2nd indirectly detected dimension (P)

`r(n)` **Recall some display parameters (C)**

Applicability: All

Syntax: `r(n<,noupdate>)`

Description: `r(n)` recalls only the following parameters: `sp, wp, sp1, wp1, sp2, wp2, sc, wc, sc2, wc2, ho, vo, vs`, and `ai/nm`.

`noupdate` — as a second argument prevents the automatic update of interactive programs.

Arguments: `n=1` to `9`

See also: *User Programming*

Related: `fr(n)` Recall all the parameters of the specified display parameter set (C)
`s(n)` Save a copy of the current values of all display parameters (C)

`r1-r7` **Real-value storage for macros (P)**

Description: The seven parameters `r1, r2, r3, r4, r5, r6,` and `r7` are available in each experiment for macros to store a real value.

See also: *User Programming*

Related: `dgs` Display group of special/automation parameters (M)
`n1,n2,n3` Name storage for macros (P)

`ra` **Resume acquisition stopped with sa command (C)**

Description: Resumes an experiment acquisition that was stopped with the `sa` command. `ra` is not permitted after any parameters have been brought into the stopped
experiment with the \texttt{rt} or \texttt{rtp} macros. The parameters \texttt{dp} and \texttt{np} may not be altered.

\texttt{ra} applies to the experiment that you are joined to at the time the command is entered. If experiment 1 has been previously stopped with \texttt{sa}, you must be joined to experiment 1 for \texttt{ra} to resume that acquisition. If you are in experiment 2, entering \texttt{ra} has no effect on experiment 1.

If an experiment has been stopped with \texttt{sa}, you can increase the number of transients \texttt{nt} and resume the acquisition with \texttt{ra}. You cannot, however, increase \texttt{nt} and enter \texttt{ra} if the experiment had completed in a normal fashion (i.e., it was not stopped with \texttt{sa}).

Note that the completion time and remaining time shown in the Acquisition Status window are not accurate after \texttt{ra} is executed.

\textbf{See also:} \textit{NMR Spectroscopy User Guide}

\textbf{Related:}
- \texttt{dp} \hspace{1cm} Double precision (P)
- \texttt{np} \hspace{1cm} Number of data points (P)
- \texttt{nt} \hspace{1cm} Number of transients (P)
- \texttt{rt} \hspace{1cm} Retrieve FID (M)
- \texttt{rtp} \hspace{1cm} Retrieve parameters (M)
- \texttt{sa} \hspace{1cm} Stop acquisition (C)

\begin{verbatim}
rcvrwt
\end{verbatim}

\textbf{Weighting for different receivers (P)}

\textbf{Applicability:} Systems with multiple receivers.

\textbf{Description:} An array of real numbers giving weighting factors to use when combining multiple receiver data. The \texttt{i}'th array element is used to weight data from the \texttt{i}'th receiver. Applying a weight factor is like increasing the gain of the receiver by the same factor (but the weights are specified as numerical factors rather than in dB).

\textbf{Examples:} \texttt{rcvrwt=10,12,8}

\begin{verbatim}
react
\end{verbatim}

\textbf{Recover from error conditions during werr processing (M)}

\textbf{Syntax:} \texttt{react<('wait')>}

\textbf{Description:} When an acquisition error occurs, any action specified by the \texttt{werr} parameter is executed. The \texttt{react} macro is a prototype for handling these errors. This macro can be invoked for error handling by setting \texttt{werr='react'}. The \texttt{acqstatus} parameter is provided so that \texttt{react} can determine which specific error has occurred.

\textbf{Arguments:} \texttt{\textquote{wait}} is a keyword for a special type of error handling during an automation run. The \texttt{react} macro always uses the \texttt{\textquote{next}} option when it calls the command \texttt{au}. Under certain conditions, it is also appropriate to use the \texttt{\textquote{wait}} option. \texttt{react} checks to see if an argument was passed to it; that is, \texttt{werr=werr(\\textquote{\textquote{wait}})} to determine whether to use the \texttt{\textquote{wait}} option of \texttt{au}.

\textbf{See also:} \textit{NMR Spectroscopy User Guide}

\textbf{Related:}
- \texttt{acqstatus} \hspace{1cm} Acquisition status (P)
- \texttt{au} \hspace{1cm} Submit experiment to acquisition and process data (C)
- \texttt{werr} \hspace{1cm} Specify action when error occurs (C)
- \texttt{werr} \hspace{1cm} When error (P)
**readallshims**  **Read all shims from hardware (M)**

Description: Reads all shims from the hardware and sets the values into the shim parameters in the current parameter tree. The shims used depend on the *shimset* configuration. For the shim set on the Ultra-nmr shim system, *readallshims* is active only if hardware-to-software shim communication is enabled.

See also: *NMR Spectroscopy User Guide*

Related: *load*  Load status of displayed shims (P)  
            *readhw*  Read current values of acquisition hardware (C)  
            *setallshims*  Set all shims into hardware (M)  
            *sethw*  Set values for hardware in acquisition system (C)  
            *shimset*  Type of shim set (P)  
            *su*  Submit a setup experiment to acquisition (M)

**readbrutape**  **Read Bruker data files from 9-track tape (U)**

Syntax: (From UNIX) *readbrutape file <number_skipped>*

Description: A shell script that reads one file from a Bruker tape into a UNIX file with the name specified. Bruker tapes are likely to be made at 1600 bpi, although 1600 bpi is not a requirement.

Arguments:  
            *file*  is the name of the file read into UNIX. For identification, the .bru extension is added to the file name.  
            *number_skipped*  is the number of files skipped and includes the header file (which is assumed to be the first file on the tape). The default is the script reads the first file after the header file. If *number_skipped* equals 0, there is no rewinding and the first file (or the next file) on the tape is read.

See also: *NMR Spectroscopy User Guide*

Related: *convertbru*  Convert Bruker data (M,U)

**readfile**  **Read the contents of a text file into two parameters (C)**

Examples: *readfile (path, par1, par2, <,cmpstr <,tree> >):num*

Description: *readfile* reads the contents of a file and puts the contents into two supplied parameters. The first word on each line in the file is placed in the first parameter. The remainder of the line is placed in the second parameter. An optional fourth argument specifies a string which is used to match the first word of the line. For example, if the file contained:

```
H1pw 10
H1pwr 55
C13pw 14
C13pwr 50
```

and the comparison string was set to *H1*, only the lines starting with *H1* would be put into the parameters. Namely, *H1pw* and *H1pwr*.

Arguments:  
            *path*  is the path name of the file to read.  
            *par1*  is the name of the parameter to hold the first word of the line.  
            *par2*  is the name of the parameter to hold the remainder of each line.  
            *cmpstr*  is the optional comparison string for matching the first word.  
            *tree*  is an optional parameter to select the tree for *par1* and *par2*. The possibilities are *current*, *global*, and *local*. *Current* is the default. *Local* is used if the parameters are $macro parameters. If *tree* is used, the *cmpstr* must also be supplied. If *cmpstr* is '', then it is ignored.
The `par1` and `par2` parameters must already exist. If `par1` or `par2` are defined as a real parameter, as opposed to a string parameter, then if the value does not have a number as the first word, a zero will be assigned.

`num` will be set to the number of items in the arrayed parameters `par1` and `par2`.

Lines that only contain white space are not added to the parameters. Lines that start with a `#` are not added to the parameters. Lines which start with a `#` can be used as comment lines. If a line only contains a single word, that word is put into the first parameter. The corresponding array element of the second parameter will be set to an empty string. The `readfile` will return the number of lines added to the parameters.

Examples: Examples using a prototype file containing the following:

```
A readfile test case
Proton values
H1pw 10
H1pwr 55
Carbon values
C13pw 14
C13pwr 50
H1macro ft f full aph vsadj
End
```

```
readfile(systemdir+'/probes/testcase','attr','vals')
```

This sets the `attr` and `vals` parameters to arrays of six strings.

```
attr='H1pw','H1pwr','C13pw','C13pwr','H1macro','End'
vals='10','55','14','50','ft f full aph vsadj',''
```

```
readfile(systemdir+'/probes/testcase','attr','vals','H1')
```

This sets the `attr` and `vals` parameters to arrays of three strings.

```
attr='H1pw','H1pwr','H1macro'
vals='10','55','ft f full aph vsadj'
```

The `readfile` command might be used in conjunction with the `teststr` command. The `teststr` command can be used to search an arrayed parameter to determine the index of a specified element.

For example,

```
teststr(attr,'H1pwr'):$e
vals[$e] will be the value of 'H1Pwr'
```

**readhw**

Read current values of acquisition hardware (C)

Syntax: readhw("param1","param2",...)<:r1,r2,...>

```
readhw("keword"):res1,...
```

Description: Returns or displays the current values of the lock system parameters `lockpower`, `lockgain`, `lockphase`, `lock`, `temp`, `loc`, and `z0`.

The values of the shims can also be obtained. The particular shims that can be read depends upon the type of shim hardware present in the system. See the description of `shimset` for a list of the shim names for each type of shim hardware.

Shim DACs read by `readhw`:

- Axial shim: `z1, z2, z3, z4, z1c, z2c`
- Non-axial shims: `x1, y1, xz, yz, xy, x2y2, x3, y3`
- Special Oxford magnets shims: `z5, xz2, yz2, zx2y2, zxy`

Arguments: `param1,param2,...` parameter to read — maximum of 10 parameters.
r1, r2, ... Vnmr variables hold the returned results
no variables supplied — results are displayed in the text panel

Keywords:

loc — sample changer location.

temp — returns the sample temperature, controller status, and set point.
Results are displayed in the text panel if no variables are supplied

<table>
<thead>
<tr>
<th>Returned value</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Regulation off</td>
</tr>
<tr>
<td>1</td>
<td>Regulated</td>
</tr>
<tr>
<td>2</td>
<td>Not regulated</td>
</tr>
<tr>
<td>3</td>
<td>No controller</td>
</tr>
</tbody>
</table>

status — returns the systems status as an integer. The returned values are:

<table>
<thead>
<tr>
<th>Returned value</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>IDLE</td>
</tr>
<tr>
<td>15</td>
<td>PARSE</td>
</tr>
<tr>
<td>16</td>
<td>PREP</td>
</tr>
<tr>
<td>17</td>
<td>SYNCED</td>
</tr>
<tr>
<td>20</td>
<td>ACQUIRE</td>
</tr>
<tr>
<td>25</td>
<td>PAD</td>
</tr>
<tr>
<td>30</td>
<td>VTWAIT</td>
</tr>
<tr>
<td>40</td>
<td>SPINWAIT</td>
</tr>
<tr>
<td>50</td>
<td>AGAIN</td>
</tr>
<tr>
<td>60</td>
<td>ALOCK</td>
</tr>
<tr>
<td>61</td>
<td>AFINDRES</td>
</tr>
<tr>
<td>62</td>
<td>APOWER</td>
</tr>
<tr>
<td>63</td>
<td>APHASE</td>
</tr>
<tr>
<td>70</td>
<td>SHIMMING</td>
</tr>
<tr>
<td>80</td>
<td>SMPCHANGE</td>
</tr>
<tr>
<td>81</td>
<td>RETRIEV SMP</td>
</tr>
<tr>
<td>82</td>
<td>LOADSMP</td>
</tr>
<tr>
<td>90</td>
<td>INTERACTIVE</td>
</tr>
<tr>
<td>100</td>
<td>TUNING</td>
</tr>
<tr>
<td>0</td>
<td>INACTIVE</td>
</tr>
</tbody>
</table>

Error messages

-1 Available on spectrometer only (i.e. system = 'datastation')
-2 acquisition not active (acquisition communication programs are not running try running su acqproc).
-7 console powered down or not connected

Results are displayed in the text panel if no variables are supplied.

readhw cannot be used when an acquisition is in progress or when acqi is connected to the acquisition system.

Arguments: param1, param2, ... are the names of the parameters to be read.
value1, value2,... are return variables to store the settings of the parameters specified. The default is to display the setting in the status window.
Examples: `readhw('z1c','z2c','z1','z2')`
`readhw('z1c','z2c','z1','z2'):r1,r2,r3,r4`
`readhw('temp'):$t sets $t`

See also: *NMR Spectroscopy User Guide*

Related:
- `lockgain` Lock gain (P)
- `lockphase` Lock phase (P)
- `lockpower` Lock power (P)
- `readallshims` Read all shims from hardware (M)
- `sethw` Set values for hardware in the acquisition system (C)
- `shimset` Type of shim set (P)

**readlk**

**Read current lock level (C)**

Syntax: `readlk<:lock_level>`

Description: Returns the same information as would be displayed on the digital lock display using the manual shimming window. `readlk` can be used in developing automatic shimming methods such as shimming via grid searching. It cannot be used during acquisition or manual shimming.

Arguments: `lock_level` returns the current lock level.

Examples: `readlk`
`readlk:$levell`

See also: *User Programming*

Related: `alock` Automatic lock status (P)

**readparam**

**Read one of more parameters from a file (C)**

Syntax: `readparam(file,parlist[,tree[,type]])`

Description: The `readparam` command will read one or more parameters from a specified file. The first argument is the name of the file. The second argument is a list of the names of the parameters to be read. It is a string parameter and the names can be separated either by a space or a comma. If a parameter in the list is not present in the file being read, no error is generated. The optional third argument is the tree into which the parameters are read. The variable trees are 'current', 'global', 'processed' and 'systemglobal'. The optional fourth argument controls the behavior of the `readparam` command. The options are 'read', 'replace', and 'add'. The default type is 'read'.

Examples: In order to specify the type, the tree must also be specified. The behaviors are best illustrated with specific examples. Lets say that there is a temporary file containing only the parameters a and b. We are going to use the readparam command to read parameters into a current tree which contains the parameters a and c but does not contain the parameters b and d. This can be summarized as:

Parameters in mypar: a=1 b=2
Initial parameters in current tree: a=4 c=8 (b and d do not exist)
`readparam(curexp+’/mypar’,’a b c d’,’current’,’read’)`

Parameter in a current tree is replaced with parameter from mypar. Parameter b in current tree is read in from mypar Parameter c in current tree is unaltered Parameter d in current tree still does not exist. Final parameters in current tree: a=1 b=2 c=8 (d does not exist).

`readparam(curexp+’/mypar’,’a b c d’,’current’,’replace’)`

Parameter in a current tree is replaced with parameter from mypar. Parameter b in current tree still does not exist. Parameter c in current tree is deleted.
Parameter d in current tree still does not exist. Final parameters in current tree: 
a=1 (b c and d do not exist).

`readparam(curexp+'/mypar','a b c d','current','add')`

Parameter in a current tree is unaltered. Parameter b in current tree is read in 
from mypar Parameter c in current tree is unaltered. Parameter d in current tree 
still does not exist. Final parameters in current tree: a=4 b=2 c=8 (d does not 
exist).

This command may be used to read temporary values which have been saved 
with the `writeparam` command.

More Examples:
`readparam(curexp+'/mypar','in')`
reads the parameter in from the file mypar in the current experiment directory.
`readparam(curexp+'/mypar','sw ct np','processed')`
reads the parameters sw, ct, and np into the processed tree from the file mypar 
in the current experiment directory.

```
readultra

Read shim coil setting for Ultra-nmr shim system (M)

Applicability: Systems with the Ultra-nmr shim system.

Syntax: `readultra<(file_number)>`

Description: Reads shim set files for a Ultra-nmr shim system from a Sun floppy disk into VnmrJ. The floppy disk for Ultra-nmr contains up to 63 shim sets named file1.dac to file63.dac.

Arguments: `file_number` is the number of the shim set file, from 1 to 63. The default is to read all of the shim set files.

Examples:
`readultra`
`readultra(6)`

See also: *NMR Spectroscopy User Guide*

Related:
- `shimset` Type of shim set (P)
- `svs` Save shim coil settings (C)
```

```
real

Create a real variable without a value (C)

Syntax: `real(variable)`

Description: Creates a real variable without a value.

Arguments: `variable` is the name of the variable to be created.

Examples:
`real('realval1')`

See also: *User Programming*

Related:
- `create` Create a new parameter in a parameter tree (C)
- `string` Create a string variable (C)
```

```
recon_all

Reconstruct images from 2D MRI fid data (C)

Applicability: Imaging Systems

Syntax:

```
recon_all(acqstring,<pc option>)
or
recon_all(acqstring,<image directory>,<pc option>)
or
recon_all
```
Description: Produces 2D images (in fdf format) from FID data acquired with most 2D imaging sequence, including sems, gems, fsems, and epi.

Supported features:

- Compressed/Standard/Arrayed experiments supported (relevant VNMR parameter: seqcon)
- Capable of running concurrently with acquisition (set acqstring to acq after first wnt; empty or dummy string initially).
- Disable image display (relevant parameter: recondisplay. Create in processed tree as a real variable and set it to 0)
- Display every N images (relevant parameter: recondisplay. Create in processed tree as a real variable and set it to N)
- DC removal (relevant parameter: dcrmv)
- Image shifting (relevant VNMR parameter: lsfrq, lsfrq1)
- Multi-shot/sorting (relevant parameters: petable, etl, and/or nseg)
- Multi-slice (interleaved) acquisitions (relevant VNMR parameter: ns)
- Separate output from multiple receivers (relevant VNMR parameter: rcvrsout, a string. Set to i, will yield either raw- (if VNMR parameter raw is set) or image-domain magnitude and phase images for separate coils)
- Multi-echo imaging support (sems, epi) (relevant VNMR parameter: ne)
- Multiple receiver data (magnitude sum) (relevant parameter: rcvrs)
- Weighting (through VnmrJ panel selections) (relevant parameter: ftproc)
- Zero filling (through VnmrJ panel selections) (relevant parameters: fn and/or fn1)
- Output magnitude and/or phase raw data components. (relevant (optional) parameter: raw. Create in processed tree as a string which can be set to 'm' (magnitude), 'p' (phase), or 'b' (both))
- Partial k-space conjugation. Relevant parameters are fract_kx and fract_ky, which denote the number of points/echoes acquired beyond the intended N/2. Example: nv=80, fract_ky=16 results in the central 32 echoes used as a correction map prior to conjugate synthesis. Resulting image has 128 (2*(80-16)) lines in the phase encoded direction.
- Phase correction (relevant parameters: image, epi_pc). Implemented for epi sequences. Phase of transformed imaging data (image=1) is corrected by phase of transformed reference data (image=0). Accepted values for pc option in command string or for the optional parameter epi_pc are:
 - POINTWISE (the default; direct use of the phase of profile)
 - LINEAR (1st order fit of phase of profile)
 - QUADRATIC (2nd order fit of phase of profile)
 - CENTER_PAIR (even/odd pair at center of echo train used for all even/odd echoes)
 - PAIRWISE (even/odd pair phase differences along echo train used)
 - 6.FIRST_PAIR (1st and 2nd echoes used for even/odd correction)
- Navigator Echo correction. Requires acquisition of echo train data (fsems, epi), some of which are not phase encoded. Adjusts phase of
encoded echoes according to the phase of navigator echoes of the same echo train, relative to the first such navigator echo. Relevant parameters are:

- **navigator** (can be string set to 'y' or 'n', or array of integers giving navigator echo positions within the echo train (i.e., navigator=1,2).
- **nav_type** (optional; string, set to 'off' to disable correction or 'POINTWISE' (default)).

Order of operation per echo in block:
1. DC removal
2. echo reversal if necessary
3. raw data output if requested
4. windowing if necessary
5. read direction Fourier transform
6. phase correction if necessary
7. sorting if necessary

Order of operation per slice:
1. navigator correction if necessary
2. windowing in phase direction if necessary
3. partial Fourier correction if necessary
4. phase direction Fourier transform
5. accumulation of multi-receiver data
6. write .fdf output file

Arguments:

- **acqstring** Set to 'acq' to indicate concurrent reconstruction; performs no initialization. Any other value can be used for retrospective reconstruction or the first pass through concurrent reconstruction (initialization is performed).
- **pc option** Optional argument to specify phase correction method (see description of phase correction below).
- **image directory** Optional argument to specify the directory which will contain produced .fdf files.

NB recon_all accesses parameters in the PROCESSED tree for control of some features. It is in the PROCESSED tree that variables should be created and/or modified for effectiveness with recon_all.

Input/Output
recon_all reads the FID file in the acqfil subdirectory of the current experiment, and creates .fdf files that are written to the recon subdirectory of the current experiment when run in standalone mode, or to the study tree when run in study mode. If raw data output is selected, the resulting .fdf files are written to the rawmag or rawphs subdirectory of the current experiment. If phase images are optionally generated, the resulting .fdf files are written to the reconphs subdirectory of the current experiment's directory.

Examples:
recon_all('','/usr/home/myimages')
recon_all('','/usr/home/myimages','CENTERPAIR')
recon_all('ignorethis','LINEAR')
recon_all('acq')

See also: VnmrJ Imaging User's Guide
record
Record keyboard entries as a macro (M)

Syntax: `record<(file|'off')>`

Description: Records keyboard entries and stores the entries as a MAGICAL macro in the user's maclib directory. To start recording keyboard entries, enter `record`. You are prompted for a macro name (you can also give the name as an argument to `record`). The command line prompt then becomes “Command?” to indicate that the `record` macro is active. Type the MAGICAL commands to be recorded on the keyboard. Function keys can be included by entering F1 to F8 for function keys 1 to 8, respectively. Enter `off` or `record('off')` to finish the recording.

Arguments: `file` is the name of the macro file in which the entries are saved. The default is that the user is prompted for a file name. If the macro file name already exists, the user is asked if the file should be overwritten.

Examples: `record`
- `record('mymacro')`
- `record('off')`

See also: User Programming

redor1
Set up parameters for REDOR1 pulse sequence (M)

Applicability: Three-channel systems with a triple-tuned MAS solids probe.

Description: Sets up a parameter set, obtained with XPOLAR1, for REDOR (rotational echo double-resonance) experiment.

See also: User Guide: Solid-State NMR

Related: `xpolar1` Set up parameters for XPOLAR1 pulse sequence (M)

redosy
Restore 2D DOSY display from sub experiment (M)

Description: Restores the previous 2D DOSY display (if one exists) by recalling the data stored by the dosy macro in the file subexp/dosy2Ddisplay in the current experiment. undoisy and redosy enable easy switching between the 1D DOSY data (spectra as a function of `gz1vl`) and the 2D DOSY display (signal as a function of frequency and diffusion coefficient).

See also: NMR Spectroscopy User Guide

Related: `dosy` Process DOSY experiments (M)
- `undosy` Restore original 1D NMR data from subexperiment (M)

reff1
Reference f1 Indirect Dimension from Observe Dimension (M)

Syntax: `reff1<(refsourcel)>`

Description: Macros uses the ratio of the Ξ values for the relevant nuclei from refsourcel or the reference source specified to determine the reference frequency in the f1 indirect dimension directly from the reference frequency in the observe dimension using the formula:

\[
\text{reffrq1} = \left(\frac{\text{reffrq}}{\Xi[tn]} \right) \times \Xi[nucf1]
\]

rfp1=0

rf11 = sw1/2 - (frq[f1] - reffrq1)*1e6

Ξ is the normalized frequency such that the 1H signal from TMS is 100.00 MHz. Referencing in the observe dimension using `setref` and this method is same as using `setref1` (apart from minor round-off errors).
Referencing the observe dimension to an internal reference standard as proposed by IUPAC references all dimensions to that single reference signal and not the lock as with setref, setref1, and setref2.

Limitations: the macro works with data recalled from an archive or acquired on another system provided the data was acquired using VNMR6.1C or newer.

Referencing is based on nuctables/nuctabrefBio if bioref='y' (global or local). Setting bioref='n' (global or local) or if the flag does not exist the standard IUPAC / organic chemistry referencing (nuctables/nuctabref) is used.

See /vnmr/nuctables/nuctabref.

Arguments: No argument — reference source is determined from refsource1. If the relevant parameter is missing, the macro tries to determine the (indirect) reference source from the axis parameter.

'sfrq', 'dfrq', 'dfrq2', 'dfrq3', or 'dfrq4' as a reference source

Examples: reff1 reff1('sfrq')

reff2

Reference f2 Indirect Dimension from Observe Dimension (M)

Syntax: reff2<(refsource2)>

Description: Macros uses the ratio of the Ξ values for the relevant nuclei from refsource1 or the reference source specified to determine the reference frequency in the f1 indirect dimension directly from the reference frequency in the observe dimension using the formula:

reffrq1 = (reffrq / Ξ [tn]) * Ξ [nucf1]
rfp1=0
rf11 = sw1/2 - (frq[f1] - reffrq1)*1e6

Ξ is the normalized frequency such that the ¹H signal from TMS is 100.00 MHz.

Referencing in the observe dimension using setref and this method is same as using setref1 (apart from minor round-off errors).

Referencing the observe dimension to an internal reference standard as proposed by IUPAC references all dimensions to that single reference signal and not the lock as with setref, setref1, and setref2.

Limitations: the macro works with data recalled from an archive or acquired on another system provided the data was acquired using VNMR6.1C or newer.

Referencing is based on nuctables/nuctabrefBio if bioref='y' (global or local). Setting bioref='n' (global or local) or if the flag does not exist the standard IUPAC / organic chemistry referencing (nuctables/nuctabref) is used.

See /vnmr/nuctables/nuctabref.

Arguments: No argument — reference source is determined from refsource2. If the relevant parameter is missing, the macro tries to determine the (indirect) reference source from the axis parameter.

'sfrq', 'dfrq', 'dfrq2', 'dfrq3', or 'dfrq4' as a reference source

Examples: reff2('dfrq3')
reffrq

Reference frequency of reference line (P)

Description: Reference frequency, in MHz, of the reference line. This parameter is set by the `rl` macro. By defining `reffrq` as the conversion factor between Hz and ppm using the `unit` command, ppm calculations can be made.

If referencing is on (i.e., `refpos` is not set to ‘n’), the `go`, `ga`, and `au` macros calculate values of `rfl` and `rfp` based on `reffrq` and `refpos`. If referencing is off, `go`, `ga`, and `au` set `reffrq` to `sfrq`.

See also: *NMR Spectroscopy User Guide*

Related:
- `au`: Submit experiment to acquisition and process data (M)
- `crl`: Clear reference line in directly detected dimension (M)
- `ga`: Submit experiment to acquisition and FT the result (M)
- `go`: Submit experiment to acquisition (M)
- `reffrq1`: Ref. frequency of reference line in 1st indirect dimension (P)
- `reffrq2`: Ref. frequency of reference line in 2nd indirect dimension (P)
- `reffpos`: Position of reference frequency (P)
- `rfl`: Reference peak position in directly detected dimension (P)
- `rfp`: Reference peak frequency in directly detected dimension (P)
- `rl`: Set reference line in directly detected dimension (M)
- `sfrq`: Transmitter frequency of observe nucleus (P)
- `unit`: Define conversion units (C)

reffrq1

Reference freq. of reference line in 1st indirect dimension (P)

Description: Reference frequency, in MHz, of the reference line in the first indirect dimension of a nD experiment. This parameter should be used as the conversion factor between hertz and ppm in the first indirect dimension.

See also: *NMR Spectroscopy User Guide*

Related:
- `crl1`: Clear reference line in 1st indirectly detected dimension (M)
- `reffrq`: Reference frequency of reference line (P)
- `reffpos1`: Position of reference frequency in 1st indirect dimension (P)

reffrq2

Reference freq. of reference line in 2nd indirect dimension (P)

Description: Reference frequency, in MHz, of the reference line in the second indirect dimension of a 2D experiment. This parameter should be used as the conversion factor between hertz and ppm in the second indirect dimension.

See also: *NMR Spectroscopy User Guide*

Related:
- `crl2`: Clear reference line in 2nd indirectly detected dimension (M)
- `reffrq`: Reference frequency of reference line (P)
- `reffpos2`: Position of reference frequency in 2nd indirect dimension (P)
refpos
Position of reference frequency (P)
Description: Position of reference frequency, set by the `setref` and `rl` macros. Setting `refpos='n'` indicates that referencing has been turned off. The `crl` macro turns referencing off.
Values: Because all spectra are (by definition) referenced to a frequency at 0 ppm, `refpos` is either 0 or “not used”.
See also: *NMR Spectroscopy User Guide*
Related:
- `crl` Clear reference line in directly detected dimension (M)
- `reffrq` Reference frequency of reference line (P)
- `refpos1` Position of reference frequency in 1st indirect dimension (P)
- `refpos2` Position of reference frequency in 2nd indirect dimension (P)
- `rl` Set reference line indirectly detected dimension (M)
- `setref` Set frequency referencing (M)

refpos1
Position of reference frequency in 1st indirect dimension (P)
Description: Position of reference frequency in the first indirect dimension of a 2D experiment, set by `setref1` and `rl1` macros. Setting `refpos1='n'` indicates that f1 referencing has been turned off. The `crl1` macro turns f1 referencing off.
Values: Because all spectra are (by definition) referenced to a frequency at 0 ppm, `refpos1` is either 0 or “not used”.
See also: *NMR Spectroscopy User Guide*
Related:
- `crl1` Clear reference line in 1st indirectly detected dimension (M)
- `reffrq1` Ref. frequency of reference line in 1st indirect dimension (P)
- `refpos` Position of reference frequency (P)
- `rl1` Set reference line in 1st indirect dimension (M)
- `setref1` Set frequency referencing for 1st indirectly detected dimension (M)

refpos2
Position of reference frequency in 2nd indirect dimension (P)
Description: Position of reference frequency in the second indirect dimension of a 3D experiment, set by `setref2` and `rl2` macros. Setting `refpos2='n'` indicates that f2 referencing has been turned off in 3D spectra. The `crl2` macro turns f2 referencing off.
Values: Because all spectra are (by definition) referenced to a frequency at 0 ppm, `refpos2` is either 0 or “not used”.
See also: *NMR Spectroscopy User Guide*
Related:
- `crl2` Clear reference line in 2nd indirectly detected dimension (M)
- `reffrq2` Ref. frequency of reference line in 2nd indirect dimension (P)
- `refpos` Position of reference frequency (P)
- `rl2` Set reference line in 2nd indirect dimension (M)
- `setref2` Set frequency referencing for 2nd indirectly detected dimension (M)

refsource1
Center frequency in 1st indirect dimension (P)
Description: Holds a parameter name to be used as the center frequency in the first indirect dimension of 2D experiments. If `refsource1` does not exist, the default is ‘sfrq’.
For 2D experiments, the second dimension may be related to `sfrq` if it is a homonuclear experiment. The second dimension may also be related to `dfrq`.
if it is a heteronuclear experiment. refsource1 would then be set as refsource1='sfrq' and refsource1='dfreq', respectively.

See also: NMR Spectroscopy User Guide

Related:

dfreq
Transmitter frequency of first decoupler (P)

refsource2
Center frequency in 2nd indirect dimension (P)

See also: NMR Spectroscopy User Guide

Related: refsource1 Center frequency in 1st indirect dimension (P)

region
Divide spectrum into regions (C)

Syntax: region<(tail_length,relative_number,threshold,number_points,tail_size)>:<number_regions >

Description: Breaks a spectrum up into regions containing peaks.

Arguments:
- **tail_length** is the length from 0.0 to sw, in Hz, that is added to the start and end of each calculated peak region; default value is sw/10. The default value is used if a negative number is entered for this argument. If the addition of these wings would cause overlap between adjacent regions, the wings are reduced until the regions no longer overlap.
- **relative_number** is a number that, in combination with other factors, governs the relative number of regions to be found. The default is 12, which is used if 0 is entered for this argument. **relative_number** is used as part of a test to determine whether two spectral areas containing peaks are close enough together to be represented as a single region. There are no strict rules that associate the value of **relative_number** to the total number of regions that will be found. In general, increasing this number decreases the number of regions that will be found and increases the size of an individual region. A value of 1 would give more regions; a value of 100 would give fewer regions.
- **threshold** is a sensitivity factor used to decide if a data point is large enough, relative to the noise level, to qualify it as part of a peak. The default value is 0.6, which is used if 0 is entered for this argument. Smaller values of **threshold** make peak selection more sensitive; larger values make peak selection less sensitive.
- **number_points** governs the number of successive data points, normally from 7 to 40, that must qualify as part of a peak (see the description of **threshold** above) in order for that spectral area to be considered a real peak. The default value is a function of fn, sw, weighting functions, and other values. The default is used if 0 is entered for this argument. For carbon spectra with large spectral windows, experimental peaks often contain only one or two data points. Adjust **number_points** to 1 or 2 in those cases.
- **tail_size** is a number that, in combination with **relative_number** and other factors, governs whether two spectral areas that contain peaks are close enough together to be represented as a single region. The default value is used if 0 is entered for this argument.
- **number_regions** is the total number of regions determined by **region**.

Examples:

region
region:$1
region(50,0,1)
region(-1,0,0,2):r1
See also: *NMR Spectroscopy User Guide*

Related: `fn` Fourier number in directly detection dimension (P)
 `sw` Spectral width in directly detected dimension (P)

relayh
Set up parameters for RELAYH pulse sequence (M)

Description: Sets up parameters for absolute-value COSY, or a single or double RELAY-COSY pulse sequence.

See also: *NMR Spectroscopy User Guide*

Related: `cosy` Set up parameters for COSY pulse sequence (M)
 `cosyps` Set up parameters for phase-sensitive COSY (M)
 `Dqcosy` Set up parameters for double quantum filtered COSY (M)

rename
Move and/or rename a file (C)

Syntax: `rename(from_file, to_file)`

Description: Renames and/or moves a file or directory. `rename` is identical in function to the command `mv`.

Arguments: `from_file` is the name of the file to be moved to renamed.
 `to_file` is the name of the file after moving or renaming it. If the `from_file` argument has an extension such as `.fid` or `.par`, be sure the `to_file` argument has the same extension.

Examples: `rename('/home/vnmr1/vnmrsys/seqlib/d2pul', '/vnmr/seqlib/d2pul')`

See also: *NMR Spectroscopy User Guide*

Related: `copy` Copy a file (C)
 `cp` Copy a file (C)
 `delete` Delete a file, parameter directory, or FID directory (C)
 `mv` Move and/or rename a file (C)
 `rm` Delete file (C)

reqparcheck
Flag which enables/disables required parameters (P)

Syntax: `reqparcheck= 'y' or 'n'`

Description:

Description: The parameter reqparcheck is a flag with the possible values of 'y' or 'n'. Only if it is set to 'y' are actual parameters compared to the file. If it is set to 'n', reqpartest will always return 0.

Values: 'y' or 'n', indicating whether required parameters are to be checked.

Related: `callacq` Utility macro to call Acq command (M)
 `reqparlist` List of required parameters (P)
 `reqparclear` Clears the parameters in required parameter list (M)
 `reqpartest` Tests whether required parameters are set (M)

reqparclear
Clears the parameters in required parameter list (M)

Syntax: `reqparclear`

Description: Clears the parameters listed in reqparlist. If for some reason reqparlist has been destroyed, then this macro exits without a message. The parameter is cleared on
the current tree, if it exists there, or on the global tree, if it exists there. If it exists in neither place, a message is printed and the routine moves on to the next parameter in reqparlist.

The definition of "clear" is that real parameters are turned "off" and string parameters are set to the empty string ""

There is a known issue with this macro, which due to its obscurity will remain as "user beware." The issue is that if a parameter of the same name exists in both the 'global' and 'current' trees, and if that parameter is part of reqparlist, then it will be cleared in the 'current' tree but not in the global tree. Users should just not be doing this.

Also note that while this macro checks for reqparlist='', if it is an array and any element in the array is "" then it assumes "" is a parameter and reports a "does not exist" message.

Related:
 callacq Utility macro to call Acq command (M)
 reqparcheck Flag which enables/disables required parameters (P)
 reqparlist List of required parameters (P)
 reqpartest Tests whether required parameters are set (M)

reqparlist
List of required parameters (P)

Description: The parameter reqparlist holds the parameter names. It is an array of strings. It will not array the experiment.

Related:
 callacq Utility macro to call Acq command (M)
 gettoken Utility macro to separate a string into tokens (M)
 reqparcheck Flag which enables/disables required parameters (P)
 reqparclear Clears the parameters in required parameter list (M)
 reqpartest Tests whether required parameters are set (M)

reqpartest
Tests whether required parameters are set (M)

Syntax:
reqpartest<('showtext'|'showgui'<,callback_string>)>

Description: If the parameter reqparcheck='y', then this macro examines the list of parameter names in reqparlist and if all of them exist and are properly set, returns 0. Properly set is defined as a non-empty string for string parameters, or the active bit set (parameter is 'on') for real parameters.

This macro also checks the string which is the concatenation of autoname + globalauto + sqname for any parameters in that string. Parameters in this string are delimited by $.

For convenience, this macro will return different values depending on the specific non-true condition, as defined in the following table (X is "don't care").

<table>
<thead>
<tr>
<th>Condition</th>
<th>return value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All parameters exist</td>
<td>T</td>
</tr>
<tr>
<td>All parameters set</td>
<td>X</td>
</tr>
<tr>
<td>reqparcheck='y'</td>
<td>T</td>
</tr>
<tr>
<td>return value</td>
<td>0</td>
</tr>
</tbody>
</table>

Also note that the non-existence of either reqparcheck or reqparlist is equivalent to reqparcheck not set to 'y'.

Parameters are checked in the current tree first for existence, and if that parameter exists there, then that tree is checked for whether it is set. If it does
If the argument to this macro is ‘showgui’, then an entry popup is displayed for both creation (of non-existing parameters) and value entry. The return value is not affected by the fact that the values are now being entered - in other words, the return value is to be interpreted as 'did not exist' or 'was not set' prior to running the macro.

The comprehensive list to check is reqparlist+autoname+globalauto+sqname. Some duplicates may occur, and this macro checks and eliminates duplicates.

The argument callback_string is an optional argument that gets passed onto VnmrJ, and then gets passed back to vnmrbg when the required parameters entry popup closes. VnmrJ and vnmrbg are not otherwise synchronized, so this allows for re-entrance.

Arguments: ‘showgui’ | ‘showtext’

‘showgui’ displays an entry popup in the required parameter is not set;
‘showtext’ displays information about the required parameters in the text window

callback_string — optional callback to vnmrbg from VnmrJ (ignored in ‘showtext’ option)

See also: VnmrJ User Programming

Related:
callacq Utility macro to call Acq command (M)
reqparcheck Flag which enables/disables required parameters (P)
reqparclear Clears the parameters in required parameter list (M)

resetf3

Reset parameters after a partial 3D Fourier transform (M)

Description: Restores the acquisition parameter sw, the processing parameter fn, and the display parameters sp, wp, rfl, and rfp in the 3D parameter set, which are read into VnmrJ by either the select command or the dplane or dproj macros. These parameters were modified due to the selection of regional f3 processing (ptspec3d = 'ynn'). The original value for each of these parameters is stored in the parameter $sv, where $ represents sw, fn, sp, wp, rfl, or rfp (e.g., swsv).

If a 2D plane into VnmrJ is retrieved from a 3D transformed data set that was processed with regional f3 processing, resetf3 must be run before executing ft3d in that particular VnmrJ environment.

See also: NMR Spectroscopy User Guide

Related: dplane Display a 3D plane (M)
dproj Display a 3D plane projection (M)
fn Fourier number in directly detected dimension (P)
ft3d Perform a 3D Fourier transform (M)
ptspec3d Region-selective 3D processing (P)
rfl Ref. peak position in directly detected dimension (P)
rfp Ref. peak frequency in directly detected dimension (P)
select Select a spectrum or 2D plane without displaying it (C)
sp Start of plot (P)
sw Spectral width in directly detected dimension (P)
resetplotter \textbf{Reset plotter to system plotter (M)}

\textbf{Description:} Command to reset a (temporarily chosen) plotter back to the system plotter \texttt{sysplotter}. Command is called by all plotfile/plotpreview and plot/autoplot buttons on plot panels.

\textbf{resolv \textit{Set resolution enhancement parameters (M)}}

\textbf{Syntax:} \texttt{resolv<(a,b)>}

\textbf{Description:} Calculates a default resolution enhancement function, setting up \texttt{lb} and \texttt{gf} based on the acquisition time \texttt{at}. “Zero-filling” is also accomplished, if possible, by making \texttt{fn} \(\geq 2\times np\).

\textbf{Arguments:} \texttt{a} sets a value of \texttt{lb} using \texttt{lb} = \(-0.318/ (a \times sw)\). The default for \texttt{a} is 0.1.

\texttt{b} sets a value of \texttt{gf} using \texttt{gf} = \texttt{b} \times \texttt{sw}. The default for \texttt{b} is 0.3.

\textbf{Examples:} \texttt{resolv}

\texttt{resolv(.2,.4)}

\textbf{See also:} \textit{NMR Spectroscopy User Guide}

\textbf{Related:} \texttt{at} \quad \text{Acquisition time (P)}

\texttt{fn} \quad \text{Fourier number in directly detected dimension (P)}

\texttt{gf} \quad \text{Gaussian function in directly detected dimension (P)}

\texttt{lb} \quad \text{Line broadening in directly detected dimension (P)}

\texttt{np} \quad \text{Number of data points (P)}

\texttt{sw} \quad \text{Spectral width in directly detected dimension (P)}

restorenuctable \textbf{Calculate & store accurate nuctable for current system (M)}

\textbf{Syntax:} \texttt{restorenuctable}

\textbf{Description:} The \texttt{setref} contribution is a generic nucleus table, \texttt{/vnmr/nuctables/nuctable}, based on a standard proton frequency of 1000.0 MHz. All standard nucleus tables in the \texttt{/vnmr/nuctables} are symbolic links pointing to a generic table.

The \texttt{restorenuctable} is used to replace the standard links with specific links that to files containing proper and accurately calculated nucleus tables. Problems arising with custom macros and third party software that are not aware of the symbolic links pointing to a generic table can be fixed using this macro.

Commands and utilities that do not scale nuctable entries to the actual proton frequency (as they should) will work better than with the standard tables.

\textbf{Limitations:} \texttt{restorenuctable} is not compatible with \texttt{qtune} and certain commands in current software.

\textbf{Examples:} \texttt{restorenuctable}

\textbf{Related:} \texttt{nuctable} \quad \text{Display nucleus table for a given H1 frequency (M)}

resume \textbf{Resume paused acquisition queue (C)}

\textbf{Description:} Enables continuing submitting experiments to the acquisition system. For experiments initiated with the command \texttt{au('wait')}, the acquisition is paused during the time of data processing in order to prevent the acquisition...
from submitting new experiments that might be queued. resume then allows the data processing macro to initiate another acquisition with au('next'), which is then performed immediately instead of at the end of the queue.

See also: *NMR Spectroscopy User Guide*

Related: au Submit experiment to acquisition and process data (C)

return Terminate execution of a macro (C)

Syntax: `return<(expression1,expression2,...)>`

Description: Terminates the execution of a macro and optionally returns values to another calling macro. This is usually used after testing some condition. `return` is used only in macros and not entered from the keyboard.

Arguments: `expression1,expression2,...` are return values to another calling macro.

See also: *User Programming*

Related: abort Terminate action of calling macro and all higher macros (C)

rev System software revision level (P)

Description: Stores a string identifying the VnmrJ software version for the system. This parameter is not be entered by the user, but can be examined by entering `rev?`.

See also: *VnmrJ Installation and Administration*

Related: revdate System software preparation date (P)

revdate System software preparation date (P)

Description: Stores a string identifying the date the current VnmrJ software version was prepared. This parameter is not be entered by the user, but can be examined by entering `revdate?`.

See also: *VnmrJ Installation and Administration*

Related: rev System software revision level (P)

rfband RF band in use (P)

Description: Indicates which rf band of the amplifier is in use for each channel.

Values: A string, such as 'hlc', in which the first channel is determined by the first character, the second channel is determined by the second character, and so forth. The following values are available for each channel:

- 'h' indicates the high rf band is in use on the channel.
- 'l' indicates the low rf band is in use on the channel.
- 'c' indicates the system software will calculate whether to use the high band or the low band for the channel.

See also: *NMR Spectroscopy User Guide*

rfblk Reverse FID block (C)

Syntax: `rfblk(<src_expno>,src_blk_no,dest_expno,dest_blk_no)`

Description: Reverses and copies data from a source FID block specified by `src_blk_no` to a destination FID block specified by `dest_expno` and `dest_blk_no`,...
using memory-mapped input and output. The file header determines the size and type of data to reverse.

`rfblk` searches for the source and destination FID file in the directory
$\text{vnmruser/expN/acqfil}$; N is the requested experiment number or the current experiment number. If the FID file is not open, `rfblk` opens the file, copies the data, and closes the file. If a number of blocks need to be copied, explicitly opening and closing the files with the commands `mfopen` and `mfclose` can significantly speed up the data reformatting process.

`rfblk` can also be used to append blocks of data to a FID file by specifying that the `dest_blk_no` is greater than the number of blocks in a file.

Be aware that `rfblk` can modify data returned to an experiment with the `rt` command. To avoid modification, enter the following sequence of commands before running `rfblk`:

\[
\begin{align*}
\text{cp} & (\text{curexp}+/\text{acqfil}/\text{fid}', \text{curexp}+/\text{acqfil}/\text{fidtmp}') \\
\text{rm} & (\text{curexp}+/\text{acqfil}/\text{fid}') \\
\text{mv} & (\text{curexp}+/\text{acqfil}/\text{fidtmp}', \text{curexp}+/\text{acqfil}/\text{fid}')
\end{align*}
\]

Arguments:
- `src_expno` specifies the experiment number of the source FID file. The default is the FID file of the current experiment.
- `src_blk_no` specifies the source block of data to be copied. Block numbers run from 1 to the number of blocks in a file.
- `dest_expno` specifies the experiment number of the destination FID file.
- `dest_blk_no` specifies the destination block to send the copied data.

Examples: `rfblk(1,2,1)` reverses and copies block 1 from the current experiment to block 1 of experiment 2.

See also: User Programming

Related:
- `mfblk` Move FID block (C)
- `mfclose` Memory map close FID file (C)
- `mfdata` Move FID data (C)
- `mfopen` Memory map open FID file (C)
- `mftrace` Move FID trace (C)
- `rfdata` Reverse FID data (C)
- `rftrace` Reverse FID trace (C)

rfchannel

Independent control of rf channel selection (P)

Description: Gives override capability over the selection of rf channels. `rfchannel` does not normally exist but can be created by a user with the command `create('rfchannel', 'flag')`.

The control of each rf channel is built around a collection of parameters and pulse sequence statements. The frequency of channel 1 is set by `sfrq` and `tof`, its power by `tpwr` and `tpwrf`. The first decoupler uses the corresponding parameters `dfrq`, `dof`, `dpwr`, and `dpwrf`, respectively. Furthermore, the decoupler can have modulation modes specified with the parameters `dmf`, `dm`, `dmm`, `dres`, and `dseq`. The second decoupler has the same set of parameters as the first decoupler and they are distinguished by appending a 2 to each name. That is, the names are `dfrq2`, `dof2`, `dpwr2`, `dpwrf2`, `dfrq2`, `dof2`, `dpwr2`, `dpwrf2`, and `dfrq2`. The third decoupler would use parameters with a 3 appended: `dfrq3`, `dof3`, `dpwr3`, `dpwrf3`, `dfrq3`, `dof3`, `dpwr3`, `dpwrf3`, and `dfrq3`. The `rfchannel` parameter provides a mechanism to override the default parameter usage.

Values: A string of one to four characters in which the position of each character identifies the rf channel controlled.
The first character selects which rf channel (1 to 4) the parameters `sfrq, tof, tpwr`, etc. control. The first character also identifies the rf channel used as the receiver.

The second character selects which rf channel (1 to 4) the parameters `dfrq, dof, dpwr`, etc. control.

The third character maps the parameter set `dfrq2, dof2, dpwr2`, etc. to an rf channel (1 to 4).

The fourth character maps `tdfrq3, dof3, dpwr3`, etc. to an rf channel (1 to 4).

For example, `rfchannel='132'` would exchange control of the second and third rf channels from the default parameter usage.

The number of characters in the `rfchannel` parameter must match the number of real rf channels (defined by the parameter `numrfch`) and each rf channel must be selected by the parameter.

Besides remapping the parameters to different rf channels, pulse sequence statements are also remapped. For example, if `rfchannel='132'`, then statements `decpulse, decshaped_pulse, decoffset, decpower, decspinlock`, and so on are applied on rf channel 3 and `dec2pulse, dec2shaped_pulse`, and so on are applied on rf channel 2.

An obvious use for this remapping is on systems with the decoupler set to U+ H1 Only in the Spectrometer Configuration window. On these systems, if multinuclear pulses are needed and ¹H needs to be observed, the parameter sets that assume a dual-broadband system can be used and the parameters remapped by setting `rfchannel='21'`. However, internal logic checks if the first decoupler is set to U+ H1 Only, `tn` is set to `¹H¹`, and `dn` is not set to `¹H¹`. If these settings are the case, the parameter mapping for rf channels 1 and 2 is exchanged automatically.

See also: *NMR Spectroscopy User Guide; User Programming*

Related:
- `create` Create new parameter in parameter tree (C)
- `dfrq` Transmitter frequency for first decoupler (P)
- `dm` Decoupler mode for first decoupler (P)
- `dmf` Decoupler modulation frequency for first decoupler (P)
- `dmm` Decoupler modulation mode for first decoupler (P)
- `dn` Nucleus for first decoupler (P)
- `dof` Frequency offset for first decoupler (P)
- `dpwr` Power level for first decoupler with linear amplifier (P)
- `dpwrf` First decoupler fine power (P)
- `dres` Tip-angle resolution for first decoupler (P)
- `dseq` Decoupler sequence for first decoupler (P)
- `numrfch` Number of rf channels (P)
- `sfrq` Transmitter frequency for observe nucleus (P)
- `tn` Nucleus for observe transmitter (P)
- `tof` Frequency offset for observe transmitter (P)
- `tpwr` Observe transmitter power level with linear amplifiers (P)
- `tpwrf` Observe transmitter fine power (P)

rfchtype

Type of rf channel (P)

Description: Configuration parameter for type of rf on each channel. The value for a channel is set using the Type of RF label in the Spectrometer Configuration window. Pulse sequence programs check `rfchtype` to determine if indirect detection should be used for some experiments. Indirect detection occurs automatically if the decoupler is set to U+ H1 Only in the Spectrometer Configuration window, `tn` is set to `¹H¹`, and `dn` is not set to `¹H¹`.
Values: The values of rfchtype parallel the rftype values. The only distinction is that the setting for rftype is 'd' on the U+ Direct Synthesis and U+ H1 Only entries.

'U+ Direct Synthesis' is the setting for a system with direct synthesis (U+ Direct Synthesis in the Spectrometer Configuration window).

'U+ H1 Only' is a fixed-frequency proton system (U+ H1 Only in Spectrometer Configuration window).

'Deuterium Decoupler' is the setting for a system deuterium decoupler channel.

'Direct Synthesis' is the setting for direct synthesis (Direct Synthesis in the Spectrometer Configuration window).

'Broadband' is the setting for broadband (Broadband in the Spectrometer Configuration window).

'Fixed Frequency' is the setting for fixed frequency (Fixed Frequency in the Spectrometer Configuration window).

'SIS Modulator' is the setting for imaging modulator (SIS Modulator in the Spectrometer Configuration window).

See also: VnmrJ Installation and Administration

Related:
- config: Display current configuration and possibly change it (M)
- dn: Nucleus for first decoupler (P)
- rftype: Type of rf generation (P)
- tn: Nucleus for observe transmitter (P)

rfdata

Reverse FID data (C)

Syntax: rfdata(<src_expno>, src_blk_no, src_start_loc, \
 dest_expno, dest_blk_no, dest_start_loc, num_points)

Description: Reverses and copies data specified by src_start_loc from a FID block specified by src_blk_no to a destination location specified by dest_expno, dest_blk_no, and dest_start_loc, using memory-mapped input and output. The data point locations and the num_points to be reversed are specified by data points corresponding to the np parameter, not bytes or complex points; however, when reversing the data, rfdata looks at the file header to determine the size and type of data to reverse.

rpdata searches for the source and destination FID file in the directory $vnmruser/expN/acqfil; N is the requested experiment number or the current experiment number. If the FID file is not open, rfdata opens the file, copies the data, and closes the file. If a number of blocks need to be copied, explicitly opening and closing the files with the commands mfopen and mfclose can significantly speed up the data reformatting process.

Be aware that rfdata can modify data returned to an experiment with the rt command. To avoid modification, enter the following sequence of commands before running rfdata:

\[\begin{align*}
 & \text{cp(curexp }+ \\
 & \text{'/acqfil/fid', curexp }+ \\
 & \text{'/acqfil/fidtmp')} \\
 & \text{rm(curexp }+ \\
 & \text{'/acqfil/fid')} \\
 & \text{mv(curexp }+ \\
 & \text{'/acqfil/fidtmp', curexp }+ \\
 & \text{'/acqfil/fid')} \\
\end{align*} \]

Arguments: src_expno specifies the experiment number of the source FID file. The default is the FID file of the current experiment.

src_blk_no specifies the source block of data to be copied. Block numbers run from 1 to the number of blocks in a file.

src_start_loc specifies the starting data location within the specified block to copy the data. Data locations start from 0 and are specified as data points corresponding to the np parameter.
dest_expno specifies the experiment number of the destination FID file.
dest_blk_no specifies the destination block to send the copied data.
dest_start_loc specifies the starting data destination location within the
specified block to send the copied data.

Examples: rfdata(1, 0, 2, 1, (nv-1)*np, np) copies and reverses np points of
data from the starting location 0 of block 1 of the current experiment to the data
location (nv-1)*np of block 1 of experiment 2.

See also: User Programming

Related:
- mfblk Move FID block (C)
- mfclose Memory map close FID file (C)
- mfdata Move FID data (C)
- mfopen Memory map open FID file (C)
- mftrace Move FID trace (C)
- rfblk Reverse FID block (C)
- rftrace Reverse FID trace (C)

rf1 Reference peak position in directly detected dimension (P)

Description: Actual position of the reference line in the spectrum (i.e., the distance from the
right edge of the spectrum to the reference line). If there is no reference line in
the spectrum, rf1 can be used to enter the frequency where the reference line
would appear if the line were present in the spectrum.

Values: Number, in Hz.

See also: NMR Spectroscopy User Guide

Related: rf11 Reference peak position in 1st indirectly detected dimension (P)
- rf12 Reference peak position in 2nd indirectly detected dimension (P)
- rfp Reference peak frequency in directly detected dimension (P)

rf11 Reference peak position in 1st indirectly detected dimension (P)

Description: Analogous to the rf1 parameter except that rf11 applies to the first indirectly
detected dimension of a multidimensional data set. rf11 can either be set
manually or be adjusted automatically when the macro r11 is used to assign a
reference line.

Values: Number, in Hz.

See also: NMR Spectroscopy User Guide

Related: rf1 Reference peak position in directly detected dimension (P)
- rf12 Reference peak position in 2nd indirectly detected dimension (P)
- rfp1 Reference peak frequency in 1st indirectly detected dimension (P)

rf12 Reference peak position in 2nd indirectly detected dimension (P)

Description: Analogous to the rf1 parameter except that rf12 applies to the second
indirectly detected dimension of a multidimensional data set. rf12 can either
be set manually or be adjusted automatically when the macro r12 is used to
assign a reference line.

Values: Number, in Hz.

See also: NMR Spectroscopy User Guide

Related: rf1 Reference peak position in directly detected dimension (P)
- rf11 Reference peak position in 1st indirectly detected dimension (P)
- rfp2 Reference peak frequency in 2nd indirectly detected dimension (P)
rfp Reference peak frequency in directly detected dimension (P)
Description: Sets the frequency to be assigned to the reference line in the spectrum. rfp is always stored in Hz, but can be entered in ppm by using the p suffix (e.g., rfp=2.1p).
Values: Number, in Hz.
See also: NMR Spectroscopy User Guide
Related: rfp1 Ref. peak frequency in 1st indirectly detected dimension (P)
rfp2 Ref. peak frequency in 2nd indirectly detected dimension (P)
r1 Set reference line in directly detected dimension (M)

rfp1 Reference peak freq. in 1st indirectly detected dimension (P)
Description: Analogous to the rfp parameter except that rfp1 applies to the first indirectly detected dimension of a multidimensional data set. rfp1 can either be set manually or be assigned a value when rl1 is called with an argument (e.g., rl1(7.2p) assigns the value of 7.2 ppm to rfp1).
Values: Number, in Hz.
See also: NMR Spectroscopy User Guide
Related: rfp Ref. peak frequency in directly detected dimension (P)
rfp2 Ref. peak frequency in 2nd indirectly detected dimension (P)
r1 Set reference line in directly detected dimension (M)

rfp2 Reference peak freq. in 2nd indirectly detected dimension (P)
Description: Analogous to the rfp parameter except that rfp2 applies to the second indirectly detected dimension of a multidimensional data set. rfp2 can be set manually or be assigned a value when rl2 is called with an argument. For example, entering rl2(7.2p) assigns the value of 7.2 ppm to rfp2.
Values: Number, in Hz.
See also: NMR Spectroscopy User Guide
Related: rfp Ref. peak frequency in directly detected dimension (P)
rfp1 Ref. peak frequency in 1st indirectly detected dimension (P)
r1 Set reference line in 1st indirectly detected dimension (M)

rftrace Reverse FID trace (C)
Syntax: rftrace(<src_expno,src_blk_no,src_trace_no, \
dest_expno,<dest_blk_no,dest_trace_no>)
Description: Reverses and copies FID traces specified by src_trace_no from a FID block specified by src_blk_no to a destination location specified by dest_expno, dest_blk_no, and dest_trace_no, using memory-mapped input and output. The file header determines the size and type of data to be reversed.
rftrace searches for the source and destination FID file in the directory $vnmruser/expN/acqfil; N is the requested experiment number or the current experiment number. If the FID file is not open, rftrace opens the file, copies the data, and closes the file. If a number of blocks need to be copied, explicitly opening and closing the files with the commands mfopen and mfclose can significantly speed up the data reformatting process.
You cannot use `rftrace` to append data to a FID file. Its purpose is for moving around data.

Be aware that `rftrace` can modify data returned to an experiment with the `rt` command. To avoid modification, enter the following sequence of commands before running `rftrace`:

```bash
cp(curexp+'/acqfil/fid',curexp+'/acqfil/fidmp')
rm(curexp+'/acqfil/fid')
mv(curexp+'/acqfil/fidmp',curexp+'/acqfil/fid')
```

Arguments:
- `src_expno` specifies the experiment number of the source FID file. The default is the FID file of the current experiment.
- `src_blk_no` specifies the source block of data to be copied. Block numbers run from 1 to the number of blocks in a file.
- `src_trace_no` specifies the source trace of data within the specified block to be copied. Trace numbers run from 1 to number of traces in a file.
- `dest_expno` specifies the experiment number of the destination FID file.
- `dest_blk_no` specifies the destination block to send the copied data.
- `dest_trace_no` specifies the destination trace of data within the specified block to be copied. Trace numbers run from 1 to the number of traces in a file.

Examples: `rftrace(1,1,2,1,nv)` copies and reverses trace 1 from block 1 of the current experiment to trace `nv` of block 1 of experiment 2.

See also: `User Programming`

Related:
- `mfblk` Move FID block (C)
- `mfclose` Memory map close FID file (C)
- `mfdata` Move FID data (C)
- `mfopen` Memory map open FID file (C)
- `mftrace` Move FID trace (C)
- `rfblk` Reverse FID block (C)
- `rfdata` Reverse FID data (C)

rftype

Type of rf generation (P)

Description: Configuration parameter for type of rf generation on each rf channel. On other systems, the value is set using the Type of RF label in the Spectrometer Configuration window.

Values: The values of `rftype` parallel the `rfchtype` values. The setting for `rftype` is 'd' on the entries U+ Direct Synthesis and U+ H1 Only.

- 'd' is the setting for a system with direct synthesis (U+ Direct Synthesis in the Spectrometer Configuration window) or a fixed-frequency proton system (U+ H1 Only in Spectrometer Configuration window).
- 'l' is the setting for a deuterium decoupler channel.
- 'c' is the setting for direct synthesis (Direct Synthesis in the Spectrometer Configuration window).
- 'b' is the setting for broadband (Broadband in the Spectrometer Configuration window).
- 'a' is the setting for fixed frequency (Fixed Frequency in the Spectrometer Configuration window).
- 'm' is the setting for imaging modulator (SIS Modulator in the Spectrometer Configuration window).

See also: `VnmrJ Installation and Administration`

Related:
- `config` Display current configuration and possibly change it (M)
- `rfchtype` Type of rf channel (P)
rfwg

RF waveform generator (P)

Description: Configuration parameter for whether a waveform generator board is present or not on the current rf channel. The value for each channel is set using the Waveform Generator label in the Spectrometer Configuration window.

Values: 'n' is setting for no waveform generator board on the channel (Not Present choice in Spectrometer Configuration window).
'y' is setting for a waveform generation board on the channel (Present choice in Spectrometer Configuration window).

See also: VnmrJ Installation and Administration
Related: config Display current configuration and possibly change it (M)

right

Set display limits to right half of screen (C)

Description: Sets the horizontal control parameters, sc and wc, to produce a display (and subsequent plot) in the right portion of the screen (and page). For 2D data, space is left for the scales.

See also: NMR Spectroscopy User Guide
Related: center Set display limits for center of screen (C)
full Set display limits for a full screen (C)
fullt Set display limits for full screen with room for traces (C)
left Set display limits for left half of screen (C)
sc Start of chart (P)
wc Width of chart (P)

rights

Determine an operator’s specified right (C)

Applicability: Walkup
Syntax: rights('right','errval'):ret
Description: The rights program queries the rights database to determine if the current operator has the specified right. This command is used by the interface designer to determine if and how certain options are presented. An operator does not typically use this command. The system administrator sets (restricts) the rights for an operator using VnmrJ administrator interface. By default, the rights command grants any requested right. Rights requested that are not in the rights database are granted. Granting a right means that the rights program returns a 1 to the calling macro.

Arguments: right — a specific operator right, not case sensitive.

• 1 is returned by the command if the specified right is granted or the right is not in the rights data base
• 0 is default value returned by the command if the right is both in the database and the operator does not have the specified right.

errval — optional argument specifying return value if a right is both in the database and the operator does not have the specified right.

$ret — variable holding the return value from the right command.

Examples: rights('prioritySample','-1'):$ok
Sets $ok to -1 if the prioritySample right is not granted. A value of 1 is returned if the prioritySample is granted. Returning either a 0 or -1 if a right is not granted lets the interface designer choose to show or gray out a control.

See also: VnmrJ Installation and Administration and VnmrJ Walkup manuals.
rinput

Input data for a regression analysis (M)

Description: Formats data for regression analysis and places the data into the file `regression.inp`. The program is interactive. If a `regression.inp` already exists, `rinput` starts by asking if you want to overwrite the file. Type `y` and press the Return key. It then asks for an x-axis title and a y-axis title. Enter the titles as asked (for no title, simply press Return). Next, `rinput` asks you to input the data in pairs. Separate each pair of values with a blank and press Return after the second value. At the end of the data set, press Return to the request for data. If you have another data set, type `y` and press Return to the question and then type in the data when it is asked for.

See also: *NMR Spectroscopy User Guide; User Programming*

Related:
- `expl` Display exponential or polynomial curves (C)
- `poly0` Find mean of data in the file `regression.inp` (C)

rl

Set reference line in directly detected dimension (M)

Syntax: `rl<(frequency)>`

Description: Sets the direct dimension reference line, taking into account any frequency scaling with the `scalesw` parameter.

Arguments:
- `frequency` is a value, in Hz, to assign to the reference line. The default is the cursor position `cr`. To enter the value in ppm, add a `p` suffix.

Examples:
- `rl`
- `rl(0)`
- `rl(7.2p)`

See also: *NMR Spectroscopy User Guide*

Related:
- `cr` Current cursor position in directly detected dimension (P)
- `cr1` Clear ref. line in directly detected dimension (C)
- `reffrq` Reference frequency of the reference line (P)
- `rl1` Set ref. line in 1st indirectly detected dimension (M)
- `rl2` Set ref. line in 2nd indirectly detected dimension (M)
- `scalesw` Scale spectral width in directly detected dimension (P)

rl1

Set reference line in 1st indirectly detected dimension (M)

Syntax: `rl1<(frequency)>`

Description: Sets the first indirect dimension reference line, taking into account any frequency scaling with the `scalesw1` parameter.

Arguments:
- `frequency` is a value, in Hz, to assign to the reference line. The default is the cursor position `cr1`. You can enter the suffixes `p`, `d`, or `k` to mean ppm, decoupler ppm, and kilo, respectively. These suffixes are exactly equivalent to using `*sfrq`, `*dfrq`, and `*1000`. Thus, if you are doing a 2D experiment in which the indirect axis is determined by the decoupler channel, you might enter, for example, `rl1(10d)`, which is equivalent to `rl1(10*dfrq)`.

Examples:
- `rl1`
- `rl1(0)`
- `rl1(7.2p)`

See also: *NMR Spectroscopy User Guide*

Related:
- `cr1` Cursor position in 1st indirectly detected dimension (P)
- `crl1` Clear ref. line in 1st indirectly detected dimension (M)
- `dfreq` Transmitter frequency of first decoupler (P)
- `refpos2` Position of reference frequency in 2nd indirect dimension (P)
r1 Set ref. line in directly detected dimension (M)
r12 Set ref. line in 2nd indirectly detected dimension (M)
scalesw1 Scale spectral width in 1st indirectly detected dimension (P)
sfrq Transmitter frequency of observe nucleus (P)

r12
Set reference line in 2nd indirectly detected dimension (M)

Syntax: `r12<(frequency)>`

Description: Sets the second indirect dimension reference line, taking into account any frequency scaling with the `scalesw2` parameter.

Arguments: `frequency` is a value, in Hz, to assign to the reference line. The default is the cursor position `cr2`. You can enter the suffixes `p`, `d`, or `k` to mean ppm, decoupler ppm, and kilo, respectively. These suffixes are exactly equivalent to using `*sfrq`, `*dfrq`, and `*1000`. Because there is no suffix for the second decoupler (i.e., the third channel), to reference the third axis using `r12` you might enter (e.g., `r12(45*dfrq2)`).

Examples:
- `r12`
- `r12(0)`
- `r12(7.2p)`

See also: *NMR Spectroscopy User Guide*

Related:
- `cr2` Cursor position in 2nd indirectly detected dimension (P)
- `crl` Clear ref. line in directly detected dimension (C)
- `crl1` Clear ref. line in 1st indirectly detected dimension (C)
- `crl2` Clear ref. line in 2nd indirectly detected dimension (C)
- `dfrq` Transmitter frequency of first decoupler (P)
- `dfrq2` Transmitter frequency of second decoupler (P)
- `rl` Set ref. line in directly detected dimension (M)
- `rl2` Set ref. line in 2nd indirectly detected dimension (M)
- `scalesw2` Scale spectral width in 2nd indirectly detected dimension (P)
- `sfrq` Transmitter frequency of observe nucleus (P)

rm
Delete file (C)

Syntax: `rm(file1<,file2,...>)`

Description: Removes one or more files from the file system, functioning like the UNIX command of the same name. Because it allows wildcard characters (* and ?) in the command argument and recursive file deletion with the `-r` option, `rm` is very powerful. But it can be quite dangerous—without warning important files can be inadvertently deleted, even by experienced users. **Using `rm` to delete files in VnmrJ is not recommended.** The `delete` command is provided as a safer alternative.

Arguments: `file1, file2,...` are names of files to delete.

See also: *NMR Spectroscopy User Guide*

Related:
- `delete` Delete a file, parameter directory, or FID directory (C)
- `delexp` Delete an experiment (C)
- `exists` Determine if a parameter, file, or macro exists (C)
- `mv` Move and/or rename a file (C)
- `rename` Move and/or rename a file (C)

rmdir
Remove directory (C)

Syntax: `rmdir(directory)`
Remove one or more empty directories (i.e., directories without files).

Arguments: directory is the name of the directory to be removed.

Examples: `rmdir('/home/dan/temp')`

See also: NMR Spectroscopy User Guide

Related: `delete` Delete a file, parameter directory, or FID directory (C)
 `dir` List files in current directory (C)
 `lf` List files in current directory (C)
 `ls` List files in current directory (C)
 `mkdir` Create new directory (C)

rmsAddData: Add transformed data files with weighting (U)

Applicability: Systems with multiple receivers.

Description: This command is not normally executed directly by the user.

Roesy: Convert the parameter to a ROESY experiment (M)

Description: Convert the parameter to a rotating frame Overhauser effect spectroscopy (ROESY) experiment.

Roesy1d: Convert the parameter set to a Roesy1d experiment (M)

Description: Convert the parameter set to a 1D rotating frame Overhauser effect spectroscopy (Roesy1D) experiment.

See also: NMR Spectroscopy User Guide

Related: `Proton` Set up parameters for 1H experiment (M).
 `sel1d` Selective 1D protocols to set up (M).

rof1: Receiver gating time preceding pulse (P)

Description: Sets the period of time in most pulse sequences when the receiver is gated off before each pulse. This allows the amplifier to fully turn on before the start of the pulse. Systems are configured with linear amplifiers that are normally “blanked” to give the best possible signal-to-noise (i.e., the amplifiers are turned off when the receiver is turned on). The 1H/19F amplifiers have a short turn-on time, usually 1 to 5 μs following the removal of blanking by turning the receiver off. The low-frequency amplifier modules have a longer turn-on time, about 40 to 60 μs.

Values: Typically 2-5 microseconds.

See also: NMR Spectroscopy User Guide

Related: `rof2` Receiver gating time following pulse (P)

rof2: Receiver gating time following pulse (P)

Description: Sets the time after the final pulse in each pulse sequence that the receiver is gated off before acquisition begins. If “pulse breakthrough” effects are seen (a spike in the beginning of the FID), increasing `rof2` can reduce or eliminate the problem, particularly for low-frequency nuclei.

Values: Typically 10 microseconds.
See also: *NMR Spectroscopy User Guide*

Related:
- **rof1**
 Receiver gating time preceding pulse (P)
- **setlp0**
 Set parameters for zero linear phase (M)

rof3
Receiver gating time following T/R switch (P)

Applicability: DirectDrive systems

Description: Sets the time when the receiver is gated on following the T/R switch during the pulse. This allows for the elimination of pulse artifacts during the acquisition period.

rotate
Rotate 2D data (C)

Syntax: `rotate<(number_degrees)>`

Description: Rotates a 2D spectrum. Both complex and hypercomplex 2D data will work.

Arguments: `number_degrees` is the amount of counter-clockwise rotation, in degrees. The default is 45.

See also: *NMR Spectroscopy User Guide*

Related:
- **foldcc**
 Fold INADEQUATE data about 2-quantum axis (C)
- **foldj**
 Fold J-resolved 2D spectrum about f1=0 axis (C)
- **foldt**
 Fold COSY-like spectrum along diagonal axis (C)

rotorsync
Rotor synchronization (P)

Applicability: Systems with the solids rotor synchronization module.

Description: Configuration parameter that identifies if the system has the optional solids rotor synchronization module. The value of `rotorsync` is set using the Rotor Synchronization label in the Spectrometer Configuration window. Rotor synchronization requires either the Acquisition Controller board (Part No. 969204) or the Pulse Sequence Controller board (Part No. 992560) in the system.

Values:
- 1 is setting that system has solids rotor synchronization (Present choice in the Spectrometer Configuration window).
- 0 is setting that system does not have solid rotor synchronization (Not Present choice in the Spectrometer Configuration window).

See also: *VnmrJ Installation and Administration*

Related:
- **config**
 Display current configuration and possibly change it (M)

rp
Zero-order phase in directly detected dimension (P)

Description: Specifies the right phase-correction angles along the directly detected dimension according to

```
absorption spectrum(\omega) =
real channel(\omega) * cos \theta + imaginary channel(\omega) * sin \theta
```

where the phase angle \(\theta \) is a function of frequency:

```
\theta = rp + (\omega - \omega_0)/sw * lp
```

\(\omega_0 \) is defined as the right end of the spectrum. This dimension is referred to as the f2 dimension in 2D data sets, f3 dimension in 3D data sets, and so on.

Values: −360 to +360, in degrees.
rp1
Zero-order phase in 1st indirectly detected dimension (P)

Description: Specifies the right phase parameter along the first indirectly detected dimension, in degrees, for the f1 dimension of a multidimensional data set during the process of phase-sensitive 2D transformation.

See also: NMR Spectroscopy User Guide
Related:
- lp First-order phase in directly detected dimension (P)
- rp Zero-order phase in directly detected dimension (P)
- rp2 Zero-order phase in 2nd indirectly detected dimension (P)
- setlp0 Set parameters for zero linear phase (M)

rp2
Zero-order phase in 2nd indirectly detected dimension (P)

Description: Controls the zero-order phase constant along the second indirectly detected dimension during a ds, dconi, or equivalent display operation on the 2D data or a 1D trace therein. This dimension is often referred to as the f2 dimension.

See also: NMR Spectroscopy User Guide
Related:
- dconi Interactive 2D contour display (C)
- ds Display a spectrum (C)
- lp Base first-order phase in 2nd indirectly detected dimension (P)
- rp Zero-order phase in directly detected dimension (P)

rt
Retrieve FIDs (M)

Syntax: rt<(file, 'nolog')>

Description: Retrieves FIDs from a file into the current experiment.

The rt macro does not copy the FID into the experiment. Instead, it links access to the original FID from the experiment. Most of the time, this behavior is desired, because the FID file is seldom changed. By making a link, disk space is also conserved. However, if the FID file in the experiment is written to, the data in the original file is also written to. It is best to make a copy of a FID file before altering it. The makefid command alters the FID file. The manual entry for makefid gives details on how to make a copy of the FID.

As another somewhat subtle point, because the FID in the experiment is a link to another .fid file, if that .fid file is removed, the link from the experiment may be gone. If you expect the FID in the experiment to be there, even if you delete the .fid file from where it was retrieved using rt, you should explicitly copy the file into the experiment.

Arguments: file is the name of the file that, with the suffix .fid added, contains the FIDs to be retrieved. The default is that the system prompts for the name (in that case, the name can be given without single quotes). If file.fid does not exist and file.par does, rt retrieves the parameters from file.par.

'nolog' is a keyword specifying that the log file is not to be retrieved.

Examples: rt
rt('/vnmr/fidlib/fid1d')
See also: *NMR Spectroscopy User Guide*

Related:
- `fixpar` Correct parameter characteristics in experiment (M)
- `makefid` Make a FID element using numeric text input (C)
- `rtp` Retrieve parameters (M)
- `rtv` Retrieve individual parameters (C)
- `svp` Save FIDs in current experiment (M)

rtcpx

Return Spinsight data into current experiment (C)

Syntax: `rtcpx(file)`

Description: Retrieves Spinsight data into the current experiment.

Arguments:
- `file` is the name of the file. The default is that the macro prompts for the file name.

Alternate: Load button in the `files` program.

Examples:
- `rtcpx`
- `rtcpx('redor.data')`

See also: *NMR Spectroscopy User Guide*

Related: `files` Interactively handle files (C)

rtp

Retrieve parameters (M)

Syntax: `rtp(file)`

Description: Retrieves parameters from a file into the current experiment.

Arguments:
- `file` is the name of the file that, with the suffix `.par` added, contains the parameters to be retrieved. The default is that the system prompts for the name (in that case, the name can be given without single quotes). If `file.par` does not exist and `file.fid` does, `rtp` retrieves the parameters only from `file.fid`.

Examples:
- `rtp`
- `rtp('/vnmr/stdpar/P31')`

See also: *NMR Spectroscopy User Guide*

Related: `fixpar` Correct parameter characteristics in experiment (M)
- `rt` Retrieve FIDs (M)
- `rtv` Retrieve individual parameters (C)
- `svp` Save parameters from current experiment (M)

rts

Retrieve shim coil settings (C)

Syntax: `rts(file)::{status}`

Description: Locates a preexisting file of shim settings and copies the settings into the current parameter set of the current experiment and sets `load='y'` to facilitate subsequent loading of shims with `su` (or related commands or macros). If the shim file is not found, `rts` displays the file names it tried.

The `rts` command returns shims from a `.fid` file or a `.par` file, selecting the shim parameters from the parameters stored there.

Arguments:
- `file` — the name of a file containing the shim coil settings to be retrieved. If the file name is an absolute path, `rts` uses it with no modifications. Otherwise, `rts` searches the applications directories.

- `status` — the return variable with one of the following values after `rts` finishes searching for the shim coil settings file:
• 0 indicates that rts failed to find requested file.
• 1 indicates that rts found the requested file, either as an absolute path or in the shims directory of the first application directory.
• >=2 indicates that rts found the requested file in shims subdirectory of the second, third, or later application directory.

Examples:

rts('acetone')
rts('bbl0mm')

See also: NMR Spectroscopy User Guide

Related:
load Load status of displayed shims (P)
su Submit a setup experiment to acquisition (M)
svs Save shim coil settings (C)

tttmp

Retrieve experiment data from experiment subfile (M)

Syntax: tttmp(file)

Description: Retrieves experiment data—parameters, FID, and transformed spectrum—from the file specified in a subdirectory inside curexp+/subexp/.

Arguments: file is the name of the subfile from which to retrieve the experiment data.

Examples:

rttmp('H1')
rttmp('cosy')

See also: NMR Spectroscopy User Guide

Related:
ctmp Copy experiment data into experiment subfile (M)
curexp Current experiment directory (P)
svtmp Move experiment data into experiment subfile (M)

rtv

Retrieve individual parameters (C)

Syntax: rtv(file,par1,index1,par2,index2...>:val>

rtv('parmaster','noabort','parameter'):$pm

Description: Retrieves one or more parameters from a parameter file. The file might have been made with svf or svp or sd commands, or it might be from another experiment. If no return argument is added, the parameters are copied into the experiment’s current tree. If the parameter does not already exist in the current tree, it is created. If the returned parameter is an array, the entire array is returned.

rtv returns values into the macro if a return argument is added. This form of rtv command, in which values are passed only to macro variables, avoids the creation of additional parameters in the experiment’s current tree.

Arguments: file — name of the directory or a parameter file. If the supplied value for file is a directory (with or without the .fid or .par extension), the parameters are retrieved from the procpar file in that directory. If the supplied value does not correspond to a directory but rather is a parameter file, that file is used. The default is that rtv prompts for a file name. In that case, the file name can be given without single quotes.

par1,index1,par2,index2,... — name and array index of one or more parameters to be retrieved. The default for each array index argument is the first index. Including the array index for a parameter is only useful when returning values to the macro through a return argument.

val — return argument for values to return to the macro. If the requested parameter do not exist in the parameter file, rtv will abort.
noabort — keyword option must follow the `parmaster` keyword and precede the parameter argument. This option applies to a single parameter. Command does not abort if the requested parameter does not exist.

`parmaster` — filename of the parameter set.

`parameter` — the parameter name.

Executing `rtv` without macro return values causes the `fixpar` macro run. The macro `fixpar` is not executed if return values are requested. `rtv` will prompt for a file name if the command is executed without an argument. The filename given in response to the prompt does not require single quotes.

In LC-NMR, `rt` will retrieve the `lcdata` (and `drunlog`) files if these files were saved along with the NMR data by using `svf`.

Examples:
```
rtv
rtv('/vnmr/parlib/cosy.par','phase')
rtv('/vnmr/parlib/cosy.par','noabort','phase')
```

See also: *NMR Spectroscopy User Guide* and *User Programming* manuals

Related:
- `rt` Retrieve FIDs (M)
- `rtp` Retrieve parameters (M)
- `sd` Set first decoupler frequency to cursor position (M)
- `svf` Save FIDs in current experiment (M)
- `svp` Save parameters from current experiment (M)

rtx

Retrieve parameters based on rtx rules (C)

Syntax:
```
rtx(filename <,tree <, keyword1 <, keyword2 >>>)
```

Description: The `rtx` command retrieves parameters from `filename`, based on the setting of the P_LOCK protection bit and using the rules below.

Arguments:
- `tree` is `'current'`, `'processed'`, `'global'`, or `'systemglobal'`.
- `keyword1` may be `'keep'` or `'rt'`. The default is `'keep'`.
- `keyword2` may be `'clear'` or `'noclear'`. The default is `'clear'`.

`keyword2` determines if the P_LOCK bit is cleared after `rtx` is executed.

Truth table for rtx.

<table>
<thead>
<tr>
<th>Status of P_LOCK bit in current exp</th>
<th>Status of P_LOCK bit in filename</th>
<th><code>keyword1</code></th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>on</td>
<td>keep or rt</td>
<td>do not rt</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>keep or rt</td>
<td>do not rt</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>keep or rt</td>
<td>do rt</td>
</tr>
<tr>
<td>off</td>
<td>off</td>
<td>keep</td>
<td>do not rt</td>
</tr>
<tr>
<td>off</td>
<td>off</td>
<td>rt</td>
<td>do rt</td>
</tr>
<tr>
<td><no parameter></td>
<td>on</td>
<td>keep or rt</td>
<td>do rt</td>
</tr>
<tr>
<td><no parameter></td>
<td>off</td>
<td>keep</td>
<td>do not rt</td>
</tr>
<tr>
<td><no parameter></td>
<td>off</td>
<td>rt</td>
<td>do rt</td>
</tr>
</tbody>
</table>

See also: *NMR Spectroscopy User Guide*

Related:
- `execpars` Set up the exec parameters (M)
- `rtp` Retrieve parameters (M)
Save display parameters as a set (M)
Save display parameters (C)
Set up parameters for standard two-pulse sequence (M)
Stop acquisition (C)
Submit change sample, Autoshim experiment to acquisition (M)
Sample name (P)
Save data (M)
Base file name for saving files (P)
Save selected parameters from global tree (P)
Sinebell constant in directly detected dimension (P)
Sinebell constant in 1st indirectly detected dimension (P)
Sinebell constant in 2nd indirectly detected dimension (P)
Sinebell shift in directly detected dimension (P)
Sinebell shift in 1st indirectly detected dimension (P)
Sinebell shift in 2nd indirectly detected dimension (P)
Start of chart (P)
Start of chart in second direction (P)
Set limits for scales in regression (M)
Set scaling factor for multipulse experiments (M)
Scale spectral width in directly detected dimension (P)
Set f$_1$ scaling factor for 2D multipulse experiments (M)
Scale spectral width in 1st indirectly detected dimension (P)
Scale spectral width in 2nd indirectly detected dimension (P)
Set first decoupler frequency to cursor position (M)
Set second decoupler frequency to cursor position (M)
Set third decoupler frequency to cursor position (M)
Set first decoupler frequency array (M)
Set second decoupler frequency array (M)
Set third decoupler frequency array (M)
Show diffusion projection (M)
Apptype macro for Selective 1D experiments
Select spectrum, FID, trace, or 2D plane without display (C)
Defines excitation band (M)
Set up PFG selective excitation pulse sequence (M)
Set up a selective Hadamard experiment (M)
Send a command to VnmrJ (U)
Pulse sequence name (P)
Initiate compilation of user’s pulse sequence (M,U)
Returns the VnmrJ network listening port value (C)
General setup for 2D experiments (M)
General setup for 2D experiments (M)
Set 3D processing (C)
Set all shims into hardware (M)
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>setcolor</td>
<td>Set colors for graphics window and for plotters (C)</td>
</tr>
<tr>
<td>setdecpars</td>
<td>Set decoupler parameter values from probe file (M)</td>
</tr>
<tr>
<td>setdec2pars</td>
<td>Set decoupler 2 parameter values from probe file (M)</td>
</tr>
<tr>
<td>setdgroup</td>
<td>Set the Dgroup of a parameter in a tree (C)</td>
</tr>
<tr>
<td>setenumeral</td>
<td>Set values of a string parameter in a tree (C)</td>
</tr>
<tr>
<td>setether</td>
<td>Connect or reconnect host computer to Ethernet (U)</td>
</tr>
<tr>
<td>setexport</td>
<td>Set parameter bits for use with protocols (M)</td>
</tr>
<tr>
<td>setfrq</td>
<td>Set frequency of rf channels (C)</td>
</tr>
<tr>
<td>setgauss</td>
<td>Set a Gaussian fraction for lineshape (M)</td>
</tr>
<tr>
<td>setgcal</td>
<td>Set the gradient calibration constant (M)</td>
</tr>
<tr>
<td>setgcoil</td>
<td>Assign sysgcoil configuration parameter (M)</td>
</tr>
<tr>
<td>setgrid</td>
<td>Divide graphics window into rows and columns (C)</td>
</tr>
<tr>
<td>setgroup</td>
<td>Set group of a parameter in a tree (C)</td>
</tr>
<tr>
<td>sethtfrq1</td>
<td>Set a Hadamard frequency list from a line list ((M)</td>
</tr>
<tr>
<td>sethw</td>
<td>Set values for hardware in acquisition system (C)</td>
</tr>
<tr>
<td>setint</td>
<td>Set value of an integral (M)</td>
</tr>
<tr>
<td>setlimit</td>
<td>Set limits of a parameter in a tree (C)</td>
</tr>
<tr>
<td>setlk</td>
<td>Set up lock parameters (M)</td>
</tr>
<tr>
<td>setlockfreq</td>
<td>Set lock frequency (M)</td>
</tr>
<tr>
<td>setLP</td>
<td>Set up linear prediction in the direct dimension (M)</td>
</tr>
<tr>
<td>setLP1</td>
<td>Set F1 linear prediction parameters (M)</td>
</tr>
<tr>
<td>setip0</td>
<td>Set parameters for zero linear phase (M)</td>
</tr>
<tr>
<td>setnoether</td>
<td>Disconnect host computer from Ethernet (U)</td>
</tr>
<tr>
<td>setoffset</td>
<td>Calculate offset frequency for given nucleus and ppm (M)</td>
</tr>
<tr>
<td>setparams</td>
<td>Write parameter to current probe file (M)</td>
</tr>
<tr>
<td>setpen</td>
<td>Set maximum number of HP plotter pens (M)</td>
</tr>
<tr>
<td>setplotdev</td>
<td>Return characteristics of a named plotter (C)</td>
</tr>
<tr>
<td>setpower</td>
<td>Set power and pulsewidth for a given γB_1 value (M)</td>
</tr>
<tr>
<td>setprotect</td>
<td>Set protection mode of a parameter (C)</td>
</tr>
<tr>
<td>setrc</td>
<td>Set receiver constants (M)</td>
</tr>
<tr>
<td>setref</td>
<td>Set frequency referencing (M)</td>
</tr>
<tr>
<td>setref1</td>
<td>Set freq. referencing for 1st indirectly detected dimension (M)</td>
</tr>
<tr>
<td>setref2</td>
<td>Set freq. referencing for 2nd indirect detected dimension (M)</td>
</tr>
<tr>
<td>setscout</td>
<td>Set up a scout run (M)</td>
</tr>
<tr>
<td>setssfilter</td>
<td>Set ssSlsfrq to the frequencies of each suppressed solvents (M)</td>
</tr>
<tr>
<td>setsw</td>
<td>Set spectral width (M)</td>
</tr>
<tr>
<td>setswl</td>
<td>Set spectral width in evolution dimension (M)</td>
</tr>
<tr>
<td>setsw2</td>
<td>Set spectral width in 2nd evolution dimension (M)</td>
</tr>
<tr>
<td>setselfrqc</td>
<td>Set selective frequency and width (M)</td>
</tr>
<tr>
<td>setselinv</td>
<td>Set up selective inversion (M)</td>
</tr>
<tr>
<td>settcldefault</td>
<td>Select default display templates for pulse sequence (M)</td>
</tr>
<tr>
<td>settune</td>
<td>Opens the Auto Tune Setup dialog (M)</td>
</tr>
<tr>
<td>settype</td>
<td>Change type of a parameter (C)</td>
</tr>
<tr>
<td>setup</td>
<td>Set up parameters for basic experiments (M)</td>
</tr>
<tr>
<td>setup_dosy</td>
<td>Set up gradient levels for DOSY experiments (M)</td>
</tr>
<tr>
<td>setvalue</td>
<td>Set value of any parameter in a tree (C)</td>
</tr>
<tr>
<td>setwave</td>
<td>Write a wave definition string into Pbox.inp file (M)</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>setwin</td>
<td>Activate selected window (C)</td>
</tr>
<tr>
<td>sf</td>
<td>Start of FID (P)</td>
</tr>
<tr>
<td>sf1</td>
<td>Start of interferogram in 1st indirectly detected dimension (P)</td>
</tr>
<tr>
<td>sf2</td>
<td>Start of interferogram in 2nd indirectly detected dimension (P)</td>
</tr>
<tr>
<td>sfrq</td>
<td>Transmitter frequency of observe nucleus (P)</td>
</tr>
<tr>
<td>sh2pul</td>
<td>Set up for a shaped observe excitation sequence (M)</td>
</tr>
<tr>
<td>shdec</td>
<td>Set up for shaped observe excitation sequence (M)</td>
</tr>
<tr>
<td>shell</td>
<td>Start a UNIX shell (C)</td>
</tr>
<tr>
<td>shelli</td>
<td>Start an interactive UNIX shell (C)</td>
</tr>
<tr>
<td>shim</td>
<td>Submit an Autoshim experiment to acquisition (C)</td>
</tr>
<tr>
<td>shimset</td>
<td>Type of shim set (P)</td>
</tr>
<tr>
<td>showconfig</td>
<td>Show system configuration settings (M)</td>
</tr>
<tr>
<td>showconsole</td>
<td>Show console configuration parameters (U)</td>
</tr>
<tr>
<td>showfit</td>
<td>Display numerical results of deconvolution (M)</td>
</tr>
<tr>
<td>showloginbox</td>
<td>Shows operator login dialog (M)</td>
</tr>
<tr>
<td>shonumx</td>
<td>x position counting from bottom left of every spectrum (P)</td>
</tr>
<tr>
<td>shonumy</td>
<td>y position counting from bottom left of every spectrum (P)</td>
</tr>
<tr>
<td>showoriginal</td>
<td>Restore first 2D spectrum in 3D DOSY experiment (M)</td>
</tr>
<tr>
<td>showplotter</td>
<td>Show list of currently defined plotters and printers (M)</td>
</tr>
<tr>
<td>showplotq</td>
<td>Display plot jobs in plot queue (M)</td>
</tr>
<tr>
<td>showprintq</td>
<td>Display print jobs in print queue (M)</td>
</tr>
<tr>
<td>showprotunegui</td>
<td>Show the graphical interface while tuning (P)</td>
</tr>
<tr>
<td>showrfmon</td>
<td>Show RF Monitor Button in Hardware Bar (P)</td>
</tr>
<tr>
<td>showstat</td>
<td>Display information about status of acquisition (M,U)</td>
</tr>
<tr>
<td>sin</td>
<td>Find sine value of an angle (C)</td>
</tr>
<tr>
<td>sine</td>
<td>Find values for a sine window function (M)</td>
</tr>
<tr>
<td>sinebell</td>
<td>Select default parameters for sinebell weighting (M)</td>
</tr>
<tr>
<td>sinesq</td>
<td>Find values for a sine-squared window function (M)</td>
</tr>
<tr>
<td>size</td>
<td>Returns the number of elements in an arrayed parameter (O)</td>
</tr>
<tr>
<td>s1freq</td>
<td>Measured line frequencies (P)</td>
</tr>
<tr>
<td>slw</td>
<td>Spin simulation linewidth (P)</td>
</tr>
<tr>
<td>smaxf</td>
<td>Maximum frequency of any transition (P)</td>
</tr>
<tr>
<td>sminf</td>
<td>Minimum frequency of any transition (P)</td>
</tr>
<tr>
<td>smsport</td>
<td>Sample Management System serial port connection (P)</td>
</tr>
<tr>
<td>sn</td>
<td>Signal-to-noise ratio (P)</td>
</tr>
<tr>
<td>solppm</td>
<td>Return ppm and peak width of solvent resonances (M)</td>
</tr>
<tr>
<td>solvent</td>
<td>Lock solvent (P)</td>
</tr>
<tr>
<td>solvinfo</td>
<td>Retrieve information from solvent table (C)</td>
</tr>
<tr>
<td>sort</td>
<td>Sort real values of a parameter (M)</td>
</tr>
<tr>
<td>sp</td>
<td>Start of plot in directly detected dimension (P)</td>
</tr>
<tr>
<td>sp1</td>
<td>Start of plot in 1st indirectly detected dimension (P)</td>
</tr>
<tr>
<td>sp2</td>
<td>Start of plot in 2nd indirectly detected dimension (P)</td>
</tr>
<tr>
<td>spadd</td>
<td>Add current spectrum to add/subtract experiment (C)</td>
</tr>
<tr>
<td>spcfrq</td>
<td>Display frequencies of rf channels (M)</td>
</tr>
<tr>
<td>specdc3d</td>
<td>3D spectral drift correction (P)</td>
</tr>
<tr>
<td>spin</td>
<td>Submit a spin setup experiment to acquisition (C)</td>
</tr>
<tr>
<td>spin</td>
<td>Sample spin rate (P)</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>spincad</td>
<td>Run SpinCAD program (C)</td>
</tr>
<tr>
<td>spingen</td>
<td>Compile SpinCAD pulse sequence *(C)</td>
</tr>
<tr>
<td>spinll</td>
<td>Set up a slfreq array (M)</td>
</tr>
<tr>
<td>spinner</td>
<td>Open the Spinner Control window (C)</td>
</tr>
<tr>
<td>spinopt</td>
<td>Spin automation (P)</td>
</tr>
<tr>
<td>spins</td>
<td>Perform spin simulation calculation (C)</td>
</tr>
<tr>
<td>split</td>
<td>Split difference between two cursors (M)</td>
</tr>
<tr>
<td>spintype</td>
<td>Spinner Type ((P)</td>
</tr>
<tr>
<td>spmax</td>
<td>Take the maximum of two spectra (C)</td>
</tr>
<tr>
<td>spmin</td>
<td>Take minimum of two spectra in add/subtract experiment (C)</td>
</tr>
<tr>
<td>spsm</td>
<td>Enter spin system (M)</td>
</tr>
<tr>
<td>spsub</td>
<td>Subtract current spectrum from add/subtract experiment (C)</td>
</tr>
<tr>
<td>sqcosine</td>
<td>Set up unshifted cosine-squared window function (M)</td>
</tr>
<tr>
<td>sqdir</td>
<td>Study queue directory (P)</td>
</tr>
<tr>
<td>sqend</td>
<td>End a study queue (M)</td>
</tr>
<tr>
<td>sqexp</td>
<td>Load experiment from protocol (M)</td>
</tr>
<tr>
<td>sqfilemenu</td>
<td>Study queue file menu commands (M)</td>
</tr>
<tr>
<td>sqmode</td>
<td>Study queue mode (P)</td>
</tr>
<tr>
<td>sqname</td>
<td>Study queue parameter template (P)</td>
</tr>
<tr>
<td>sqpars</td>
<td>Create study queue parameters for imaging (M)</td>
</tr>
<tr>
<td>sqprotocol</td>
<td>Macro to create protocols (M)</td>
</tr>
<tr>
<td>sqreset</td>
<td>Reset study queue parameters for imaging (M)</td>
</tr>
<tr>
<td>sqrt</td>
<td>Return square root of a real number (O)</td>
</tr>
<tr>
<td>sqsavestudy</td>
<td>Macro to save study parameters for imaging (M)</td>
</tr>
<tr>
<td>sqsinebell</td>
<td>Set up unshifted sinebell-squared window function (M)</td>
</tr>
<tr>
<td>srate</td>
<td>Spinning rate for magic angle spinning (P)</td>
</tr>
<tr>
<td>sread</td>
<td>Read converted data into VnmrJ (C)</td>
</tr>
<tr>
<td>srof2</td>
<td>Calculate exact rof2 value for Cold Probes (M)</td>
</tr>
<tr>
<td>ss</td>
<td>Steady-state transients (P)</td>
</tr>
<tr>
<td>ssecho</td>
<td>Set up solid-state echo pulse sequence (M)</td>
</tr>
<tr>
<td>ssechol</td>
<td>Set up parameters for SSECHO1 pulse sequence (M)</td>
</tr>
<tr>
<td>ssfilter</td>
<td>Full bandwidth of digital filter to yield a filtered FID (P)</td>
</tr>
<tr>
<td>sslsfreq</td>
<td>Center of solvent-suppressed region of spectrum (P)</td>
</tr>
<tr>
<td>ssntaps</td>
<td>Number of coefficients in digital filter (P)</td>
</tr>
<tr>
<td>ssorder</td>
<td>Order of polynomial to fit digitally filtered FID (P)</td>
</tr>
<tr>
<td>stack</td>
<td>Stacking mode for processing and plotting arrayed spectra (M)</td>
</tr>
<tr>
<td>stackmode</td>
<td>Stacking control for processing arrayed 1D spectra (P)</td>
</tr>
<tr>
<td>startq</td>
<td>Start a chained study queue (M)</td>
</tr>
<tr>
<td>status</td>
<td>Display status of sample changer (C,U)</td>
</tr>
<tr>
<td>std1d</td>
<td>Apptype macro for Standard 1D experiments (M)</td>
</tr>
<tr>
<td>stdahm</td>
<td>Interactively create a method string for autoshimming (M)</td>
</tr>
<tr>
<td>sth</td>
<td>Minimum intensity threshold (P)</td>
</tr>
<tr>
<td>string</td>
<td>Create a string variable (C)</td>
</tr>
<tr>
<td>strtext</td>
<td>Starting point for LP data extension in np dimension (P)</td>
</tr>
<tr>
<td>strtext1</td>
<td>Starting point for LP data extension in ni dimension (P)</td>
</tr>
<tr>
<td>strtext2</td>
<td>Starting point for LP data extension in ni2 dimension (P)</td>
</tr>
<tr>
<td>strtlp</td>
<td>Starting point for LP calculation in np dimension (P)</td>
</tr>
</tbody>
</table>
Save display parameters as a set (M)

Syntax:
(1) \textit{sset_number}
(2) \textit{s(set_number)}

Description: Saves a copy of the current values of all display parameters. The set is data-independent because the parameters that govern a display (\textit{sp}, \textit{wp}, \textit{vs}, etc.) are saved but no data is saved.

Arguments: \textit{set_number} is number of the display parameter set to be saved.

Examples: \texttt{s2}
\texttt{s(3)}

See also: \textit{NMR Spectroscopy User Guide}

Related: \textit{fr} Full recall of display parameter set (M)
\textit{r} Recall display parameter set (M)

Save display parameters (C)

Applicability: All

Syntax: \texttt{s(n<noupdate>)}
Sample

Submit change sample, Autoshim experiment to acquisition (M)

Applicability: Systems with a sample changer.
Description: Performs the combined operations change, spin, lock, and shim, making it a convenient setup command for a new sample.

See also: *NMR Spectroscopy User Guide*

Related:
- **au**: Submit experiment to acquisition and process data (C)
- **change**: Submit a change sample experiment to acquisition (M)
- **ga**: Submit experiment to acquisition and FT the result (C)
- **go**: Submit experiment to acquisition (C)
- **lock**: Submit an Autolock experiment to acquisition (C)
- **shim**: Submit an Autoshim experiment to acquisition (C)
- **spin**: Submit a spin setup experiment to acquisition (C)
- **su**: Submit a setup experiment to acquisition (M)

samplename
Sample name (P)

Description: Specifies the name of the sample. It is saved with a liquids study.

See also: *NMR Spectroscopy User Guide, VnmrJ Walkup*

Related:
- **cqsavestudy**: Macro to save study queue parameters (M)
- **notebook**: Notebook name (P)
- **page**: Name of page (P)
- **studypar**: Study parameters (P)

save
Save data (M)

Description: Macro to save data. In a study, it uses sqdir and autoname to construct the data filename. If not in a study, it uses svfdir and svfname to construct the data filename.

See also: *NMR Spectroscopy User Guide, VnmrJ Walkup*

Related:
- **acquire**: Acquire data (M)
- **autoname**: Create path for data storage (C)
- **autoname**: Prefix for automation data file (P)
- **sqdir**: Study queue directory (P)
- **svfdir**: Directory for non-study data (P)
- **Svfname**: Create path for data storage (C)
- **svfname**: Filename parameter template for non-study data ((P)

savefile
Base file name for saving files (P)

Applicability: Systems with LC-NMR accessory.

Description: Contains the base file name using the format savefile.001, savefile.002, etc., to which a series of FIDs or data sets are saved. If savefile does not exist, the parlc macro can create it.

See also: *NMR Spectroscopy User Guide*

Related:
- **parlc**: Create LC-NMR parameters (M)

saveglobal
Save selected parameters from global tree (P)

Description: Saves an array of parameter names from the global or systemglobal tree. Whenever go is executed, the parameters listed are saved in the current tree with an underscore (_) appended. These parameters are copied back into the global tree (without the underscore) whenever processing by wbs, wnt, wexp, or werr occurs.
sb

Sinebell constant in directly detected dimension (P)

Description: Applies a sinebell constant along the directly detected dimension. This dimension is often referred to as the f_2 dimension in 2D data sets, the f_3 dimension in 3D data sets, etc.

Values:
- A positive value applies a sinebell of the form $\sin\left(\frac{t \cdot \pi}{2 \cdot sb}\right)$
- A negative value applies a squared sinebell function of form $\sin^2\left(\frac{t \cdot \pi}{2 \cdot sb}\right)$

sb is given in seconds. Typical value is $sb='n'$.

See also: *NMR Spectroscopy User Guide*

Related:
- go Submit experiment to acquisition (C)
- loc Location of sample in tray (P)
- sb1 Sinebell constant in 1st indirectly detected dimension (P)
- sb2 Sinebell constant in 2nd indirectly detected dimension (P)
- sbs Sinebell shift constant in directly detected dimension (P)
- sine Find values for a sine window function (M)
- sinebell Select default parameters for sinebell weighting (M)
- sinesq Find values for a sine squared window function (M)

sb1

Sinebell constant in 1st indirectly detected dimension (P)

Description: Applies a sinebell constant along the first indirectly detected dimension. This dimension is often referred to as the f_1 dimension in multidimensional data sets. $sb1$ works analogously to the parameter sb. The “conventional” parameters, such as lb and gf, operate on the detected FIDs, while this “2D” parameter is used during processing of the interferograms.

Values:
- A positive value applies a sinebell of the form $\sin\left(\frac{t \cdot \pi}{2 \cdot sb1}\right)$
- A negative value applies a squared sinebell function of form $\sin^2\left(\frac{t \cdot \pi}{2 \cdot sb1}\right)$

$sb1$ is given in seconds. Typical value is $sb1='n'$.

See also: *NMR Spectroscopy User Guide*

Related:
- sb Sinebell constant in directly detected dimension (P)
- sb2 Sinebell constant in 2nd indirectly detected dimension (P)

sb2

Sinebell constant in 2nd indirectly detected dimension (P)

Description: Applies a sinebell constant along the second indirectly detected dimension. This dimension is often referred to as the f_2 dimension in multidimensional data sets. $sb2$ works analogously to the parameter sb. The value of $sb2$ can be set with wti on the 2D interferogram data.

Values:
- A positive value applies a sinebell of the form $\sin\left(\frac{t \cdot \pi}{2 \cdot sb2}\right)$
- A negative value applies a squared sinebell function of form $\sin^2\left(\frac{t \cdot \pi}{2 \cdot sb2}\right)$

$sb2$ is given in seconds. Typical value is $sb2='n'$.

See also: *NMR Spectroscopy User Guide*

Related:
- sb Sinebell constant in directly detected dimension (P)
- sb1 Sinebell constant in 1st indirectly detected dimension (P)
- wti Interactive weighting (C)
sbs
Sinebell shift in directly detected dimension (P)

Description: Working in combination with the parameter *sb, sbs* allows shifting the origin of the sinebell function along the directly detected dimension. This dimension is often referred to as the f2 dimension in 2D data sets, the f3 dimension in 3D data sets, etc.

Values: The origin is shifted according to the formula \(\sin\left(\frac{(t-sbs) \cdot \pi}{2 \cdot sb}\right) \)

The square of this function is applied if *sb* is negative. *sbs* is given in seconds. The typical value is *sbs*= ’n’.

See also: *NMR Spectroscopy User Guide*

Related:
- *sb* Sinebell constant in directly detected dimension (P)
- *sbs1* Sinebell shift in 1st indirectly detected dimension (P)
- *sbs2* Sinebell shift in 2nd indirectly detected dimension (P)
- *sine* Find values for a sine window function (M)
- *sinesq* Find values for a sine squared window function (M)

sbs1
Sinebell shift in 1st indirectly detected dimension (P)

Description: Working in combination with the parameter *sb1, sbs1* allows shifting the origin of the sinebell function along the first indirectly detected dimension. This dimension is often referred to as the f1 dimension in multidimensional data sets. *sbs1* works analogously to parameter *sbs*. The “conventional” parameters, such as *lb* and *gf*, operate on the detected FIDs, while this “2D” parameter is used during processing of the interferograms.

Values: The origin is shifted according to the formula \(\sin\left(\frac{(t-sbs1) \cdot \pi}{2 \cdot sb1}\right) \)

The square of this function is applied if *sb1* is negative. *sbs1* is given in seconds. The typical value is *sbs1*= ’n’.

See also: *NMR Spectroscopy User Guide*

Related:
- *sb1* Sinebell constant in 1st indirectly detected dimension (P)
- *sbs* Sinebell shift constant in directly detected dimension (P)
- *sb2* Sinebell constant in 2nd indirectly detected dimension (P)

sbs2
Sinebell shift in 2nd indirectly detected dimension (P)

Description: Working in combination with the parameter *sb2, sbs2* allows shifting the origin of the sinebell function along the second indirectly detected dimension. This dimension is often referred to as the f2 dimension in multidimensional data sets. *sbs2* works analogously to parameter *sbs*. *sbs2* can be set with *wti* on the 2D interferogram data.

Values: The origin is shifted according to the formula \(\sin\left(\frac{(t-sbs2) \cdot \pi}{2 \cdot sb2}\right) \)

The square of this function is applied if *sb2* is negative. *sbs2* is given in seconds. The typical value is *sbs2*= ’n’.

See also: *NMR Spectroscopy User Guide*

Related:
- *sbs* Sinebell shift constant in directly detected dimension (P)
- *sb2* Sinebell constant in 2nd indirectly detected dimension (P)
- *wti* Interactive weighting (C)

sc
Start of chart (P)

Description: Positions of the start of the plotting position (the “chart”) with respect to the right edge of the plotter.

Values: 0 to *wcm*\(\text{max}, \text{in \, mm} \)
See also: *NMR Spectroscopy User Guide*

Related:
- **sc2**
 Start of chart in second direction (P)
- **wc**
 Width of chart (P)
- **wcmax**
 Maximum width of chart (P)

sc2
Start of chart in second direction (P)

Description: Controls the start of plotting position of the second axis (or y axis) of a 2D contour plot. The parameter *wc2* controls the width of the chart.

Values: 0 to *wc2max*, in mm.

See also: *NMR Spectroscopy User Guide*

Related:
- **sc**
 Start of chart (P)
- **wc2**
 Width of chart in second direction (P)
- **wc2max**
 Maximum width of chart in second direction (P)

scalelimits
Set limits for scales in regression (M)

Syntax:
```
scalelimits(x_start,x_end,y_start,y_end)
```

Description: Causes the command *expl*, which is used by regression to display data, to use typed-in scale limits. The limits are retained as long as an *expl* display is retained.

Arguments:
- *x_start*, *x_end*, *y_start*, *y_end* are x-axis and y-axis starting and ending limits. The default is that *scalelimits* prompts for the limits.

See also: *NMR Spectroscopy User Guide*, *User Programming*

Related:
- **autoscale**
 Resume autoscaling after limits set by *scalelimits* (M)
- **expl**
 Display exponential or polynomial curves (C)

scalesw
Set scaling factor for multipulse experiments (M)

Description: Sets the spectral width scaling factor for the multipulse sequences set up by macros *br24* and *mrev8*. The value of the scaling factor is stored in the parameter *scalesw*.

See also: *User Guide: solid-State NMR*

Related:
- **br24**
 Set up BR24 multiple pulse experiment (M)
- **mrev8**
 Set up MREV8 multiple pulse experiment (M)
- **scalesw**
 Scale spectral width in directly detected dimension (P)
- **scalesw1**
 Set f1 scaling factor for 2D multipulse experiments (M)

scalesw
Scale spectral width in directly detected dimension (P)

Description: Adjusts the frequency scale dimension used with the parameter sets in the sequences set up by the *br24*, *mrev8*, *ssecho*, and *x polar1* macros. If *scalesw* is active, the labels for the frequency scales includes the letters *sc* in parentheses. A scaled frequency can be referenced using the *rl* macro.

Values:
- n, number greater than 0.0

See also: *User Guide: Solid-State NMR*

Related:
- **br24**
 Set up BR24 multiple pulse experiment (M)
- **mrev8**
 Set up MREV8 multiple pulse experiment (M)
- **r1**
 Set reference line (M)
- **scalesw**
 Set scaling factor for multipulse experiments (M)
- **scalesw1**
 Scale spectral width in 1st indirectly detected dimension (P)
scalesw1 Set f₁ scaling factor for 2D multipulse experiments (M)
Description: Sets the f₁ spectral width scaling factor for the multipulse sequences set up by
the br24 and mrev8 macros. The value of the scaling factor is stored in the
parameter scalesw1.
See also: User Guide: Solid-State NMR
Related: br24 Set up BR-24 multiple pulse experiment (M)
mrev8 Set up MREV8 multiple pulse experiment (M)
scalesw1 Scale spectral width in 1st indirectly detected dimension (P)

scalesw1 Scale spectral width in 1st indirectly detected dimension (P)
Description: Analogous to the scalesw parameter except that scalesw1 applies to first
indirectly detected dimension of a multidimensional data set. A scaled
frequency along this dimension can be referenced using the rl1 macro.
Values: 'n', number greater than 0.0
See also: User Guide: Solid-State NMR
Related: rl1 Set reference line in 1st indirectly detected dimension (M)
scalesw Scale spectral width in directly detected dimension (P)
scalesw1 Set f₁ scaling factor for 2D multipulse experiments (M)
scalesw2 Scale spectral width in 2nd indirectly detected dimension (P)

scalesw2 Scale spectral width in 2nd indirectly detected dimension (P)
Description: Analogous to the scalesw parameter except scalesw2 applies to second
indirectly detected dimension of a multidimensional data set. A scaled
frequency along this dimension can be referenced using the rl2 macro.
Values: 'n', number greater than 0.0
See also: User Guide: Solid-State NMR
Related: rl2 Set reference line in 2nd indirectly detected dimension (M)
scalesw Set scaling factor for multipulse experiments (M)
scalesw1 Set f₁ scaling factor for 2D multipulse experiments (M)

sd Set first decoupler frequency to cursor position (M)
Description: Sets the first decoupler frequency offset parameter dof to place the first
decoupler at the cursor position in the spectrum. This works only if the
transmitter nucleus and first decoupler nucleus are the same (tn=dn).
See also: NMR Spectroscopy User Guide
Related: dof Frequency offset for first decoupler (P)
dn Nucleus of first decoupler (P)
sd2 Set second decoupler frequency to cursor position (M)
sd3 Set third decoupler frequency to cursor position (M)
sda Set first decoupler frequency array (M)
tn Nucleus for observe transmitter (P)
sd2

Set second decoupler frequency to cursor position (M)

- **Applicability:** Systems with a second decoupler.
- **Description:** Sets the second decoupler frequency offset parameter `dof2` to place the second decoupler at the cursor position in the spectrum. This works only if the transmitter nucleus and second decoupler nucleus are the same (`tn=dn2`).

- **See also:** *NMR Spectroscopy User Guide*

- **Related:**
 - `dn2` Nucleus for second decoupler (P)
 - `dof2` Frequency offset for second decoupler (P)
 - `sd` Set first decoupler frequency to cursor position (M)
 - `sd2a` Set second decoupler frequency array (M)
 - `tn` Nucleus for observe transmitter (P)

sd3

Set third decoupler frequency to cursor position (M)

- **Applicability:** Systems with a third decoupler.
- **Description:** Sets the third decoupler frequency offset parameter `dof3` to place the third decoupler at the cursor position in the spectrum. This works only if the transmitter nucleus and third decoupler nucleus are the same (`tn=dn3`).

- **See also:** *NMR Spectroscopy User Guide*

- **Related:**
 - `dn3` Nucleus for third decoupler (P)
 - `dof3` Frequency offset for third decoupler (P)
 - `sd` Set first decoupler frequency to cursor position (M)
 - `sd3a` Set third decoupler frequency array (M)
 - `tn` Nucleus for observe transmitter (P)

sda

Set first decoupler frequency array (M)

- **Description:** Sets up an array of offset values for the first decoupler, using `sd` for the first decoupler position and `sda` for subsequent positions. This works only if the transmitter nucleus and first decoupler nucleus are the same (`tn=dn`).

- **See also:** *NMR Spectroscopy User Guide*

- **Related:**
 - `dn` Nucleus for first decoupler (P)
 - `sd` Set first decoupler frequency to cursor position (M)
 - `sd2a` Set frequency array for second decoupler (M)
 - `sd3a` Set frequency array for third decoupler (M)
 - `tn` Nucleus for observe transmitter (P)

sd2a

Set second decoupler frequency array (M)

- **Applicability:** Systems with a second decoupler.
- **Description:** Sets up an array of offset values for the second decoupler, using `sd2` for the first position and `sd2a` for subsequent positions. This works only if the transmitter nucleus and second decoupler nucleus are the same (`tn=dn2`).

- **See also:** *NMR Spectroscopy User Guide*

- **Related:**
 - `dn2` Nucleus for second decoupler (P)
 - `sd2` Set second decoupler frequency to cursor position (M)
 - `sda` Set first decoupler frequency array (M)
 - `tn` Nucleus for observe transmitter (P)
sd3a Set third decoupler frequency array (M)

Applicability: Systems with a third decoupler.

Description: Sets up an array of offset values for the third decoupler, using sd3 for the first position and sd3a for subsequent positions. This works only if the transmitter nucleus and third decoupler nucleus are the same (tn=dn3).

See also: NMR Spectroscopy User Guide

Related:
- dn2 Nucleus for third decoupler (P)
- sd3 Set third decoupler frequency to cursor position (M)
- sda Set first decoupler frequency array (M)
- tn Nucleus for observe transmitter (P)

sdp Show diffusion projection (M)

Description: Displays projection onto diffusion axis using the dsp facility. Use with 2D or 3D DOSY data after DOSY analysis. The unit of the resulting axis is D (10^-10 m^2/sec). Because sdp overwrites the parameters in the current experiment, use it in only an experiment in which it is okay for existing data to be overwritten.

See also: NMR Spectroscopy User Guide

Related: dosy Process DOSY experiments (M)

selld Apptype macro for Selective 1D experiments (M)

Description: Perform the actions for Selective 1D protocols to set up, process, and plot experiments.

Examples:
- selld('setup') – execute selld experimental setup
- selld('process') – execute selld processing
- selld('plot') – execute selld plotting

Related:
- apptype Application type (p)
- execpars Set up the exec parameters (M)

select Select spectrum, FID, trace, or 2D plane without display (C)

Syntax: (1) select<('next' | 'prev' | 'selection')><:index>
(2) select<('<f1f3' | 'f2f3' | 'f1f2')<,'proj'>
<,'next' | 'prev' | 'plane')><:index>

Description: Directs future actions to apply to a particular spectrum or FID in a 1D array, to a trace in 2D (syntax 1), or to a particular 2D plane from a 3D data set (syntax 2). If select is called with no arguments, it returns the current index. When VnmrJ is first booted up, select is in 1D mode. select enters the 2D mode if any of the keywords 'f1f3', 'f2f3', 'f1f2', or 'proj' are present in the argument list. Entering the ds and jexp commands set select back in the 1D mode.

Arguments: For 1D operations (syntax 1):
- 'next' is keyword to increment by 1 the 1D spectrum or trace index.
- 'prev' is keyword to decrement by 1 the 1D spectrum or trace index.
- 'selection' is a number selecting a 1D spectrum, FID, or trace.
- index returns the number of the current 1D spectrum, FID, or trace.

For selecting various 2D planes of a 3D data set (syntax 2):
'f1f3', 'f2f3', and 'f1f2' are types of 2D planes. The parameters \texttt{plane} and \texttt{index2} serve to indicate the exact 2D plane that is currently viewable by VnmrJ. Note that \texttt{index2} cannot be entered from the keyboard (i.e., you cannot select a new 2D plane by changing the value of \texttt{index2}); you must use the \texttt{select} command instead.

• 'proj' is keyword to use the 2D projection whose plane type is determined by the parameter \texttt{plane}.

• 'next' is keyword to increment the parameter \texttt{index2} to its next value and sets up VnmrJ to be ready to display the 2D plane whose number is the new \texttt{index2} value.

• 'prev' performs analogously except that \texttt{index2} is decremented.

• \texttt{plane} is a number selecting the plane.

• \texttt{index} returns the number of the current plane.

Examples:
\begin{verbatim}
select('next')
select(2):r1
select('f1f3')
\end{verbatim}

See also: \textit{NMR Spectroscopy User Guide, User Programming}

\textbf{selex}

\textbf{Defines excitation band (M)}

\textbf{Syntax:} \texttt{selex<(sh<,pw<,st<,ph<,fla<,trev>>)>}

\textbf{Description:} Defines the excitation band from the position of cursors in the graphics window and reports them to user. It also sets \texttt{r1} to excitation bandwidth and \texttt{r2} to offset. \texttt{selex} is part of the Pbox software environment and uses the Pbox macros \texttt{pbox_bw} and \texttt{putwave}.

\textbf{Arguments:}

\begin{itemize}
 \item \texttt{sh} is the name of a shape file.
 \item \texttt{pw} is the pulsewidth, in sec.
 \item \texttt{st} is the spin status: 0 for excitation, 0.5 for refocusing, or 1 for de-excitation.
 \item \texttt{ph} is the phase (or phase cycle, see \texttt{wavelib/supercycles}).
 \item \texttt{fla} is the flip angle.
 \item \texttt{trev} is the time reversal. This argument can be used to cancel time reversal introduced by setting the spin status (\texttt{st}) to 1 for de-excitation.
\end{itemize}

Examples:
\begin{verbatim}
selex
selex('esnob',0.0,1,90.0)
\end{verbatim}

See also: \textit{NMR Spectroscopy User Guide}

Related: \texttt{arraydim} Dimension of experiment (P) \texttt{ds} Display a spectrum (C) \texttt{index2} Projection or 3D plane index selected (P) \texttt{jexp} Join existing experiment (C) \texttt{plane} Currently displayed 3D plane type (P)

\textbf{selexcit}

\textbf{Set up PFG selective excitation pulse sequence (M)}

\textbf{Applicability:} Systems with a pulsed field gradient module.

\textbf{Description:} Prepares an experiment for PFG (pulsed field gradient) selective excitation, with presaturation option.

See also: \textit{NMR Spectroscopy User Guide}
SelexHT
Set up a selective Hadamard experiment (M)

Description: Sets up parameters for a selective shaped pulse Hadamard-encoded test experiment.

See also: *NMR Spectroscopy User Guide*

Related:
- htofsl Hadamard offset in ni (P)
- fn1 Fourier number in 1st indirectly detected dimension (P)
- ni Number of increments in 1st indirectly detected dimension (P)
- ft2d Fourier transform 2D data (C)
- sethtfrq1 Set Hadamard frequency list from a line list (M)

send2vlmr
Send a command to VnmrJ (U)

Syntax: send2vlmr $vnmruser/.talk command

Description: Sends a command from UNIX to VnmrJ using the port number stored in the $vnmruser/.talk file. This file is created when the macro listenon is entered on the VnmrJ command line.

Arguments: command is any character string (commands, macros, or if statements) normally typed into the VnmrJ command line.

Examples: send2vlmr $vnmruser/.talk dg

See also: *User Programming*

Related:
- bootup Macro executed automatically when VnmrJ activated (M)
- listenon Enable receipt of messages from send2vlmr (M)
- listenoff Disable receipt of messages from send2vlmr (M)

seqfil
Pulse sequence name (P)

Description: Identifies the name of the pulse sequence to be used. The value of seqfil is displayed on the top line of the screen after the “Seq:” label. Macros used to set up new pulse sequences, such as Dept and Apt, automatically change the seqfil parameter.

See also: *NMR Spectroscopy User Guide*

Related:
- pslab Pulse sequence label (P)

seqgen
Initiate compilation of user’s pulse sequence (M,U)

Syntax: (From VnmrJ) seqgen(<<static,>file<.c>)
(From UNIX) seqgen -<static> file<.c> <file1,...>

Description: Begins compilation of a user pulse sequence. When used from VnmrJ, the macro seqgen calls the UNIX shellscript seqgen, which can also be called directly from UNIX, as shown above. The seqgen shellscript then calls the compilation makefile seqgenmake, located in the directory /vnmr/acqbin.

The specified pulse sequence can be located in ~/vnmrsys/psglib or in /vnmr/psglib. If two files with the same name exist in these two directories, the local directory (~/vnmrsys/psglib) takes precedence. For sequences in ~/vnmr/psglib, seqgen first copies the file into the local directory ~/vnmrsys/psglib and then compiles it there; the resulting executable is then placed in ~/vnmrsys/seqlib. A copy of the pulse sequence is also copied into the seqlib directory along with the executable. As it is running, seqgen reports where it found the specified sequence(s).
seqgen uses library files (object modules) found in /vnmr/lib. If setuserpsg and psggen has been run, the library files in the local directory ~/vnmr/sys/psg take precedence of those in /vnmr/lib.

Error messages are written into the file file.errors, where file is the name of the pulse sequence in psglib in which compilation is performed. Note that seqgen not only accepts file names with and without extensions, but also accepts files specified with wildcards and complex paths (seqgen strips the directory part, and seqgen /vnmr/psglib/apt will compile ~/vnmr/sys/psglib/atp.c if it exists).

Arguments: --static is a keyword for seqgen to use static rather than dynamic binding. Static binding results in larger executables in seqlib (several hundred Kbytes), but these sequences execute slightly faster (i.e., the go command). While insignificant generally, faster execution is helpful in some special applications such as the Scout Scan™ mode of LC-NMR, where the time spent on the go command becomes critical. Static binding results in a fixed-size time gain, regardless of the number of increments; for large multidimensional experiments, the speed difference is not noticeable.

file is the file name of a standard two-pulse sequence.
.c is the extension on the file name.
file1, file2, ... are the names of files containing more sequences.

Examples: (From VnmrJ) seqgen('/vnmr/psglib/*.c')
(From UNIX) seqgen /vnmr/psglib/*.c
(From UNIX) seqgen apt dept noesy
(From UNIX) seqgen -static lc1d

See also: User Programming

serverport

Returns the VnmrJ network listening port value (C)

Applicability: VnmrJ

Syntax: serverport

Description: The serverport command returns the port number when VnmrJ opens a network port (socket) for other programs to send it network messages. See the write('net',...) command for an example on how to use this port number.

Related: write Write formatted text to a device (C)

set2D

General setup for 2D experiments (M)

Syntax: set2D<(F2_dig_res,<,F1_dig_res)>)

Description: Similar to set2d but does not execute par2d and does not make swl, rfl1, and rfp1 decisions based on tn=dn condition.

Arguments: F2_dig_res is the f2 digital resolution desired, in Hz/pt. Default is 6.
F1_dig_res is the f1 digital resolution desired, in Hz/pt. Default is 12.

Related: rfl1 Reference peak position in 1st indirectly detected dimension (P)
rfp1 Reference peak frequency in 1st indirectly detected dimension (P)
set2d General setup for 2D experiments (M)
swl Spectral width in 1st indirectly detected dimension (P)
set2d
General setup for 2D experiments (M)

Syntax:
`set2d(experiment<,F2_dig_res<,F1_dig_res>>)`

Description:
Runs the macro `par2d` to create new parameters needed for 2D experiments, then selects starting values for a number of parameters. The `set2d` macro is “internal” and not normally typed directly by the user.

Arguments:

- `experiment` is the name of a 2D experiment (e.g., 'noesy').
- `F2_dig_res` is the f2 digital resolution desired, in Hz/pt.
- `F1_dig_res` is the f1 digital resolution desired, in Hz/pt.

Examples:

- `set2d('cosyps')`
- `set2d('hetcor',16)`
- `set2d('het2dj',16,(2*sw1)/fn1)`

See also:
NMR Spectroscopy User Guide

Related:
`par2d`
Create 2D acquisition parameters (M)

set3dproc
Set 3D processing (C)

Syntax:
`set3dproc<>(<'nocoef'>,<directory>)>`

Description:
Creates the file `procdat` that contains binary 3D information used by `ft3d` in processing the 3D FID data. It also creates the 3D parameter set `procpar3d` that is used by the `select` command to display the 2D planes from the 3D transformed data. `set3dproc` can only create the proper 3D coefficient file if the parameters `phase` and `phase2` are used to generate States-Haberkorn (hypercomplex) or TPPI data along the t1 and t2 dimensions.

`set3dproc` creates the coefficient file for the following five values of `array` (where SH is States-Haberkorn):

- if `array=''` (null string), type of 3D data is TPPI(t1) – TPPI(t2)
- if `array='phase'`, type of 3D data is SH(t1) – TPPI(t2)
- if `array='phase2'`, type of 3D data is SH(t2) – TPPI(t1)
- if `array='phase2,phase'`, type of 3D data is SH(t1) – SH(t2)

If `array` is set to some other value, `set3dproc` cannot create the 3D coefficient file and an error is reported within VnmrJ.

Arguments:

- `'nocoef'` is a keyword that the 3D coefficient file `coef` is not to be created.
- `directory` is the name of the directory for `procdat` and `procpar3d`. The default is the subdirectory `info` in the directory `curexp`.

Examples:

- `set3dproc`
- `set3dproc('nocoef','curexp/info3d')`

See also:
NMR Spectroscopy User Guide

Related:

- `array`
 Parameter order and precedence (P)
- `ft3d`
 Perform a 3D Fourier transform (M,U)
- `phase`
 Phase selection (P)
- `phase2`
 Phase selection for 3D acquisition (P)
- `select`
 Select a spectrum or 2D plane without displaying it (C)
- `wftt3`
 Process f3 dimension during 3D acquisition (M)

setallshims
Set all shims into hardware (M)

Description:
Sets shims from the current parameter tree into hardware. `setallshims` is equivalent to entering `load='y'su` but without setting all the hardware parameters normally set by `su` (temperature, decoupling, transmitter
The shims used depend on the shimset configuration. For the shim set on the Ultra-nmr shim system, setallshims is active only if hardware-to-software shim communication is enabled.

See also: *NMR Spectroscopy User Guide*

Related:
- **load**
 - Load status of displayed shims (P)
- **readallshims**
 - Read all shims from hardware (M)
- **readhw**
 - Read current values of acquisition hardware (C)
- **sethw**
 - Set values for hardware in acquisition system (C)
- **shimset**
 - Type of shim set (P)
- **su**
 - Submit a setup experiment to acquisition (M)

setcolor

Set colors for graphics window and for plotters (C)

Syntax:
1. `setcolor('pcl', item_index, 'color')`
2. `setcolor('hpgl', item_index, 'color')`
3. `setcolor('pen', pen_number, 'color')`
4. `setcolor('graphics', item_index, red, green, blue)`
5. `setcolor('ps', item_index, red, green, blue)`
6. `setcolor('plotter', black_plane, color_planes)`

Description: Sets colors used on the graphics window and on plotters. This command is a utility program used by the `color` macro and other macros. It is not expected that `setcolor` would be entered directly from the input window.

Arguments:
- `'pcl'` is a keyword to set colors on a plotter device that uses the PCL language. PCL plotters are the laser type of plotter.
- `'hpgl'` is a keyword to set colors on a plotter device that uses the HPGL language. HPGL plotters are the pen type of plotter.
- `'pen'` is a keyword that next two arguments set the color for a physical pen on a plotter device that uses the HPGL language.
- `'graphics'` is a keyword to set colors on the graphics window.
- `'ps'` is a keyword to set colors on a plotter using the PostScript language.
- `red, green, blue` are three integers between 0 and 255 that set the amount of red, green, and blue color on the graphics window or PostScript plotter.
- `'plotter'` is a keyword that the next two arguments set the black mode and number of colors available for a plotter device.
- `item_index` is an index number from the following list that represents a specific drawing item.

```
8  background of images
9  real channel of an FID
10 imaginary channel of an FID
11 spectrum
12 integral
13 parameters
14 scale
15 threshold line (graphics device only)
16 second spectrum or FID in addi (graphics device only)
17 result spectrum or FID in addi (graphics device only)
18 cursors (graphics device only)
19 foreground of images
```
pen_number is an integer from 1 to 8 that specifies the physical pen used.
color is a string for the color set for the device: 'red', 'green', 'blue',
'cyan', 'magenta', 'yellow', 'white', or 'black'.
black_plane is 1 or 0, specifying whether the plotter has a separate black
mode. Because all currently supported plotters have this feature, the value
is usually 1.
color_planes specifies how many colors are available. Use 3 for color
plotters and 0 for black and white plotters.

Examples:
setcolor('pcl',1,1,'green')
setcolor('hpgl',11,'red')
setcolor('pen',2,'red')
setcolor('graphics',11,255,0,0)
setcolor('ps',11,255,255,0)
setcolor('plotter',1,0)

See also: NMR Spectroscopy User Guide

Related: addi Start interactive add/subtract mode (C)
color Select plotting colors from a graphical interface (M)

setdecpars Set decoupler parameter values from probe file (M)
Syntax: setdecpars
Description: Reads from the probe file pwxlvl,pwx,pplvl,pp,dpwr,dfm,dmm,dres,
and dseq values, if they exist, and updates the current experiment parameters.

Related: setdec2pars Set decoupler 2 parameter values from probe file (M)

setdec2pars Set decoupler 2 parameter values from probe file (M)
Syntax: setdec2pars
Description: Reads from the probe file pwx2lvl,pwx2,dpwr2,dfm2,dmm2,dres2,
and dseq2 values, if they exist, and updates the current experiment parameters.

Related: setdecpars Set decoupler parameter values from probe file (M)

setdgroup Set the Dgroup of a parameter in a tree (C)
Syntax: setdgroup(parameter,dgroup<,tree>)
Description: Sets the Dgroup of a parameter in a tree. The application determines the usage
of setdgroup. Only Tcl-dg currently uses this feature.
Arguments: parameter is the name of the parameter.
dgroup is an integer.
tree is 'current', 'global', 'processed', or 'systemglobal'. The default is 'current'. Refer to the description of the create command
for more information on types of trees.
Examples: setdgroup('a',1)
setdgroup('b',3,'global')
See also: User Programming
Related: create Create new parameter in a parameter tree (C)

setenumeral
Set values of a string parameter in a tree (C)

Syntax: `setenumeral(parameter, N, enum1, enum2, ..., enumN, tree)`

Description: Sets the possible values of a string parameter in a parameter tree. To remove enumerated values from a parameter, set argument `N` to 0 (see example below).

Arguments:
- `parameter` is the name of the parameter.
- `N` is the number of enumeral values to be assigned to `parameter` (or removed from `parameter` if `N` is set to 0).
- `enum1` to `enumN` are the possible string values of the parameter.
- `tree` is 'current', 'global', 'processed', or 'systemglobal'. The default is 'current'. Refer to the description of the `create` command for more information on types of trees.

Examples:
- `setenumeral('size', 0)`
- `setenumeral('size', 2, 'large', 'small')`
- `setenumeral('user', 3, 'user', 'superuser', 'master', 'global')`

See also: User Programming
Related: create Create new parameter in a parameter tree (C)

setether
Connect or reconnect host computer to Ethernet (U)

Description: Connects or reconnects the host computer to the Ethernet network. Only root can execute this shellscript properly. If the system is already connected to the Ethernet network, `setether` does nothing.

On systems running Solaris, `setether` undoes the work of `setnoether`. You cannot use `setether` unless you previously entered the `setnoether` command. `setether` restores the files hostname.le0, defaultdomain, and defaultrouter so that Ethernet is activated on the host computer when UNIX is rebooted.

See also: VnmrJ Installation and Administration
Related: setnoether Disconnect host computer from Ethernet (U)

setexport
Set parameter bits for use with protocols (M)

Description: Set the parameter protection bits for use with the rtx command. Usually called by other macros, and not used from the command line.

Related: rtx
cqprotocol Create study queue parameters for liquids (M)

setfrq
Set frequency of rf channels (C)

Syntax: `setfrq<(channel)><('nucleus')>`

Description: Calculates frequencies based on the nucleus (tn, dn, dn2, etc.), referencing (lockfreq), solvent, and the offset parameter (tof, dof, etc.). The result of the calculation is stored in parameters sfrq, dfrq, dfrq2, etc. The parameters are rounded to the resolution of the channel—either 0.1 or 100 Hz.
The `setfrq` command should never need to be entered from the keyboard. It is called automatically when the appropriate parameters are changed or a parameter set is returned. If a parameter is entered that affects a single frequency, `setfrq` is called from an internal underscore macro (e.g., `_tn, _tof, _dn, _dof`) to recalculate the frequency for that channel. Likewise, if a parameter is entered that affects all frequencies, `setfrq` is called from an internal underscore macro (e.g., `_solvent, _lockfreq`) to recalculate the frequencies.

Arguments: channel is a single integer specifying the rf channel to be set. The default is to calculate the frequencies for all rf channels.

nucleus displays or returns the frequency of the supplied nucleus. Channel 1 is assumed for rounding information and an offset (e.g., `tof` or `dof`) is not added to the result.

Examples:
```
setfrq
setfrq(2)
setfrq('P31'):freq
```

See also: NMR Spectroscopy User Guide

Related: `spcfrq` Display frequencies of rf channels (M)

setgauss

Set a Gaussian fraction for lineshape (M)

Syntax: (1) `setgauss(fraction)`
(2) `setgauss(fraction*)`

Description: Modifies the output of a deconvolution using pure Lorentzian lineshape (`fitspec.outpar`) and makes it the input for a subsequent analysis (`fitspec.inpar`), after first modifying the Gaussian fraction. To allow this fraction to vary, use syntax 1; to fix the fraction, use syntax 2.

Arguments: fraction is the Gaussian fraction of the lineshape, a number from 0 to 1. To fix the fraction (syntax 2), suffix the value with an asterisk (*) and enclose the value in single quotes (see the second example below).

Examples:
```
setgauss(0.4)
setgauss('1.0*')
```

See also: NMR Spectroscopy User Guide

Related: `fitspec` Perform spectrum deconvolution (C)

setgcal

Set the gradient calibration constant (M)

Applicability: Systems with pulsed field gradients (PFG) or imaging capabilities.

Description: Determines the gradient calibration constant `gcal` by using a proton phantom of known dimensions. `setgcal` requests the linear dimension of the phantom in the readout direction. It uses the value entered, together with cursor separation of this dimension from the image profile and the strength of the readout gradient `gzlvl1` if pulsed field gradients, to calculate `gcal` in units of gauss/cm-DAC units. You are then prompted whether this value should be entered. If you answer yes, it is stored as a system constant in the your global file.

Note that a particular value of `gcal` is closely related to the current eddy current compensation settings. If these settings are changed (e.g., reading in a new `curecc` file), a different value of `gcal` should be expected.

Before running `setgcal`, use the pulse sequence set up by `profile` to acquire a signal from a known sized object while the gradient is on.
See also: *Pulsed Field Gradient Modules Installation; VnmrJ Imaging NMR*

setgcoil

Assign sysgcoil configuration parameter (M)

Syntax:

```
setgcoil<(file)>
```

Description: Allows users to change the configured gcoil for the system. `setgcoil` updates the systemglobal parameter `sysgcoil` to the named table and updates the assignment value of the parameter `gcoil` in the named table. The directory `$vmrsystem/imaging/gradtables` must have write permission for all users for the macro to be effective. This table now exists in the system local `/var/vnmr/gradtables` directory, with a soft link from `$vmrsystem/imaging/gradtables` to that directory.

Arguments:

- `file` is the any legal file name defined for the parameter `gcoil`.

See also: *VnmrJ Imaging NMR*

Related:

- `gcal` Gradient calibration constant (P)
- `profile` Set up pulse sequence for gradient calibration (M)

setgrid

Divide graphics window into rows and columns (C)

Syntax:

```
setgrid(row<,column>)
```

Description: Divides graphics window into an array of rows and columns (or window panes). Only one pane is active at a time. An individual pane can be activated by double-clicking in it with the left mouse button or by entering `setwin` in the input window.

Arguments:

- `row` is the number of rows (maximum is 3) in the graphics window. If 0 is entered, the number of rows remains the same; e.g., in `setgrid(0,2)`, the number of rows is unchanged and two columns are created in each row.
- `column` is the number of columns (maximum is 3) in the graphics window.

Examples:

```
setgrid(3)
setgrid(3,3)
setgrid(0,2)
```

See also: *NMR Spectroscopy User Guide*

Related:

- `curwin` Current window (P)
- `fontselect` Open FontSelect window (C)
- `jwin` Activate current window (M)
- `mapwin` List of experiment numbers (P)
- `setwin` Activate selected window (C)

setgroup

Set group of a parameter in a tree (C)

Syntax:

```
setgroup(parameter,group<,tree>)
```

Description: Sets the group of a parameter in a tree.

Arguments:

- `parameter` is the name of the parameter.
- `group` is one of the following keywords: 'all', 'sample', 'acquisition', 'processing', 'display', or 'spin'.
- `tree` is one of the keywords 'current', 'global', or 'processed'. The default is 'current'. See the `create` command for information on the types of trees.
Examples: setgroup('a','sample')
 setgroup('b','all','global')

See also: User Programming

Related: create Create new parameter in a parameter tree (C)
destroy Destroy a parameter (C)
destroygroup Destroy parameters of a group in a tree (C)
display Display parameters and their attributes (C)
groupcopy Copy parameters of group from one tree to another (C)
paramvi Edit a parameter and its attributes using vi text editor (M)
setlimit Set limits of a parameter in a tree (C)
setprotect Set protection mode of a parameter (C)

sethtfrq1 Set a Hadamard frequency list from a line list (M)

Description: A macro to set the Hadamard frequency list htfrq1 from a line list curexp+'/dll.out'. It assumes that the line list has already been created. The macro also sets ni to the Hadamard matrix size, creates htofs1, and sets fn1 from the minimum frequency difference in htfrq1.

See also: NMR Spectroscopy User Guide

Related: htfrq1 Hadamard frequency list in ni (P)
dll Display listed line frequencies and intensities (C)
htofsl Hadamard offset in ni (P)
fn1 Fourier number in the 1st indirectly detected dimension (P)
ni Number of increments in the 1st indirectly detected dimension (P)

sethw Set values for hardware in acquisition system (C)

Applicability: Syntax 1 through 5 apply to all systems. Syntax 6 applies only to systems with a sample changer. Syntax 7 and 8 apply only to systems with a variable temperature (VT) controller.

Syntax: The following syntax is used with the sethw command:

(1) sethw('<wait'|'nowait',>par1,val1<,par2,val2,...)
(2) sethw('lock','on'|'off')
(3) sethw('spin',speed)
(4) sethw('spinner','bump')
(5) sethw('eject','on'|'off')
(6) sethw('loc',location)
(7) sethw('vt','reset'|'off')
(8) sethw('temp',temperature)
(9) sethw('lockfreq',lockfreq_value)

Description: Sets acquisition system hardware values. sethw cannot be used when an acquisition is in progress or when the acqi program is active.

Syntax 1 can be used to set the lock system parameters lockpower, lockgain, lockphase, and z0. This syntax can also be used to set the values of the shims. The particular shim that can be set depends upon the type of shim hardware present in the system. See the description of shimset for a list of the shim names for each type of shim hardware.

Syntax 2 turns the hardware lock on or off.
Syntax 3 controls spinning speed.
Syntax 4 carries the sample to bump by giving it a short burst of eject air. This is sometimes useful to reseat the sample if it is failing to spin.
Syntax 5 ejects and inserts samples into the probe. Entering the command
`sethw('eject','on')` is equivalent in function to macros `eject` and `e;
and `sethw('eject','off')` is equivalent to macros `insert` and `i`.

Syntax 6 sets a location for the sample currently in the magnet on a system with
a sample changer. The parameter `loc` is updated.

Syntax 7 resets the VT controller, useful when changing the probe in a system
with VT regulation. By entering `sethw('vt','reset')` after installing a
new probe in the magnet and attaching the VT controller interface to the probe,
the VT controller is ready to regulate the temperature. No other parameters can
be modified by the command. As an alternate, you can manually turn the VT
controller unit off and then back on. Syntax 7 also turns the VT controller off by
entering `sethw('vt','off')`.

Syntax 8 sets the temperature in degrees celsius. The host computer does not
wait for the temperature to regulate.

Syntax 9 sets the lock frequency, in MHz.

Arguments: 'wait' or 'nowait' keyword must be either the first or last argument.

- 'wait' sends the new values to the acquisition console, verifies these
values, and updates the corresponding parameters. This is the default.
- 'nowait' sends the new values to the console without verifying them or
changing parameters.

Parameter1,value1, parameter2,value2,... are pairs of
parameter names and their values (see the first two examples below). At least
one parameter name and its value must be specified. A maximum of ten
parameters can be set.

'lock','on' is a keyword pair to turn the hardware lock on.

'lock','off' is a keyword pair to turn the hardware lock off.

'liqbear' sets the bearing air on level; see `liqbear` parameter.

'pneufault' second argument is 'clear', 'n', 'w', or 'y' to clear or
set the pneumatics fault code.

'spin' is a keyword that identifies the next argument, `speed`, as the sample
spinning speed, in Hz.

'spinner','bump' is a keyword pair to bump the sample.

'eject','on' is a keyword pair to eject the sample from the probe.

'eject','off' is a keyword pair to insert the sample into the probe.

'loc' is a keyword to identify that the next argument, `location`, is a
number for the sample currently in the magnet ('loc' is unrelated to the `loc`
parameter).

'vt','reset' is a keyword pair to reset the VT controller after the controller
has been disconnected from the probe. This is equivalent to turning the VT
controller power off and on.

'vt','off' is a keyword pair to turn the VT controller off.

'temp' is a keyword that identifies the next argument, `temperature`, as the
requested sample temperature, in degrees celsius.

'lockfreq' is a keyword that the next argument is the lock frequency.

`lockfreq_value` is the `lockfreq` value, in MHz, for the lock frequency.

'lockrate' is a number <5000 used internally; usually 20 or 2000.

Examples:

`sethw('z1c',30,'z2c',-50)`
`sethw('wait','z1',150,'z2',-400)`
`sethw('lock','on')`
`sethw('spin',20)`
`sethw('spinner','bump')`
```plaintext
sethw('eject','on')
sethw('loc',5)
sethw('vt','reset')
sethw('lockfreq',46.042)

See also: NMR Spectroscopy User Guide
```

setint

Set value of an integral (M)

Syntax:
```plaintext
setint(int_number<,value>)
```

Description: Sets the value of an integral.

Arguments:
- `int_number` is the integral number. It corresponds to the index number displayed by `dli` if all integrals are shown (i.e., `intmod='full'`) or the region if alternating integrals are shown (i.e., `intmod='partial'`).
- `value` sets the actual value of the selected integral. The default is `ins`.

Examples:
```plaintext
setint(2)
setint(1,3)
```

See also: NMR Spectroscopy User Guide

Related:
- `loc` Location of sample in tray (P)
- `lockpower` Lock power (P)
- `lockfreq` Lock frequency (P)
- `lockgain` Lock gain (P)
- `lockphase` Lock phase (P)
- `readhw` Read current values of acquisition hardware (C)
- `spin` Sample spin rate (P)
- `z0` Z0 field position (P)

setlimit

Set limits of a parameter in a tree (C)

Applicability: All

Syntax:
```plaintext
setlimit(name, max,min,step [,tree])
setlimit(name, index[,tree])
```

Description: `setlimit` sets the limits of a variable in a tree.

The limits are max value, min. value and step size. A variable, such as an index into the table, can look up maximum, minimum, and step sizes in a table. Supplying all three (max, min., and step) arguments sets the parameter's protection bits (see `setprotect`) so that the table lookup is turned off. The parameter's protection bits are set so that table lookup is turned on if only a single index argument is supplied.

The step value is only used if the parameter is a real number.

Step Value **Parameter setting**

< -1 The parameter is set to the nearest larger value that is a power of 2. The `fn` parameter uses a step of -2 to select this case.

> -1 and < 0 The inverse of the parameter is set to the nearest multiple of the absolute value of the step. The `sw` parameter uses a step of negative of the minimum dwell time to select this mode.
Step Value Parameter setting

<table>
<thead>
<tr>
<th>Step Value</th>
<th>Parameter setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>>0 and <1</td>
<td>The parameter is set to the nearest multiple of the step value. As an equation, (\text{value} = n \times \text{step}) where (n) is a positive or negative integer.</td>
</tr>
<tr>
<td>(\geq 1)</td>
<td>The parameter is set to nearest value that is a multiple of step relative to the minimum value. For example, (\text{setlimit('var',3,-3,2)}) allows only the following values -3, -1, 1, and 3. As an equation, (\text{value} = \text{min} + n \times \text{step}) where (n) is an integer (\geq 0). In this example, the equation is: (\text{value} = (-3) + (n \times 2)).</td>
</tr>
</tbody>
</table>

Up to four optional return arguments can be used. The first will return the maximum, the second will return the minimum, and the third will return the step size. The fourth argument will return a 0 if the parameter is not using an indexed table lookup for the maximum, minimum, and step size. If the parameter is using the table lookup mechanism, the fourth argument will be set to the index for that table.

The variable trees are 'current', 'global', 'processed' and 'systemglobal'. The default tree is 'current'.

Arguments:
- **name** — the name of the variable.
- **tree** — the variable tree: current (the default), global, processed, or systemglobal.

Examples:
- \(\text{setlimit('a',10000,0,.3)} \)
- \(\text{setlimit('b',1e5,-3e2,1,'global')} \)
- \(\text{setlimit('dpwr',9)} \)

See also: *User Programming*

Related:
- **create** Create new parameter in a parameter tree (C)
- **destroy** Destroy a parameter (C)
- **display** Display parameters and their attributes (C)
- **fread** Read parameters from file and load them into a tree (C)
- **fsave** Save parameters from a tree to a file (C)
- **getlimit** Get the limits of a variable in a tree (C)
- **paramvi** Edit a parameter and its attributes using vi text editor (M)
- **parmax** Parameter maximum values (P)
- **parmin** Parameter minimum values (P)
- **parstep** Parameter step size values (P)
- **prune** Prune extra parameters from current tree (C)
- **setgroup** Set group of a parameter in a tree (C)
- **setprotect** Set protection mode of a parameter (C)
- **settype** Change type of a parameter (C)
- **setvalue** Set value of any parameter in a tree (C)

setlk

Set up lock parameters (M)

Syntax: \(\text{setlk(solvent)} \)

Description: Called from other macros to provide adjustment of locking and shimming as a function of solvent. Removing quotation marks from around different parts of the text file of the macro places that particular section into effect. If the macro is left unchanged, setting \(\text{a}\text{lock}='s' \) is required in the parameter sets where used.

Arguments: solvent is the solvent to be used.

See also: *NMR Spectroscopy User Guide*

Related: \(\text{a}\text{lock} \) Automatic lock status (P)
setlockfreq
Set lock frequency (M)

Description: Calculates and sets the lock frequency parameter `lockfreq`. Before using `setlockfreq`, you must acquire a signal using 1H as the transmitter nucleus ($tn='H1'$). To avoid errors in calculating frequencies, set `lockfreq='n'` before starting the acquisition.

See also: VnmrJ Installation and Administration

Related: `lockfreq` Lock frequency (P)
`tn` Nucleus for observe transmitter (P)

setLP
Set up linear prediction in the direct dimension (M)

Applicability: ALL

Syntax: `setLP(n)`

Description: Sets up linear prediction in the direct dimension using the number of coefficients specified.

Examples: `setLP(3)`

See also: NMR Spectroscopy User Guide

Related: `lpext` LP data extension in np dimension (P)
`lpfilt` LP coefficients to calculate in np dimension (P)
`lpnupts` LP number of data points in np dimension (P)
`lpopt` LP algorithm data extension in np dimension (P)
`proc` Type of processing on np FID (P)
`setrc` Set frequency referencing based upon lock signal shift (M)
`strtext` Starting point for LP data extension in np dimension (P)
`strtlp` Starting point for LP calculation in np dimension (P)

setLP1
Set F1 linear prediction parameters (M)

Syntax: `setLP1<(extended_length<,current_length>)>`

Description: Sets F1 linear prediction parameters. If no arguments are specified, the interferograms are quadrupled in length.

Arguments: `extended_length` is the number of complex points now existing (`ni`).
`current_length` is the number of points desired after the (forward) linear prediction.

See also: NMR Spectroscopy User Guide

Related: `ni` Number of increments in 1st indirectly detected dimension (P)

setlp0
Set parameters for zero linear phase (M)

Syntax: `setlp0`

Description: A new value of `ddrtc` is calculated by `setlp0` using the current values of `alfa`, `rof2`, and `lp` to achieve a zero linear phase condition (lp=0). A trial experiment must first be acquired and phased for pure absorption before running `setlp0`. A value of `lp` near zero is required for flat base line.

See also: NMR Spectroscopy User Guide

Related: `alfa` Set alfa delay before acquisition (P)
`ddrtc` Set ddr time constant (P)
`lp` First-order phase in directly detected dimension (P)
`rp` Zero-order phase in directly detected dimension (P)
setnoether

Disconnect host computer from Ethernet (U)

Description: Disconnects the host computer from the Ethernet network. Only root can execute this shellscript properly. setnoether does nothing if the system is already disconnected from the Ethernet network.

On systems running Solaris, setnoether renames the hostname.le0, defaultdomain, and defaultrouter files so that Ethernet is not activated when the system is rebooted.

See also: *VnmrJ Installation and Administration*

Related: setether Connect or reconnect host computer to Ethernet (U)

setoffset

Calculate offset frequency for given nucleus and ppm (M)

Syntax: setoffset(nucleus,ppm):offsetfreq

Description: Using the setref macro, setoffset calculates the offset frequency for a given chemical shift and returns the value.

Arguments:
- nucleus is the given nucleus.
- ppm is the chemical shift.
- offsetfreq returns the offset frequency for the given chemical shift.

Examples:
- setoffset(tn,5):tof
- setoffset('C13',85):dof

See also: *NMR Spectroscopy User Guide*

Related: setref Set frequency referencing for proton spectra (M)

setparams

Write parameter to current probe file (M)

Syntax: setparams(param,value<,nucleus>)

Description: Writes the value of a parameter to the current probe file. The name of the probe file is referenced from the parameter probe.

Arguments:
- param is the name of the parameter to write.
- value is a string with the value to be written for the parameter.
- nucleus is the nucleus to write in the probe file. The default is the current value of the parameter tn.

Examples:
- setparams('pw90','10')
- setparams('pplvl','60')
- setparams('dpwr',$strdpwr,'H1')

See also: *NMR Spectroscopy User Guide*

Related: addnucleus Add new nucleus to existing probe file (M)
- addparams Add parameter to current probe file (M)
- addprobe Create new probe directory and probe file (M)
- getparam Retrieve parameter from probe file (M)
- probe Probe type (P)
- tn Nucleus for the observe transmitter (P)
- updateprobe Update probe file (M)
setpen
Set maximum number of HP plotter pens (M)

Syntax: setpen< (maxpen,max_number_pens)>

Description: Allows the user to interactively define the maximum number of pens when changing to a Hewlett-Packard plotter.

Arguments:
- maxpen is the current value of the parameter maxpen.
- max_number_pens is the maximum number of pens to be used. If the value of max_number_pens is less than or equal to the current value of the parameter maxpen, this value becomes the new value of maxpen.

See also: *NMR Spectroscopy User Guide*

Related:
- color
 Select plotting colors from a graphical interface (M)
- maxpen
 Maximum number of pens to use (P)

setplotdev
Return characteristics of a named plotter (C)

Syntax: setplotdev<:plotter_type,plotter_host,ppmm,raster>

Description: Returns information from the devicenames and devicetable files to identify the characteristics of a plotter. This command need never be entered directly by a user because it is automatically called whenever the plotter parameter is set. Note that different “types” of plotters (and printers) are characterized in devicetable. The devicenames file associates different “names” to a given “type.”

Arguments:
- plotter_type returns the type of the named plotter.
- plotter_host returns the host associated with the plotter.
- ppmm returns the plotter resolution in points per millimeter.
- raster returns the value from the devicetable file.

See also: *VnmrJ Installation and Administration*

Related: plotter
Plotter device (P)

setpower
Set power and pulsewidth for a given γB1 value (M)

Syntax: setpower(γB1,nucleus)

Description: Sets power level and pw90 values. For tn, setpower uses ref_pwr and ref_pw90 from the parameter set or from the probe table. For dn, it uses ref_pwx1lvl and ref_pwx90 from the parameter set or from the probe table. For dn2, it uses ref_pwx2lvl and ref_pwx290 from the parameter set or from the probe table. If the reference power levels and pulse width do not exist, setpower uses tpwr (pw90), dpwr (1/dmf) or dpwr2 (1/dmf2) (if the nucleus is tn, setpower uses tpwr; if the nucleus is dn, it uses dpwr; if the nucleus is dn2, it uses dpwr2).

Arguments:
- γB1 is a given γB1 value.
- nucleus is a given nucleus.

Examples:
- setpower(sw,tn)
- setpower(5000,H1)

Related:
- dn
 Nucleus for first decoupler (P)
- dn2
 Nucleus for second decoupler (P)
- dpwr
 Power level for first decoupler with linear amplifiers (P)
- dpwr2
 Power level for second decoupler (P)
- pw90
 90° pulse width (P)
setprotect Set protection mode of a parameter (C)

Syntax: `setprotect(parameter,'set'|'on'|'off',bit_vals<,tree>)`

Description: Enables changing the protection bits associated with a parameter.

Arguments:

- `parameter` is the name of the parameter.
- `'set'` causes the current protection bits for the parameter to be completely replaced with the bits specified by `bit_vals`.
- `'on'` causes the bits specified in `bit_vals` to be turned on without affecting any other protection bits.
- `'off'` causes the bits specified in `bit_vals` to be turned off without affecting any other protection bits.
- `'list'` causes all parameter with the specified bit_vals to be listed. This list may be returned to the calling macro.
- `'clear'` option clears the specified `bit_vals` from all parameters. For both the list and clear options, the names argument can be `' '`.

The return value when `setprotect` is called with the `list` option can be used as the `names` argument for other forms of `setprotect`. It can also be names for other commands which use lists of parameter names, such as `writeparam` and `readparam`.

`bit_vals` is the sum of the values of bits selected from the following list:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>Cannot array the parameter</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Cannot change active/not active status</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Cannot change the parameter value</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>Causes _parameter macro to be executed (e.g., if parameter is named <code>sw</code>, macro <code>_sw</code> is executed when <code>sw</code> is changed)</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>Avoids automatic redisplay</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>Cannot delete parameter</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>System ID for spectrometer or data station</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>Cannot copy parameter from tree to tree</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>Will not set array parameter</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>Cannot set parameter enumeral values</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td>Cannot change the parameter’s group</td>
</tr>
<tr>
<td>11</td>
<td>2048</td>
<td>Cannot change protection bits</td>
</tr>
<tr>
<td>12</td>
<td>4096</td>
<td>Cannot change the display group</td>
</tr>
<tr>
<td>13</td>
<td>8192</td>
<td>Look up minimum, maximum, step values in table</td>
</tr>
<tr>
<td>14</td>
<td>16384</td>
<td>Parameter marked for locking (P_LOCK; see rtx)</td>
</tr>
<tr>
<td>15</td>
<td>32768</td>
<td>Global parameter not shared in multiple VJ viewports</td>
</tr>
<tr>
<td>16</td>
<td>65536</td>
<td>Force automatic redisplay in VJ templates</td>
</tr>
</tbody>
</table>

For example, to change the first two protection bits, with values 1 and 2, either enter `setprotect` twice (once for each value) with the keyword `'on'`, or enter `setprotect` once with `bit_vals` set to 3 (sum of 1 and 2) with the keyword `'set'`.

tree is one of the keywords `'global'`, `'current'`, `'processed'`, or `'systemglobal'`. The default is `'current'`. Refer to the `create` command for more information on the types of parameter trees.
Examples:
```plaintext
setprotect('syn','on',2)
setprotect('pslabel','on',8)
```

See also:
User Programming

Related:
- array: Parameter order and precedence (P)
- create: Create new parameter in a parameter tree (C)
- destroy: Destroy a parameter (C)
- display: Display parameters and their attributes (C)
- fread: Read parameters from file and load them into a tree (C)
- fsave: Save parameters from a tree to a file (C)
- getlimit: Get the limits of a variable in a tree (C)
- paramvi: Edit a parameter and its attributes using vi text editor (M)
- prune: Prune extra parameters from current tree (C)
- setlimit: Set limits of a parameter in a tree (C)

setrc
Set receiver constants (M)

Applicability: DirectDrive and 400 - MR systems

Syntax:
```plaintext
setrc
```

Description:
Sets receiver time constants to optimal values.
- `alfa`: set to a minimum value from the probe file (default is 10 μs).
- `rof2`: set to a minimum value from the probe file (default is 25 μs).
- `lp`: set to zero. `ddrtc` is set to a value based upon the `ddrpm` parameter, which is set based upon pulse sequence type (default value `ddrpm = 'p'`). Linear prediction is turned on in the direct dimension if the `ddrtc` value is more than a dwell time. `setrc` is used in the apptype macros for setting up pulse sequences or from the command line to optimize receiver constants.

Description:
Sets receiver time constants to optimal values.

See also:
NMR Spectroscopy User Guide

Related:
- `alfa`: Set alfa delay before acquisition (P)
- `rof2`: Receiver gating time following pulse (P)
- `pw`: Pulse width (P)
- `probe`: Probe type (P)
- `ddrtc`: Set ddr precession mode (P)
- `ddrpm`: Set ddr precession mode (P)
- `sw`: Spectral width in directly detected dimension (P)
- `setLP`: Set F1 linear prediction parameters (M)

setref
Set frequency referencing (M)

Syntax:
```plaintext
setref<nucleus>:rf1,rfp,reffrq,refpos
```

Description:
Calculates the referencing for a given parameter or FID data set, for samples locked on deuterium, and based on the chemical shift of the lock solvent line. `setref` uses information in `/vnmr/solvents` (2H chemical shift for current solvent) and `/vnmr/nuctables/nuctabref` (absolute reference frequencies for NMR nuclei) to predict the position of the reference frequency with the current solvent, spectral window, and spectrometer frequency. `setref` assumes a locked sample.

The macro calculates the (auxiliary) 2H reference frequency (TMS-d1) from the lock frequency (`lockf = lockfreq + lkof/1e6`) as follows:

```
H2_TMSfreq = lockf / (1 + solppm/1e6)
```

then takes the Ξ values for 2H and `tn` and calculates the auxiliary reference frequency (`reffrq`) for the observe nucleus at the given field strength.
reffrq = (H2_TMSfreq / Ξ(H2)) * Ξ(tn)

from this, rfl and rfp are set:
rfp=0 rfl = sw/2 - (sfrq - reffrq)*1e6.

Setting the global (or local) flag bioref='y' uses Bio-NMR referencing (based on nuctables/nuctabrefBio) rather than standard IUPAC/organic chemistry referencing (based on nuctables/nuctabref)

Ξ is the normalized frequency such that the ¹H signal from TMS is 100.00 MHz.

This estimate of the frequency based upon the chemical shift value of the lock signal and does not account for temperature, pH, or other factors affecting the chemical shift of the lock solvent.

The default tree is 'current'.

Arguments: An argument and return values are beneficial for the use of setref within other macros such as setref1 and setref2. By default (i.e., without an argument), setref calculates the referencing for 1D spectra or for the directly detected dimension in nD spectra (f2 in 2D, f3 in 3D).

When only nucleus is used as an argument, setref returns values without setting parameters.

$rfl, rfp, reffrq, refpos$ are return values for reference peak position, reference peak frequency, reference line frequency, and reference line position, respectively.

Examples: setref
 setref('C13'): $rfl, $rfp

See also: NMR Spectroscopy User Guide

Related:
reffrq Reference frequency of reference line (P)
refpos Position of reference frequency (P)
rfl Reference peak position (P)
rfp Reference peak frequency (P)
rl Set reference line in directly detected dimension (M)
setref1 Set frequency referencing for 1st indirectly detected dimension (M)
setref2 Set frequency referencing for 2nd indirectly detected dimension (M)
setup Set up parameters for basic experiments (M)
tmsref Reference 1D proton or carbon spectrum to TMS (M)
bioref Use nuctables/nuctabrefBio rather than standard IUPAC/organic chemistry

setref1

Set freq. referencing for 1st indirectly detected dimension (M)

Syntax: setref1(nucleus)

Description: Calculates the referencing for the first indirect dimension (f1) in nD parameters and FID data sets, for samples locked on deuterium, and for the solvent specified by the solvent parameter. setref1 uses the setref macro to calculate the reference frequency and based on the chemical shift of the lock solvent line and /vnmr/nuctables/nuctabref (absolute reference frequencies for NMR nuclei) to predict the referencing in f1 (reffrq1, rfl1, rfp1) with the current solvent, sw1, and for the frequency of the specified nucleus.

This estimate of the frequency based upon the chemical shift value of the lock signal, as in setref, and does not account for temperature, pH, or other factors affecting the chemical shift of the lock solvent. Using setref, setref1, and setref2, maintains a consistent reference for all dimensions.

Ξ is the normalized frequency such that the ¹H signal from TMS is 100.00 MHz.
Setting the global (or local) flag bioref = 'y' uses bio-NMR referencing (based on nuctables/nuctabrefBio) rather than standard IUPAC/organic chemistry referencing (based on nuctables/nuctabref).

See /vmnr/nuctables/nuctabref.

Arguments: nucleus is the frequency-relevant nucleus in f1.

Examples: setref1(tn)
setref1('C13')

See also: NMR Spectroscopy User Guide

Related:

setref2 Set freq. referencing for 2nd indirect detected dimension (M)

Syntax: setref2 (nucleus)

Description: Calculates the referencing for the second indirect dimension (f2) in nD parameters and FID data sets, for samples locked on deuterium, and for the solvent specified by the solvent parameter. setref2 uses setref to calculate the reference frequency and based on the chemical shift of the lock solvent line and /vmnr/nuctables/nuctabref (absolute reference frequencies for NMR nuclei) to predict the referencing in f2 (reffrq2, rfl2, rfp2) with the current solvent, sw2, and for the frequency of the specified nucleus.

This estimate of the frequency based upon the chemical shift value of the lock signal, as in setref, and does not account for temperature, pH, or other factors affecting the chemical shift of the lock solvent. Using setref, setref1, and setref2, maintains a consistent reference for all dimensions.

Setting the global (or local) flag bioref = 'y' uses bio-NMR referencing (based on nuctables/nuctabrefBio) rather than standard IUPAC/organic chemistry referencing (based on nuctables/nuctabref).

See /vmnr/nuctables/nuctabref.

Arguments: nucleus is the frequency-relevant nucleus in f2.

Examples: setref2(tn)
setref2('C13')

See also: NMR Spectroscopy User Guide

Related:

setscout Set up a scout run (M)

Applicability: Systems with LC-NMR accessory.

Description: Designed to help run simple experiments during the setup phase of LC-NMR or to be the first of two experiments run on peaks in a stopped-flow or loop-
flushing mode. In the latter application, you can set wexp='setwet au' so that the scout run is analyzed, parameters adjusted, and an appropriate solvent-suppressed experiment run.

If parameters already exist in the current experiment for performing the lc1d pulse sequence, setscout turns off the solvent suppression portion of the sequence; if they do not exist, they are created and set to default values using lc1d.

See also: NMR Spectroscopy User Guide

Related: lc1d Pulse sequence for LC-NMR (M)
 setwet Set up a solvent-suppressed experiment (M)

setssfilter Set sslsfrq to the frequencies of each suppressed solvents (M)

Applicability: Systems with LC-NMR accessory.

Description: Sets sslsfrq to the frequencies of each of the suppressed solvents.

See also: NMR Spectroscopy User Guide

setsw Set spectral width (M)

Syntax: setsw(downfieldppm,upfieldppm)

Description: Sets sw and tof for the given spectral window and also does referencing.

Arguments: downfieldppm is the downfield frequency, in ppm.
upfieldppm is the upfield frequency, in ppm.

Examples: setsw(12,0)
 setsw(235,-15)

See also: NMR Spectroscopy User Guide

Related: setsw1 Set spectral width in evolution dimension (M)
 setsw2 Set spectral width in 2nd evolution dimension (M)
 sw Spectral width in directly detected dimension (P)
 tof Frequency offset for observe transmitter (P)

setsw1 Set spectral width in evolution dimension (M)

Syntax: setsw1(nucleus,downfieldppm,upfieldppm):offset

Description: Sets sw1 for the given spectral window and also does referencing.

Arguments: nucleus returns the nucleus.
 downfieldppm is the downfield frequency, in ppm.
 upfieldppm is the upfield frequency, in ppm.
 offset returns the appropriate offset.

Examples: setsw1(tn,12,0)
 setsw1(dn,235,-15):dof

See also: NMR Spectroscopy User Guide

Related: setsw Set spectral width (M)
 sw1 Spectral width in 1st indirectly detected dimension (P)

setsw2 Set spectral width in 2nd evolution dimension (M)

Syntax: setsw2(nucleus,downfieldppm,upfieldppm):offset

Description: Sets sw2 for the given spectral window and also does referencing.
Arguments: nucleus returns the nucleus.

downfieldppm is the downfield frequency, in ppm.

upfieldppm is the upfield frequency, in ppm.

offset returns the appropriate offset.

Examples: setsw2(tn,12,0)

setsw2(dn,235,-15):dof

See also: NMR Spectroscopy User Guide

Related: setsw Set spectral width (M)

sw2 Spectral width in 2nd indirectly detected dimension (P)

setselfrqc Set selective frequency and width (M)

Description: Sets selective frequency and width of the excitation bandwidth for selective
excitation. Used after TOCSY1D and Noesy1d selection. Selected frequencies
and widths of the excitation bandwidth are used by suselfrq.

Related: Noesy1d Change parameters for NOESY1D experiment (M)

suselfrq Select peak, continue selective excitation experiment (M)

TOCSY1D Change parameters for TOCSY1D experiment (M)

setselinv Set up selective inversion (M)

Description: Sets power, pulsewidth, and shape for selective inversion; used by suselfrq.
By default, setselinv selects a q3 gaussian cascade pulse if a waveform
generator or linear modulator is present. Otherwise, setselinv selects a
“rectangular” pulse.

Related: setselfrqc Select selective frequency and width (M)

suselfrq Select peak, continue selective excitation experiment (M)

settcldefault Select default display templates for pulse sequence (M)

Syntax: settcldefault<(<default>,sequence)>)

Description: Selects the display templates to use as the default for a pulse sequence.

Arguments: default is the name of the set of display templates to use for the default
display of the current pulse sequence (defined by the parameter seqfil). If no
arguments are given, the user is prompted for the name of the display templates.
sequence defines which pulse sequence will use the default displays of the
pulse sequence given as the first argument. The default is the pulse sequence
defined by the parameter seqfil.

Examples: settcldefault

settcldefault('cosy')

settcldefault('default2d','HMQC8')

See also: User Programming

Related: seqfil Pulse sequence name (P)

settune Opens the Auto Tune Setup dialog (M)

Applicability: VnmrJ Walkup, Automation

Syntax: settune

Description: Opens a dialog for setting when to tune in automation using ProTune.
settype Change type of a parameter (C)
Syntax: settype(parameter,type<,tree>)
Description: Changes the type of an existing parameter. A string parameter can be changed into a string or flag type, or a real parameter can be changed into a real, delay, frequency, pulse, or integer type. Note that settype cannot change a string parameter into a real, or change a real into a string.
Arguments: parameter is the name of an existing parameter.
 type is one of the keywords 'string', 'flag', 'real', 'delay', 'frequency', 'pulse', or 'integer'.
 tree is one of the keywords 'global', 'current', 'processed', or 'systemglobal'. The default is 'current'. Refer to the create command for more information on the types of parameter trees.
Examples: settype('in','flag','global')
 settype('p12','pulse')
See also: User Programming
Related: create Create new parameter in a parameter tree (C)
display Display parameters and their attributes (C)
setgroup Set group of a parameter in a tree (C)
setlimit Set limits of a parameter in a tree (C)
setprotect Set protection mode of a parameter (C)
setvalue Set value of any parameter in a tree (C)

setup Set up parameters for basic experiments (M)
Syntax: setup<(nucleus<,solvent>)>
Description: Returns a parameter set to do the experiment requested, complete with positioning of the transmitter and decoupler. Parameters set by setup are recalled from the /vnmr/stdpar directory or from the user's stdpar directory if the appropriate file exists there. Any changes made to the files in these directories are reflected in setup. The default parameters for carbon and proton survey spectra are in files /vnmr/stdpar/C13.par and /vnmr/stdpar/H1.par, respectively. These files should be modified as desired to produce spectra under desirable conditions.
Arguments: nucleus is a nucleus chosen from the files in /vnmr/stdpar or in the user's stdpar directory (e.g., 'H1', 'C13', 'P31').
solvent is a solvent chosen from the file /vnmr/solvents (e.g., 'CDC13', 'C6D6', 'D2O'). The default is 'CDC13'.
Examples: setup
 setup('H1')
 setup('C13','DMSO')
See also: NMR Spectroscopy User Guide

setup_dosy Set up gradient levels for DOSY experiments (M)
Description: Initiates a dialogue to set up an array of gzlvl1 values for DOSY experiments. setup_dosy requests the number of array increments and an initial and a final gzlvl1 value and sets up an array that gives increments in gzlvl1
squared between these limits. `setup_dosy` retrieves the gradient strength from the probe calibration file if `probe<>''` and stores it in the local experimental parameter `DAC_to_G`. If `probe='''` (i.e., the probe is not defined), then `DAC_to_G` is set to the current value of the global parameter `gcal`.

See also: *NMR Spectroscopy User Guide*

Related:
- `dosy` Process DOSY experiments (M)
- `DAC_to_G` Parameter to store gradient calibration value in DOSY sequences (P)
- `setgcal` Set the gradient calibration constant (M)

setvalue

Set value of any parameter in a tree (C)

Syntax:

```
setvalue(parameter, value<, index><, tree>)
```

Description: Sets the value of any parameter in a tree. This command bypasses the normal range checking for parameter entry, as well as bypassing any action that would be invoked by the parameter’s protection mode (see the `setprotect` command). If the parameter entry normally causes a _parameter_ macro to be executed, this action also is bypassed.

Arguments:
- `parameter` — name of the parameter.
- `value` — set value for the parameter.
- `index` — number of a single element in an arrayed parameter. The default is 1. A value of 0 for the index resets an arrayed (or non-arrayed) parameter to the one element supplied as the second argument to `setvalue`.
- `tree` — keyword ‘global’, ‘current’, ‘processed’, or ‘systemglobal’. The default is ‘current’. Refer to the `create` command for more information on the types of parameter trees.

Examples:

```
setvalue('arraydim',128,'processed')
```

See also: *User Programming*

Related:
- `create` Create new parameter in a parameter tree (C)
- `setprotect` Set protection mode of a parameter (C)

setwave

Write a wave definition string into Pbox.inp file (M)

Syntax:

```
setwave('sh bw/pw ofs st ph fla trev d1 d2 d0')
```

Description: Sets up a single excitation band in the Pbox.inp file. An unlimited number of waves can be combined by reapplying `setwave`.

Arguments:
- A single string of 1 to 10 wave parameters in predefined order. Note that a single quote is required at the start and the end of the entire string, but no single quotes are required surrounding characters and strings inside the entire string.

```
sh  name of a shape file.
bw/pw  either the bandwidth, in Hz, or the pulsewidth, in sec.
ofs  offset, in Hz.
st  number specifying the spin status:
  0 for excitation
  1 for de-excitation
  0.5 for refocusing.
ph  phase (or phase cycle, see wavelib/supercycles).
fla  flip angle.
  fla can override the default flip angle.
```
trev time reversal. This can be used to cancel time reversal if spin status
(st) is set to 1 for Mxy.

d1 delay, in sec, prior the pulse.
d2 delay, in sec, after the pulse.
d0 delay or command prior to d1.
 If d0=a, the wave is appended to the previous wave.

Examples:
setwave('eburp1')
setwave('GARP 12000.0')
setwave('esnob 600 -1248.2 1 90.0 n n 0.001')

See also: NMR Spectroscopy User Guide

Related: Pbox Pulse shaping software (U)

setwin

Activate selected window (C)

Syntax: setwin(row<,column>)

Description: Activates a specific pane in the graphics window. Panes are numbered
sequentially from left to right and top to bottom.

Arguments:
row is the number of the row containing the pane to be activated.
column is the number of the column containing the pane to be activated.

Examples: setwin(3)
setwin(1,2)

See also: NMR Spectroscopy User Guide

Related: curwin Current window (P)
fontselect Open FontSelect window (C)
jwin Activate current window (M)
mapwin List of experiment numbers (P)
setgrid Activate selected window (M)

sf

Start of FID (P)

Description: Sets the start of the FID display. This parameter can be entered in the usual way
or interactively controlled by the sf wf button during a FID display.

Values: 0 to the value of at, in seconds.

See also: NMR Spectroscopy User Guide

Related: at Acquisition time (P)
dcon Display noninteractive color intensities map (C)
dconi Interactive 2D data display (C)
df Display a single FID (C)
sf1 Start of interferogram in 1st indirectly detected dimension (P)
sf2 Start of interferogram in 2nd indirectly detected dimension (P)
vf Vertical scale of FID (P)
wf Width of FID (P)

sf1

Start of interferogram in 1st indirectly detected dimension (P)

Description: Sets the start of the interferogram display in the first indirectly detected
dimension.

Values: 0 to (2 × ni)/sw1, in seconds.
sf2

Start of interferogram in 2nd indirectly detected dimension (P)

Description: Sets the start of the interferogram display in the second indirectly detected dimension.

Values: 0 to \((2 \times ni2)/sw2\), in seconds.

See also: *NMR Spectroscopy User Guide*

Related:
- \(ni\) Number of increments in 1st indirectly detected dimension (P)
- \(sf\) Start of FID (P)
- \(sw1\) Spectral width in 1st indirectly detected dimension (P)
- \(wf1\) Width of interferogram in 1st indirectly detected dimension (P)

sfrq

Transmitter frequency of observe nucleus (P)

Description: Contains the frequency for the observe transmitter. `sfrq` is automatically set when `tn` is changed, and it should not be necessary for the user to manually set this parameter.

Values: Number, in MHz.

See also: *NMR Spectroscopy User Guide*

Related:
- `dfrq` Transmitter frequency of first decoupler (P)
- `dfrq2` Transmitter frequency of second decoupler (P)
- `dfrq3` Transmitter frequency of third decoupler (P)
- `tn` Nucleus for observe transmitter (P)
- `tof` Frequency offset for observe transmitter (P)
- `spcfrq` Display frequencies of rf channels (M)

sh2pul

Set up for a shaped observe excitation sequence (M)

Applicability: Systems with waveform generators.

Syntax: `sh2pul`

Description: Behaves like standard two-pulse sequence S2PUL but with the normal hard pulses changed into shaped pulses from the waveform generator. The name of the shaped pulse associated with `pw` is `pwpat` and \(p1\) is \(p1pat\). Information about the specifics of power settings and bandwidths is available from the macros `bandinfo` and `pulseinfo`.

See also: *User Programming*

Related:
- `bandinfo` Shaped pulse information for calibration (M)
- `p1pat` Shape of an excitation pulse (P)
- `pwpat` Shape of refocusing pulse (P)
- `pulseinfo` Shaped pulse information for calibration (M)

shdec

Set up for shaped observe excitation sequence (M)

Applicability: Systems with waveform generators.

Description: Sets up the SHDEC pulse sequence that generates a shaped pulse on the observe channel using the waveform generator. It also allows for programmed
(e.g.: multiselective) homodecoupling or solvent presaturation using the observe transmitter, and an optional gradient pulse following the excitation pulse.

See also: NMR Spectroscopy User Guide
Related: Pbox Pulse shaping software (U)

shell Start a UNIX shell (C)

Syntax: \texttt{shell\langle command\rangle}:\$var1,\$var2,...

Description: Brings up a normal UNIX shell for the user. On the Sun, a pop-up window is created. On the GraphOn terminal, the entire terminal is used.

Arguments: command is a UNIX command line to be executed by shell. The default is to bring up a UNIX shell. If the last character in the command line is the symbol &, the command is executed in background, which allows commands to be entered and executed while the shell command is still running. Note that if this background feature is used, any printed output should be redirected to a file. Otherwise, the output may pop up in the text window at random times.

shell calls involving pipes or input redirection (<) require either an extra pair of parentheses or the addition of; cat to the shell command string.

$var1, $var2,... are names of variables to hold text lines that are generated as a result of the UNIX command. The default is to display the text lines. Each variable receives a single display line. shell always returns a text line; in many cases, it is a simple carriage return. To prevent this carriage return from being shown, capture it in a dummy variable, such as

\texttt{shell\langle 'command'\rangle}:\$dum

Examples:

\begin{itemize}
 \item \texttt{shell\langle 'ps'\rangle}
 \item \texttt{shell\langle 'ls -lt'\rangle}:\$filelist
 \item \texttt{shell\langle systemdir+/acqbin/Acqstat ' +hostname+ ' &'\rangle}
 \item \texttt{shell\langle 'ls -t|grep May; cat'\rangle}
 \item or \texttt{shell\langle '(ls -t|grep May)\'\rangle}
\end{itemize}

See also: NMR Spectroscopy User Guide, User Programming
Related: shelli Start an interactive UNIX shell (C)

shelli Start an interactive UNIX shell (C)

Syntax: \texttt{shelli(command)}

Description: On a terminal, runs interactively the UNIX command line given as the argument. No return or output variables are allowed.

Arguments: command is a UNIX command line to be executed.

Examples: \texttt{shelli\langle 'vi myfile'\rangle}

See also: NMR Spectroscopy User Guide, User Programming
Related: shell Start a UNIX shell (C)

shim Submit an Autoshim experiment to acquisition (C)

Description: Performs validity checks on the acquisition parameters and then submits an Autoshim experiment to acquisition.
See also: *NMR Spectroscopy User Guide*

shimset

Type of shim set (P)

Description: Configuration parameter for the type of shims on the system. The value of `shimset` is set using the Shimset label in the Spectrometer Configuration window.

Values: 1 to 14, where the value identifies one of the following shim sets:

1 is a shim set in a Varian 13-shim supply with computer-controlled axial shims \(z_1, z_1c, z_2, z_2c, z_3, z_4, \) and radial shims \(x_1, y_1, xz, yz, xy, x2y2, x3, y3, xz2, yz2, zxy, zx2y2. \) Shims can be adjusted from \(-2047\) to \(+2047\). This value is used with the Ultranmr shim system when operated from the HIM box (Varian 13 Shims choice in Spectrometer Configuration window).

2 is a shim set in a Oxford 18-shim supply with computer-controlled axial shims \(z_1, z_1c, z_2, z_2c, z_3, z_4, z_5, \) and radial shims \(x_1, y_1, xz, yz, x2y2, x3, y3, xz2, yz2, zxy. \) Shims can be adjusted from \(-2047\) to \(+2047\) (Oxford 18 Shims choice in Spectrometer Configuration window).

3 is a shim set in a Varian 23-shim supply with computer-controlled axial shims \(z_1, z_2, z_3, z_4, z_5, z_6, \) and radial shims \(x_1, y_1, xz, yz, x2y2, x3, y3, xz2, yz2, zxy, xz2y2, z3x, z3y, z2x2y2, z2xy. \) Shims can be adjusted from \(-32767\) to \(+32767\) (Varian 23 Shims choice in Spectrometer Configuration window).

4 is a shim set in a Varian 28-shim supply with computer-controlled axial shims \(z_1, z_2, z_3, z_4, z_5, z_6, z_7, \) and radial shims \(x_1, y_1, xz, yz, x2y2, x3, y3, xz2, yz2, zxy, xz2y2, z3x, z3y, 2z2x2y2, 2zxy, 2z3x, 2z3y, 2z5x, 2z5y. \) Shims can be adjusted from \(-32767\) to \(+32767\) (Varian 28 Shims choice in Spectrometer Configuration window).

5 is a shim set in an Ultranmr shim system (39 shim channels) with computer-controlled axial shims \(z_1, z_1c, z_2, z_2c, z_3, z_3c, z_4, z_4c, z_5, z_6, z_7, z_8, \) and radial shims \(x_1, y_1, xz, yz, x2y2, x3, y3, xz2, yz2, zxy, xz2y2, z3x, z3y, z2x2y2, z2xy, z3x, z3y, z4x, z4y, z5x, z5y. \) Shims can be adjusted from \(-32767\) to \(+32767\) (Ultra Shims choice in Spectrometer Configuration window).

6 is a shim set in a Varian 18-shim supply with computer-controlled axial shims \(z_1, z_2, z_3, z_4, z_5, \) and radial shims \(x_1, y_1, xz, yz, x2y2, x3, y3, xz2, yz2, xz2y2, z3x, z3y. \) Shims can be adjusted from \(-32767\) to \(+32767\) (Varian 18 Shims choice in Spectrometer Configuration window).

7 is a shim set in a Varian 20-shim supply with computer-controlled axial shims \(z_1, z_2, z_3, z_4, z_5, \) and radial shims \(x_1, y_1, xz, yz, x2y2, x3, y3, xz2, yz2, xz2y2, z3x, z3y. \) Shims can be adjusted from \(-32767\) to \(+32767\) (Varian 20 Shims choice in Spectrometer Configuration window).

8 is a shim set in a Oxford 15-shim supply with computer-controlled axial shims \(z_1, z_2, z_3, z_4, \) and radial shims \(x_1, y_1, xz, yz, x2y2, x2y2, xz2, yz2, xz2y2, z3x, z3y, xz2y2, z3x, z3y. \) Shims can be adjusted from \(-2047\) to \(+2047\) (Oxford 15 Shims choice in Spectrometer Configuration window).

9 is a shim set in a Varian Ultranmr shim system II (40 shim channels) with computer-controlled axial shims \(z_1, z_1c, z_2, z_2c, z_3, z_3c, z_4, z_4c, z_5, z_6, z_7, z_8, \)
and radial shims x1, y1, xz, yz, xy, x2y2, x3, y3, x4, y4, xz2, yz2, zxy, zx2y2, z3x, z3y, z2x2y2, z2xy, z3x, z3y, z2x3, z2y3, z3x3, z3y3, z4x2y2, z4xy, z5x, z5y. Shims can be adjusted from –32767 to +32767 (Varian 40 Shims choice in Spectrometer Configuration window).

10 is a shim set in a Varian 14-shim supply with computer-controlled axial shims z1, z1c, z2, z2c, z3, z4, z5, and radial shims x1, y1, xz, yz, xy, x2y2, x3, y3. Shims can be adjusted from –2047 to +2047 (Varian 14 Shims choice in Spectrometer Configuration window).

11 is a shim set in a Varian 8-shim supply with computer-controlled axial shims z1, z2, and radial shims x1, y1, xz, yz, xy, x2y2. Shims can be adjusted from –32767 to +32767 (Whole Body Shims choice in Spectrometer Configuration window).

12 is a shim set in a Varian 26-shim supply with computer-controlled axial shims z1, z2, z3, z4, z5, and radial shims x1, y1, xz, yz, xy, x2y2, x3, y3, xz2, yz2, zxy, zx2y2, z3x, z3y, z2x2y2, z2xy, zx3, zy3, x4, y4. Shims can be adjusted from –32767 to +32767 (Varian 26 Shims choice in Spectrometer Configuration window).

13 is a shim set in a Varian 29-shim supply with computer-controlled axial shims z1, z2, z3, z4, z5, z6, and radial shims x1, y1, xz, yz, xy, x2y2, x3, y3, xz2, yz2, zxy, zx2y2, z3x, z3y, z2x2y2, z2xy, zx3, zy3, z4x, z4y, z5x, z5y. Shims can be adjusted from –32767 to +32767 (Varian 29 Shims choice in Spectrometer Configuration window).

14 is a shim set in a Varian 35-shim supply with computer-controlled axial shims z1, z2, z3, z4, z5, z6, and radial shims x1, y1, xz, yz, xy, x2y2, x3, y3, z4, y4, xz2, yz2, zxy, zx2y2, z3x, z3y, z2x2y2, z2xy, zx3, zy3, z4x, z4y, z5x2y2, z3xy, z4x2y2, z4xy, z5x, z5y. Shims can be adjusted from –32767 to +32767 (Varian 35 Shims choice in Spectrometer Configuration window).

15 is the Varian 15 Shim.

16 is the Ultra 18 Shims.

See also: VnmrJ Installation and Administration

Related: config Display current configuration and possibly change it (M)
 readhw Read current values of acquisition hardware (C)

showconfig Show system configuration settings (M)

See also: Displays the system configuration settings in the text window. To print the settings, enter the following in the VnmrJ command line:
 printon showconfig printoff.

See also: VnmrJ Installation and Administration

Related: config Display current configuration and possibly change it (M)

showconsole Show system configuration settings (U)

Description: Displays console hardware configuration parameters and system versions. This information is recorded during console bootup and represents the system hardware options recognized by the acquisition computer. The command is used mainly when troubleshooting or performing diagnostics.

See also: NMR Spectroscopy User Guide

Related: ihwinfo Hardware status of console (C)
showfit
Display numerical results of deconvolution (M)

Description: After a deconvolution, the results are written into file `fitspec.outpar` in an abbreviated format. `showfit` converts these data to an output format more suitable for examination and printing.

See also: *NMR Spectroscopy User Guide*
Related:
- `fitspec`
 Perform spectrum deconvolution (C)
- `plfit`
 Plot deconvolution analysis (M)
- `usemark`
 Use “mark” output as deconvolution starting point (M)

showloginbox
Shows operator login dialog (M)

Description: Shows the login dialog for operators.

shownumx
Show x position of number (P)

Description: Show the \(X \) position of the number. The bottom left of every spectrum is defined as 0.

See also: *User Programming*
Related:
- `shownumy`
 y position counting from bottom left of every spectrum (P)

shownumy
Show y position of number (P)

Description: Show the \(Y \) position of the number. The bottom left of every spectrum is defined as 0.

See also: *User Programming*
Related:
- `shownumx`
 x position counting from bottom left of every spectrum (P)

showoriginal
Restore first 2D spectrum in 3D DOSY experiment (M)

Description: Restores the first 2D spectrum in a 3D DOSY experiment (if it has been saved by the `dosy` macro).

See also: *NMR Spectroscopy User Guide*
Related:
- `dosy`
 Process DOSY experiments (M)

showplotter
Show list of currently defined plotters and printers (M)

Description: Shows a list of currently defined plotters and printers.

See also: *NMR Spectroscopy User Guide*
Related:
- `plotter`
 Plotter device (P)
- `printer`
 Printer device (P)

showplotq
Display plot jobs in plot queue (M)

Description: Displays current plot jobs in the plot queue for the active plotter.

See also: *NMR Spectroscopy User Guide*
Related:
- `killplot`
 Stop plot jobs and remove from plot queue (C)
- `showprintq`
 Display print jobs in print queue (C)

showprintq
Display print jobs in print queue (M)

Description: Displays current print jobs in the print queue for the active printer.
showprotunegui show the graphical interface while tuning (P)

Syntax: `showprotunegui='argument'`

Description: This is a global string parameter that does not exist by default. The user can create it to force the ProTune GUI to be shown during normal tuning operation.

Arguments:
- `'n'` — Do not force the GUI to be shown.
- `'y'` — Show the GUI, except in automation.
- `'a'` — Always show the GUI, even in automation.

Set `showprotunegui='a'` will cause ProTune to fail in automation unless the proper display permission has been set. Set the display permissions on Linux systems by executing "xhost local:" on the Linux command line.

See also: NMR Spectroscopy User Guide

Related: protune Macro to start ProTune (M)

showrfmon Show RF Monitor Button in Hardware Bar (P)

Applicability: Imaging

Syntax: `showrfmon=<value>`

Description: Show RF Monitor Button in Hardware Bar.

Values:
- `1` show RF Monitor button.
- `-1` hide RF Monitor button.

See also: VnmrJ Imaging User Guide

showstat Display information about status of acquisition (M,U)

Syntax: (From VnmrJ) `showstat< (remote_system) >`
 (From UNIX) `showstat <remote_system>`

Description: Displays information in the text screen about the status of acquisition on a spectrometer. The command is similar to `Acqstat`, but displays the information in a non-graphical manner and only once.

Arguments: `remote_system` is the host name of a remote spectrometer. The default is to display information about acquisition on the local system.

See also: NMR Spectroscopy User Guide

Related: Acqstat Bring up the acquisition status display (U)

sin Find sine value of an angle (C)

Syntax: `sin(angle)<::n>`

Description: Finds the sine value of an angle.

Arguments: `angle` is the angle given in radians.

`n` is a return value giving the sine of `angle`. The default is to display the sine value in the status window.

Examples:
- `sin(.5)`
- `sin(val):sin_val`
sine Find values for a sine window function (M)

Syntax:
sine<(shift<, number_points<, domain>)>

Description: Calculates appropriate values for parameters \(sb \) and \(sbs \) (if the \(domain \) argument is \('f2' \)) or for parameters \(sb1 \) and \(sbs1 \) (if the \(domain \) argument is \('f1' \)) in order to achieve a sine window function. The value of the parameter \(trace \) is used if the \(domain \) argument is not entered.

Arguments:
- If \(shift \) is greater than 1, the \(sbs \) parameter is calculated as \(2*sb/shift \) (\(sbs1 \) is calculated as \(2*sb1/shift \)). \(sine(2) \) gives a “PI/2-shifted” sine window, i.e., cosine weighting. \(sine(3) \) gives a “PI/3” shifted sine window, etc. If \(shift \) is less than or equal to 1, an unshifted sine window is used (\(sbs='n' \) or \(sbs1='n' \)).
- \(number_points \) specifies the number of real points that the window function spans. The value of the window function for subsequent points is 0. \(number_points \) must be greater than 0 and a multiple of 2. The default is \(ni*2 \) if \(trace='f1' \), or \(np \) if \(trace='f2' \).
- \(domain \) is \('f1' \) or \('f2' \). The default is the current setting of \(trace \).

See also:
- NMR Spectroscopy User Guide

Related:
- asin Find arc sine of number (C)
- atan Find arc tangent of a number (C)
- cos Find cosine value of an angle (C)
- exp Find exponential value (C)
- ln Find natural logarithm of a number (C)
- tan Find tangent value of an angle (C)

sinebell Select default parameters for sinebell weighting (M)

Description: Generates initial guess at good sinebell weighting parameters by setting the \(sb \) and \(sb1 \) parameters to one-half the acquisition time and turning off all other weighting. Use \(sinebell \) in absolute-value 2D experiments only.

See also:
- NMR Spectroscopy User Guide

Related:
- np Number of data points (P)
- sb Sinebell const. in directly detected dimension (P)
- sb1 Sinebell const. in 1st indirectly detected dimension (P)
- sbs Sinebell shift const. in directly detected dimension (P)
- sbs1 Sinebell shift const. in 1st indirectly detected dimension (P)
- sbes Sinebell const. in 2nd indirectly detected dimension (P)
- sbses Sinebell shift const. in 2nd indirectly detected dimension (P)
- sbes1 Sinebell shift const. in 2nd indirectly detected dimension (P)
- trace Mode for \(n \)-dimensional data display (P)

sinesq Find values for a sine-squared window function (M)

Syntax:
sinesq<(shift<, number_points<, domain>)>

Description: Calculates appropriate values for parameters \(sb \) and \(sbs \) (if the \(domain \) argument is \('f2' \)) or for parameters \(sb1 \) and \(sbs1 \) (if the \(domain \) argument is \('f1' \)) in order to achieve a sine-squared window function. The value of parameter \(trace \) is used if the \(domain \) argument is not entered.
Arguments: shift sets the starting value for the window function. If shift is greater than 0, the starting value is given by \(\sin \frac{p}{\text{shift}} \); otherwise, if shift is less than or equal to 0, the starting value is 0. The default value is 0.

number_points specifies the number of real points that the window function spans. The value of the window function for subsequent points is 0. The number_points argument must be greater than 0 and a multiple of 2. The default is \(n_i \times 2 \) if trace='f1', or np if trace='f2'.

domain is 'f1' or 'f2'. The default is the current setting of trace.

See also: *NMR Spectroscopy User Guide*

Related: ni Number of increments in 1st indirectly detected dimension (P)
np Number of data points (P)
 sb Sinebell const. in directly detected dimension (P)
sb1 Sinebell const. in 1st indirectly detected dimension (P)
sbs Sinebell shift const. in directly detected dimension (P)
sine Find values for a sine window function (M)
trace Mode for \(n \)-dimensional data display (P)

size

Returns the number of elements in an arrayed parameter (O)

Description: In MAGICAL programming, an operator that returns the number of elements in an arrayed parameter.

Examples:
r1 = size('d2')

See also: *User Programming*

Related: arraydim Dimension of experiment (P)
typeof Return identifier for argument type (O)
length Determine length of a string (C)

slfreq

Measured line frequencies (P)

Description: Contains a list of measured line frequencies. In iterative spin simulation, a calculated spectrum is matched to the lines in the list. The spinll macro fills in slfreq from the last line listing or a mark operation. Use assign to make assignments between the measured lines and the calculated transitions. slfreq is a global parameter and is displayed by dla.

See also: *NMR Spectroscopy User Guide*.

Related: assign Assign transitions to experimental lines (M)
cla Clear all line assignments (M)
dla Display spin simulation parameter arrays (M)
fitspec Perform spectrum deconvolution (C)
mark Determine intensity of a spectrum at a point (C)
spinll Set up an slfreq array (M)

slw

Spin simulation linewidth (P)

Description: Sets linewidth for individual transitions in the displayed spectrum. Only one linewidth is provided, so all transitions must be given the same linewidth. If the Set Params button is used in setting up spin simulation parameters, slw is automatically set to the measured linewidth of the tallest line displayed.

slw is also the starting default linewidth for deconvolution calculations. This linewidth will be set automatically when deconvolution is operated using the menu mode and is bypassed if the usemark command has been used in conjunction with two cursor input.
Values: 0.01 to 1e6. The typical value is 1.
See also: NMR Spectroscopy User Guide
Related: usemark Use “mark” output as deconvolution starting point (M)

smaxf

Maximum frequency of any transition (P)

Description: Sets the maximum frequency limit for the calculation of the final simulated spectrum. It should be set before the calculation is performed. If the Set Params button is used in setting up spin simulation parameters, `smaxf` is initialized to `sp+wp`; which assumes that you have already expanded the region of the spectrum that you wish to simulate before beginning the spin simulation process.

Values: –1e10 to 1e10, in Hz. The typical value is the maximum chemical shift + 50.
See also: NMR Spectroscopy User Guide
Related: `sminf` Minimum frequency of any transition (P)
 `sp` Start of plot (P)
 `wp` Width of plot (P)

sminf

Minimum frequency of any transition (P)

Description: Sets the minimum frequency limit for the calculation of the final simulated spectrum. It should be set before the calculation is performed. If the Set Params button is used in setting up spin simulation parameters, `sminf` is initialized to `sp`, which assumes that you have already expanded the region of the spectrum that you wish to simulate before beginning the spin simulation process.

Values: –1e10 to 1e10, in Hz. The typical value is 0.
See also: NMR Spectroscopy User Guide
Related: `smaxf` Maximum frequency of any transition (P)
 `sp` Start of plot (P)
 `wp` Width of plot (P)

smsport

Sample Management System serial port connection (P)

Description: Sets which serial port on the host computer is connected to a Sample Management System (i.e., a sample changer). The value of `smsport` is set using the Sample Changer Serial Port label in the Spectrometer Configuration window.

Values: ‘a’ sets the connection for serial port A. This value is the default.
 ‘b’ sets the connection for serial port B.
See also: VnmrJ Installation and Administration; NMR Spectroscopy User Guide
Related: `config` Display current configuration and possibly change it (M)

sn

Signal-to-noise ratio (P)

Description: Sets a ratio for testing signal-to-noise. The `testsn` macro checks whether a signal-to-noise ratio equal to `sn` has been achieved.

Values: Typical value is 35.
See also: NMR Spectroscopy User Guide
Related: `dsn` Measure signal-to-noise (C)
 `getsn` Get signal-to-noise estimate of a spectrum (M)
solppm Return ppm and peak width of solvent resonances (M)

Syntax: solppm:chemical_shift,peak_width

Description: Returns to the calling macro information about the chemical shift and peak spread of solvent resonances in various solvents for either 1H or 13C, depending on the observe nucleus tn and the parameter solvent. This macro is used “internally” by other macros only.

Arguments: chemical_shift returns the chemical shift of the solvent in ppm.
peak_width returns the approximate peak spread of solvent resonances.

See also: User Programming

Related: solvent Lock solvent (P)
 tn Nucleus for observe transmitter (P)

solvent Lock solvent (P)

Description: Contains one of a series of lock solvents from the /vnmr/solvents file, which contains the 2H chemical shift of each lock solvent. By editing the file, additional solvents can be added. Values for solvent are not case-sensitive (e.g., solvent='C6D6' and solvent='c6d6' are identical)

The auto_dir macro now controls most of the automation features, including setting the value of solvent.

Values: Standard values in /vnmr/solvents include:

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Chemical Shift</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deuterium Oxide</td>
<td>CDCl3</td>
<td>MethyleneChloride</td>
</tr>
<tr>
<td>D2O</td>
<td>Cyclohexane</td>
<td>MethylAlcohol-d4</td>
</tr>
<tr>
<td>Acetone</td>
<td>C6D12</td>
<td>CD2Cl2</td>
</tr>
<tr>
<td>CD3COCOD3</td>
<td>Toluene</td>
<td>CD3OD</td>
</tr>
<tr>
<td>Benzene</td>
<td>C6D5CH3</td>
<td>Chloroform</td>
</tr>
<tr>
<td>C6D6</td>
<td>Acetic_Acid</td>
<td></td>
</tr>
<tr>
<td>DMSO</td>
<td>CD3COOD</td>
<td></td>
</tr>
</tbody>
</table>

See also: NMR Spectroscopy User Guide

Related: lastlk Last lock solvent used (P)
solinfo Retrieve information from solvent table (C)
tof Frequency offset for observe transmitter (P)

solinfo Retrieve information from solvent table (C)

Syntax: solinfo(solvent):$shift,$name

Description: Retrieves solvent shift and solvent name from the solvent table.

Arguments: solvent is the name of a solvent from the /vnmr/solvents file. This argument is not case-sensitive (e.g., 'C6D6' is the same as 'C6D6').

chemical_shift returns the chemical shift of the solvent, in ppm.
name returns the name of the solvent. The name returned will match the case of the letters (upper or lower) in /vnmr/solvents.

Examples: solinfo('acetone'):$shift
 solinfo('d2o'):$shift,solvent
sort

Sort real values of a parameter (M)

Syntax: `sort(parametername<,sortType>:order,val`

Description: Sorts the real values of a parameter. The `sort` macro is not used for parameters holding string values. The default behavior is to sort the array into values of increasing value. A `sortType` can be given to sort into descending order (\(\gamma\)). If only unique values are wanted, the 'u' `sortType` can be used. The 'ru' `sortType` given unique values in descending order.

The name of a parameter is the first argument to `sort`. Two return values hold the results of the sort. The first return value is an array containing the original indexes of the sorted array. The second return value gives the sorted array.

Examples: With `par=10,8,6,4,2` the `display('par')` command will show:

```
[1] = 10
[2] = 8
[3] = 6
[4] = 4
[5] = 2
```

The command `sort('par'):order,val` will set:

```
$order = 5,4,3,2,1
$val = 2,4,6,8,10
```

sp

Start of plot in directly detected dimension (P)

Description: Low-frequency limit of the display or plotted region of the spectrum. `sp` is always stored in Hz, but can be entered in ppm by using the `p` suffix (e.g., `sp=2p` sets the start of plot to 2 ppm).

See also: *NMR Spectroscopy User Guide*

Related:
- `sp1` Start of plot in 1st indirectly detected dimension (P)
- `sp2` Start of plot in 2nd indirectly detected dimension (P)

sp1

Start of plot in 1st indirectly detected dimension (P)

Description: Analogous to the `sp` parameter except that `sp1` applies to the first indirectly detected dimension of a multidimensional data set.

See also: *NMR Spectroscopy User Guide*

Related:
- `sp` Start of plot in directly detected dimension (P)
- `sp2` Start of plot in 2nd indirectly detected dimension (P)

sp2

Start of plot in 2nd indirectly detected dimension (P)

Description: Analogous to the `sp` parameter except that `sp2` applies to the second indirectly detected dimension of a multidimensional data set.

See also: *NMR Spectroscopy User Guide*

Related:
- `sp` Start of plot in directly detected dimension (P)
spadd

Add current spectrum to add/subtract experiment (C)

Syntax:
1. `spadd< (multiplier<, shift>) >`
2. `spadd('new')`
3. `spadd('trace', index)`

Description: Performs noninteractive spectral addition. The last displayed or selected spectrum is added to the current contents of the add/subtract experiment (`exp5`). A multi-element add/subtract experiment can be created using the 'new' keyword. Individual spectra in a multi-element add/subtract experiment can be subsequently added to using the 'trace' keyword followed by an index number of the spectrum.

Arguments:
- **multiplier** is a value to multiply each spectrum being added to the add/subtract experiment (`exp5`). The normal range of multiplier would be +1 to -1 but the range is actually unlimited. The default is 1.0.
- **shift** is the number of data points to shift each spectrum. A positive value shifts the spectrum being added to a higher frequency, or to the left. A negative value shifts the spectrum to a lower frequency, or to the right. The default is 0.
- **'new'** is a keyword to create a new spectrum in the add/subtract experiment.
- **'trace'** is a keyword to select the spectrum given by the index number argument (`index`) and add it to the add/subtract experiment. The default is to add to the first spectrum in the add/subtract experiment.
- **index** is the index number of the spectrum to be used as a target in a multi-element add/subtract experiment.

Examples:
```plaintext
spadd
spadd(.5,25)
spadd('new')
spadd('trace',2)
```

See also: *NMR Spectroscopy User Guide*

Related:
- **add** Add current FID to add/subtract experiment (C)
- **addi** Start interactive add/subtract mode (C)
- **clradd** Clear add/subtract experiment (C)
- **ds** Display a spectrum (C)
- **jexp** Join existing experiment (C)
- **select** Select a spectrum without displaying it (C)
- **spmin** Take minimum of two spectra in add/subtract experiment (C)
- **spsub** Subtract current spectrum from add/subtract experiment (C)

spcfrq

Display frequencies of rf channels (M)

Description: Displays the parameters `sfrq`, `dfrq`, `dfrq2`, and `dfrq3` with seven decimal points (to nearest 0.1) to provide the exact frequencies of each rf channel. The number of values displayed depends on `numrfch`.

Prior to VNMR version 4.3, `spcfrq` set the frequency of the observe channel. The parameter `sfrq` now sets the frequency instead of `spcfrq`.

See also: *NMR Spectroscopy User Guide*

Related:
- **dfrq** Transmitter frequency of first decoupler (P)
- **dfrq2** Transmitter frequency of second decoupler (P)
- **dfrq3** Transmitter frequency of third decoupler (P)
- **numrfch** Number of rf channels (P)
- **setfraq** Set frequency of rf channels
- **sfrq** Transmitter frequency of observe nucleus (P)
specdc3d

3D spectral drift correction (P)

Description: Sets whether a 3D spectral dc correction occurs. The spectral dc correction is the last operation to be performed upon the data prior to forming linear combinations of the data, using the coefficients in the 3D coefficient file (coef), and then writing the data to disk. If `specdc3d` does not exist, it is created by the macro `par3d`.

Values: A three-character string selected from 'nnn', 'nny', 'nyn', etc. Each character may take one of two values: n for no spectral dc correction along the relevant dimension, and y for spectral dc correction along the relevant dimension. The first character refers to the f_3 dimension (sw, np, fn), the second character refers to the f_1 dimension ($sw1$, ni, $fn1$), and the third character refers to the f_2 dimension ($sw2$, $ni2$, $fn2$). The default is 'nnn'.

See also: *NMR Spectroscopy User Guide*

Related:
- dc: Calculate spectral drift correction (C)
- fiddc3d: 3D time-domain drift correction (P)
- fn: Fourier number in directly detected dimension (P)
- fn1: Fourier number in 1st indirectly detected dimension (P)
- fn2: Fourier number in 2nd indirectly detected dimension (P)
- ft3d: Perform a 3D Fourier transform (M)
- ni: Number of increments in 1st indirectly detected dimension (P)
- ni2: Number of increments in 2nd indirectly detected dimension (P)
- np: Number of data points (P)
- par3d: Create 3D acquisition, processing, display parameters (C)
- ptspec3d: Region-selective 3D processing (P)
- sw: Spectral width in directly detected dimension (P)
- sw1: Spectral width in 1st indirectly detected dimension (P)
- sw2: Spectral width in 2nd indirectly detected dimension (P)

spin

Submit a spin setup experiment to acquisition (C)

Description: Regulates sample spinning according to the parameter `spin`, using the acquisition computer. It also sets rf frequency, decoupler status, and temperature.

See also: *NMR Spectroscopy User Guide*

Related:
- au: Submit experiment to acquisition and process data (C)
- change: Submit a change sample experiment to acquisition (M)
- ga: Submit experiment to acquisition and FT the result (C)
- go: Submit experiment to acquisition (C)
- lock: Submit an Autolock experiment to acquisition (C)
- sample: Submit change sample, autoshim experiment to acquisition (M)
- shim: Submit an Autoshim experiment to acquisition (C)
- spin: Sample spin rate (P)
- su: Submit a setup experiment to acquisition (M)

spin

Sample spin rate (P)

Description: Selects a regulated spin rate. The rate is changed when a sample is inserted or `spin, go, ga, au, or sample` are entered.

Values:
- 0 indicates non-spinning operation.
- 5 to 39 are spinning rates.
- 'n' leaves the spin rate at the currently used value and does not wait for regulated spinning before performing acquisition.
spincad Run SpinCAD program (C)

Applicability: SpinCAD Software.

Description: Opens the graphical pulse sequence generation utility.

See also: SpinCAD

Related: vnmr2sc VNMR to SpinCAD pulse sequence translator (M)

spingen Compile SpinCAD pulse sequence (M,U)

Applicability: SpinCAD Software.

Syntax: (From VnmrJ)

spingen
spingen(pulsesequence)
spingen(<option>,pulsesequence<,pulsesequence2>)
spingen('-psg',pulsesequence)
spingen('-all',pulsesequence)
spingen('-dps',pulsesequence)

(From UNIX)

spingen pulsesequence < pulsesequence2>,>
spingen <option> pulsesequence < pulsesequence2>, >
spingen -psg pulsesequence
spingen -dps pulsesequence
spingen -all pulsesequence

Description: Compiles the SpinCAD pulse sequence. The most common usage is the first one
(spingen, with no arguments), which compiles the current pulse sequence. Two or more options to SpinCAD compilation are: (1) '-psg' option: compilation for the acquisition go command (2) '-dps' option: compilation for dps usage and (3) '-all' option: include both of the above options and compilation of any Java programs that the pulse sequence may use.

The spingen macro with no arguments does both the go and dps compilations. Individual compilations for go ('-psg' option) and dps ('-dps' option) can also be done (these are rarely used)

In case of SpinCAD sequences and C sequences having the same name, the last compiled sequence will be used for the go command. The isspincad macro can be used to check if the current sequence is SpinCAD or of C type.

Compilation of a SpinCAD sequence generates two files in the user’s seqlib directory, pulsesequence.psg and pulsesequence_dps.psg, for every source file pulsesequence. Compiled SpinCAD files are distinct from the C files, in that they have .psg extension in the filenames. Java program files (if used) must reside in ~/vnmrsys/spincad/classes directory. Java programs are compiled and the class files placed in the same ~/vnmrsys/spincad/classes directory. The spingen macro checks for any Java files in ~/vnmr/spincad/classes directory, if it does not exit in the user's classes directory.
Compilation of a SpinCAD sequence differs from the conventional compilation of C sequences; it involves the expansion of any composites used; transformation of parallel events to a format that Jpsg program can resolve.

Arguments:
- `<no option>` – compilations for go and dps
- `-psg` – compilation for go only
- `-dps` – compilation for dps only
- `-all` – compilations for go, dps, and also compile any Java programs called from the SpinCAD sequence.

See also: SpinCAD

Related: spincad Display SpinCAD interface (M)

spinll

Set up a slfreq array (M)

Syntax: `spinll<('mark')>`

Description: Copies a list of frequencies to the slfreq parameter in iterative spin simulation and runs dla. This macro also clears previous line assignments.

Arguments: 'mark' is a keyword to copy the list of frequencies from the mark1d.out file to slfreq. The default is to copy the frequencies from the last line listing by nll or dll to the slfreq. Use the cursor and the mark button to place the lines to be assigned in mark1d.out. Enter mark('reset') to clear the file, and use nl to move the cursor to the center of a selected line.

See also: NMR Spectroscopy User Guide

Related: dla Display line assignments (M)
dll Display listed line frequencies and intensities (C)
mark Determine intensity of the spectrum at a point (C)
nl Position the cursor at the nearest line (C)
nll Find line frequencies and intensities (C)
slfreq Measured line frequencies (P)

spinner

Open the Spinner Control window (C)

Description: Opens the Spinner Control window. This window has the following capabilities:

- Turn the sample spinner off.
- Turn the sample spinner on at a specified speed, in Hz.
- Enable spinner control from within an experiment using the spin parameter and the spin, go, ga, or au commands. This mode is the default.
- Alternatively, turn off experiment control of the sample spinner and allow only the Spinner Control window (and acqi and sethw) to set the spinning speed. This mode has the advantage that, often times, the spin parameter is different between experiments. Joining a different experiment and entering go can unexpectedly change the spinning speed. This alternate mode prevents this problem. In this mode, when a go, su, ga, or au is entered, the spin parameter is first set to the speed selected in the Spinner Control window and then the spin parameter is set to "Not Used."
- Select the style of spinner: low-speed style or a high-speed style. If the high-speed style of spinner (used for solids) is selected, the choice of setting the spinning speed or the air flow rate is provided. Setting the air flow rate is useful when setting up the solids spinning apparatus.
If the spinning speed is controlled only through the Spinner Control window, the action to be taken after a spinner error can be selected:

- Display a warning but continue acquisition.
- Stop acquisition and display a warning.

If experiment control of spinning speed is selected, these selections are faded because they are inoperative, and the selection of the action to be taken after a spinning speed error is provided by the parameter in.

See also: NMR Spectroscopy User Guide

spinopt Spin automation (P)

Applicability: MERCURYplus/Vx systems.

Description: Specifies whether spin hardware is installed. The hardware is always present and spinopt='y' is the default.

Values: 'y' is the default.
'n' disables spin hardware.

spins Perform spin simulation calculation (C)

Syntax: spins<(options)>

Description: Performs a spin simulation, using the current spin system parameters. Refer to the description of spsm for setting up the parameters. Use dsp to display the spectrum resulting from the simulation. The output file is spins.list in the current experiment. This file includes the calculated transitions ordered by frequency.

Line assignments are required for the iteration. These consist of a list of observed frequencies, which is stored in the arrayed parameter slfreq, and the line assignments stored in the array clindex.spinll copies the frequencies from the last line listing by nll or dll into the parameter slfreq. The line listing can be from an observed spectrum or from the results of deconvolution. After spinll, line assignments are most easily made by entering assign. dla displays the assignments. Single assignments can also be made by assign(transition_number,line_number), where transition_number is the index of a transition and line_number is the index of the measured line. Setting the line_number argument to 0 deletes assignments. dla('long') produces an expanded display of assignments.

Be aware that spin simulation line numbers and line list line numbers are not the same. Conventional line lists produced by dll number the lines from left to right (low- to high-field). The spin simulation software numbers lines according to a more complicated scheme, and these numbers are rarely if ever in frequency order.
The parameters to be iterated are chosen by setting the string parameter \texttt{iterate} (e.g., \texttt{iterate} = \texttt{A,B,JAB}). If several parameters have the same value due to symmetry, use \texttt{iterate} = \texttt{A,B,C,JAB,JAC=JAB}. This string sets the iterated parameter \texttt{JAC} to \texttt{JAB} during the iteration. \texttt{JAB} must be defined as an iterated parameter in the string before it can be used at the right side of the equal sign. Sets of parameters with up to six members may be set up in this way. The member in the set that is used on the right side of the equal sign must always come first in the parameter display (e.g., \texttt{JAB=JAC} would be wrong). A parameter is held constant during iteration if it is not included in the \texttt{iterate} string.

The command \texttt{initialize_iterate} sets \texttt{iterate} to iterate all spins not named X, Y, or Z and the associated coupling constants.

Following an iterative spin simulation, \texttt{dga} displays the new values of the coupling constants and chemical shifts. \texttt{undospins} restores a spin system as it was before the last iterative run. It returns the chemical shifts, coupling constants, and line assignments, making it possible to continue from this state with modified line assignments.

Note that major changes in the starting values of parameters may change the numbering of the energy levels and hence the line numbers. The line assignments would then be incorrect and would have to be reentered.

For a successful iteration, it is often necessary to keep some parameters fixed. For example, it is sometimes useful to alternately iterate couplings and shifts, keeping one group fixed while the other is iterated independently.

Arguments: The following variations of \texttt{spins} are available:

- \texttt{spins('calculate','energy')} puts an energy-level table in the output file.
- \texttt{spins('calculate','transitions')} puts a second table of transitions ordered by transition number in the output file.
- \texttt{spins('display')} and \texttt{dsp} are equivalent.
- \texttt{spins('system','spinsystemname')} and \texttt{spsm('spinsystemname')} are equivalent.
- \texttt{spins('iterate')} runs interactively to match experimental and calculated lines.
- \texttt{spins('iterate','iteration')} lists parameters after each iteration in the output file.
- \texttt{spins('iterate',<,options>)} provides for determining the chemical shifts and coupling constants to produce a spectrum that matches a table of observed lines. \texttt{spins} iterates until the rms (root-mean-square) error of the line matching meets a built-in test, unless it first reaches the value given by \texttt{number_iterations}. Iteration also stops if the rms error increases.
- Put multiple list options into the second argument, separated by a blank (e.g., \texttt{spins('calculate','transitions energy')}).

Examples:

\begin{verbatim}
spins
spins('calculate','energy')
spins('iterate')
\end{verbatim}

See also: \textit{NMR Spectroscopy User Guide}

Related:
- \texttt{assign} Assign transitions to experimental lines (M)
- \texttt{clindex} Index of experimental frequency of a transition (P)
- \texttt{dga} Display parameter groups (spin simulation) (C)
- \texttt{dla} Display line assignments (M)
- \texttt{dll} Display listed line frequencies and intensities (C)
split

Split difference between two cursors (M)

Description: Repositions the left-hand cursor halfway between its original position and the position of the other cursor. This macro is very useful for finding the center of a powder pattern: place the two cursors on the horns of the pattern and then enter `split` to give the center.

See also: *NMR Spectroscopy User Guide*

Related: `delta` Difference of two frequency cursors (P)

spintype

Spinner Type (P)

Description: This global parameter determines which spinner hardware is used.

Values:
- 'liquids' for low speed spinning of 5 and 10 mm liquids samples
- 'tach' for high speed spinning of 5 and 7 mm Jacobsen probes
- 'mas' for high speed spinning using standalone spinner
- 'nano' for spinning of nano probes
- 'none' for no spinner controller is present, e.g. imaging

spmax

Take the maximum of two spectra (C)

Description: Takes the maximum of two spectra, considered point-by-point in an absolute-value sense. For example, if the two corresponding values are -2 and $+3$, the `spmax` spectrum will have $+3$; if the two values are $+2$ and -3, the `spmax` spectrum will have -3 at that point.

spmin

Take minimum of two spectra in add/subtract experiment (C)

Description: Takes the minimum of two spectra, considered point-by-point in an absolute-value sense. For example, if the two corresponding values are -2 and $+3$, the `spmin` spectrum will have -2; if the two values are $+2$ and -3, the `spmin` spectrum will have $+2$ at that point.

The function of `spmin` is to essentially select for common features within two spectra while eliminating features that are not common between them. In particular, if two CP/MAS spectra are obtained at different spin rates, the peaks stay in the same place (and hence the `spmin` spectrum also contains the same peaks), but the sidebands move. If spectrum 1 has baseline where spectrum 2 has sideband, and spectrum 2 has baseline where spectrum 1 has sideband, then the `spmin` spectrum will contain only baseline in these regions, eliminating the spinning sidebands.

See also: *NMR Spectroscopy User Guide*

Related:
- `addi` Start interactive add/subtract mode (C)
- `spadd` Add current spectrum to add/subtract experiment (C)
- `spsub` Subtract current spectrum from add/subtract experiment (C)
spsm

Enter spin system (M)

Syntax: `spsm(spin_system)`

Description: Enables entry of the spin system for spin simulation and creates and initializes the appropriate parameters to describe the various chemical shifts and coupling constants. Chemical shifts can be entered for the X-nucleus, and the spectrum is calculated if that shift is in the window. Generally, however, it is not necessary to enter the X-nucleus chemical shift, and its value has no effect on the spectrum of the remainder of the spin system.

Arguments: `spin_system` is an alphanumeric string of upper-case letters for chemical shift and coupling constant parameters. Chemical shifts are stored in parameters A through Z, and the coupling constants are stored in the parameters starting with JAB and ending with JYZ. Different nucleus types are handled by using letters starting with A for the first type, X for the second, and M for the third. Once created, these parameters are entered and modified in the usual way (e.g., `A=78.5 JAC=5.6`). Entry of chemical shifts in ppm is entered by using `sfrq` (e.g., `B=7.5*sfrq`).

Examples: `spsm('AB')`
`spsm('A3B2')`
`spsm('AB2CMXY')`

See also: *NMR Spectroscopy User Guide*

Related: `sfrq` Transmitter frequency of observe nucleus (P)
`spins` Perform spin simulation calculation (C)

spsub

Subtract current spectrum from add/subtract experiment (C)

Syntax:
1. `spsub< (multiplier<,shift>) >`
2. `spsub('new')`
3. `spsub('trace',index)`

Description: Performs non-interactive spectral subtraction. The last displayed or selected spectrum is subtracted from the current contents of the add/subtract experiment (`exp5`). A multi-element add/subtract experiment can be created using the 'new' keyword. Individual spectra in a multi-element add/subtract experiment can be subsequently subtracted from using the 'trace' keyword followed by an index number of the spectrum.

Arguments: `multiplier` is a value to multiply each spectrum being subtracted from the add/subtract experiment (`exp5`). The normal range of `multiplier` would be +1 to –1 but is actually unlimited. The default is 1.0.

`shift` is the number of data points to shift each spectrum. A positive value shifts the spectrum being added to a higher frequency, or to the left. A negative value shifts the spectrum to a lower frequency, or to the right. The default is 0.

`'new'` is a keyword to create a new spectrum in the add/subtract experiment.

`'trace'` is a keyword to select the spectrum given by the index number argument (`index`) and subtract it from the add/subtract experiment. The default is to subtract from the first spectrum in the add/subtract experiment.

`index` is the index number of the spectrum to be used as a target in a multi-element add/subtract experiment.

Examples: `spsub`
`spsub(.5,25)`
`spsub('new')`
`spsub('trace',2)`
See also: *NMR Spectroscopy User Guide*

sqcosine **Set up unshifted cosine-squared window function (M)**

Syntax: `sqcosine(t1_inc, t2_inc)`

Description: Sets up an unshifted cosine-squared window function in 1, 2, or 3 dimensions. The macro checks whether the data is 1D, 2D, and 3D.

Arguments:
- `t1_inc` is the number of t1 increments. The default is `ni`.
- `t2_inc` is the number of t2 increments. The default is `ni2`.

Related:
- `clradd` Clear add/subtract experiment (C)
- `ds` Display a spectrum (C)
- `jexp` Join existing experiment (C)
- `spadd` Add current spectrum to add/subtract experiment (C)
- `select` Select a spectrum without displaying it (C)
- `spmin` Take minimum of two spectra in add/subtract experiment (C)
- `sub` Subtract current FID from add/subtract experiment (C)

sqdir **Study queue directory (P)**

Description: Specifies the full path directory where a study is stored. It is set when a new study is created.

Related:
- `gaussian` Set up unshifted Gaussian window function (M)
- `ni` Number of increments in 1st indirectly detected dimension (P)
- `ni2` Number of increments in 2nd indirectly detected dimension (P)
- `pi3ssbsq` Set up pi/3 shifted sinebell-squared window function (M)
- `pi4ssbsq` Set up pi/4 shifted sinebell-squared window function (M)
- `sqsinbell` Set up unshifted sinebell-squared window function (M)

sqend **End a study queue (M)**

Description: End a study queue. Usually called by other macros, and not used from the command line.

Related:
- `sqfilemenu` Study queue file menu commands (M)

sqexp **Load experiment from protocol (M)**

Applicability: Imaging

Description: Macro to load an experiment from a protocol.

Syntax: `sqexp(experiment <, 'save'>)`

The first argument is the name of the experiment, and is required. The second argument is an optional keyword 'save'. If specified, it first saves parameter
changes to the current experiment in the study queue before loading the parameters for the new experiment.

Examples:
- sqexp('epidw')
- sqexp('spuls','save')

See also: *VnmrJ Imaging User Guide*

sqfilemenu **Study queue file menu commands** (M)

Description: A macro to perform commands for the study queue operation. Usually the macro is called from the *study queue file menu* located below the study queue area, and not from the command line.

See also: *VnmrJ Imaging User Guide*

Related: *apptype* Application type (P)
- *execpars* Set up the exec parameters (M)

sqmode **Study queue mode** (P)

Description: A global parameter that specifies the study queue mode. It is used to determine if the study queue acquisition is chained or not.

See also: *NMR Spectroscopy User Guide, VnmrJ Walkup*

Related: *cqinit* Initialize liquids study queue (M)
- *cqreset* Reset study queue parameters (M)
- *sqend* End a study queue (M)
- *sqreset* Reset study queue parameters for imaging (M)
- *xmit* Initialize an imaging study queue (M)

sqname **Study queue parameter template** (P)

Description: Stores a string in the global tree that determines where a study is stored. It is set from the *Save data setup* dialog in the *Utilities* menu. Dollar signs ($) are used to delimit a string to search for a parameter to be used in the study file name. Percent signs (%) are used to delimit a numeric extension, e.g. %Rn%, or time specifications. Strings from the *sampleinfo* file are not used, since studies are created in foreground, not automation. Text not delimited by dollar signs or percent signs is copied from sqname without any changes.

If sqname does not start with a slash mark (/), the study is stored in the path given by autodir or globalauto; otherwise the name is used as is. A revision number is automatically appended. Values: If sqname is a null string, it defaults to %R2%, and the resulting study id is a two-digit revision number. The resulting path and file name must be accessible (with read-write permission) by that user.

Examples:
- sqname='s_%DATE%_%R3%' studyid='s_20040501_001'
- sqname='s_loc_' studyid='s_7_01'
- sqname='r$vrack$z$vzone$/wellloc%R0%' studyid='r1z3/well16'

See also: *NMR Spectroscopy User Guide, VnmrJ Walkup*

Related: *autodir* Automation directory absolute path (P)
- *autoname* Prefix for automation data file (P)
- *globalauto* Automation directory name (P)
sqpars
Create study queue parameters for imaging (M)

Applicability: Imaging

Description: A macro to create study queue parameters for imaging. Usually called by other macros, and not used from the command line.

See also: VnmrJ Imaging User Guide

Related: fixpar Correct parameter characteristics in experiment (M)

sqprotocol
Macro to create protocols (M)

Applicability: Imaging

Description: A macro to create protocols for imaging applications. Called by the Make protocols dialogs in the Utilities menu.

sqreset
Reset study queue parameters for imaging (M)

Applicability: Imaging

Description: Reset study queue parameters for imaging. Usually called by other macros, and not used from the command line.

sqrt
Return square root of a real number (O)

Description: A operator in MAGICAL programming that returns the square root of a real number. A negative argument to sqrt is evaluated to 0.0. Operator is not used from the command line.

Examples:
a = sqrt(b)

See also: User Programming

Related: asin Find arc sine of number (C)
antan Find arc tangent of a number (C)
cos Find cosine value of an angle (C)
exp Find exponential value (C)
ln Find natural logarithm of a number (C)
tan Find tangent value of an angle (C)
trunc Truncates real numbers (O)
typeof Return identifier for argument type (O)

sqsavestudy
Macro to save study parameters for imaging (M)

Applicability: Imaging

Description: A macro to save study parameters in the imaging study queue. Usually called by other macros, and not used from the command line.

See also: VnmrJ Imaging User Guide

Related: acquire Acquire data (M)
sqend End a study queue (M)
studypar Study parameters (P)
sqsinebell **Set up unshifted sinebell-squared window function (M)**

Syntax: `sqsinebell(<t1_inc>,<t2_inc>)`

Description: Sets up an unshifted sinebell-squared window function in 1, 2, or 3 dimensions. The macro checks whether the data is 1D, 2D, and 3D.

Arguments: `t1_inc` is the number of t1 increments. The default is `ni`.
`t2_inc` is the number of t2 increments. The default is `ni2`.

See also: *NMR Spectroscopy User Guide*

Related: `gaussian` Set up unshifted Gaussian window function (M)
`ni` Number of increments in 1st indirectly detected dimension (P)
`ni2` Number of increments in 2nd indirectly detected dimension (P)
`pi3ssbsq` Set up pi/3 shifted sinebell-squared window function (M)
`pi4ssbsq` Set up pi/4 shifted sinebell-squared window function (M)
`sqcosine` Set up unshifted cosine-squared window function (M)

srate **Spinning rate for magic angle spinning (P)**

Applicability: Systems with solids module.

Description: Set to the spinning speed for magic angle spinning (MAS). `srate` must be correct for the pulse sequence set up by `xpolar1` to run TOSS or dipolar dephasing correctly. If `hsrotor='y'`, the measured spinning speed is reported in `srate` for systems that have rotor synchronization.

Values: 0 to 10^7, in Hz.

See also: *NMR Spectroscopy User Guide*

Related: `hsrotor` Display rotor speed for solids operation (P)
`xpolar1` Set up parameters for XPOLAR1 pulse sequence (M)

sread **Read converted data into VnmrJ (C)**

Syntax: `sread(file<,template>)`

Description: Reads 32-bit data files into VnmrJ. For Bruker data files in the AMX and AM formats, each file must first be converted using the `convertbru` command before `sread` can read the data in the file into VnmrJ.

Arguments: `file` is the name of a file containing data converted using `convertbru`.
`template` is the full path of a parameter template file, but without appending the `.par` extension on the file name. The default is `bruker.par`. If no parameter template is specified and `bruker.par` cannot be found in the user or system `parlib` directory, `sread` aborts with an error message.

Examples: `sread('brudata.cv','/vnmr/parlib/bruker')`

See also: *NMR Spectroscopy User Guide*

Related: `convertbru` Convert Bruker data (M,U)

srof2 **Calculate exact rof2 value for Cold Probes (M)**

Applicability: Systems with Varian, Inc. Cold Probes

Description: Calculates the exact value needed for `rof2` to result in a $l_p=0$ condition for the given `sw`. Works with either `dsp='r'` and `fsq='y'` or with `dsp='i'`. Not compatible with `qcomp`.

Related: `dsp` Type of DSP for data acquisition (P)
`rof2` Receiver gating time following pulse (P)
ss

Steady-state transients (P)

Description: Sets the number of complete executions of the pulse sequence not accompanied by data collection prior to the acquisition of the real data (sometimes known as *dummy scans*). If ss is positive, ss steady-state transients are applied on the first increment only, and if ss is negative, –ss steady-state transients are applied at the start of each increment.

Values: 'n', –32768 to 32767

See also: NMR Spectroscopy User Guide; User Programming

ssecho

Set up solid-state echo pulse sequence (M)

Applicability: Systems with a solids module.

Syntax: ssecho

Description: Converts a standard two-pulse experiment to a ready-to-run solid-state NMR echo (SSECHO) pulse sequence.

See also: NMR Spectroscopy User Guide

ssechol

Set up parameters for SSECHO1 pulse sequence (M)

Applicability: System with a wideline solids module.

Description: Sets up a parameter set for the quadrupole echo pulse sequence SSECHO1.

See also: NMR Spectroscopy User Guide

ssfilter

Full bandwidth of digital filter to yield a filtered FID (P)

Description: Specifies the full bandwidth of the digital filter applied to the original FID to yield a filtered FID for solvent subtraction. If ssfilter does not exist in the current experiment, enter `addpar('ss')` to add it. The command `addpar('ss')` creates additional time-domain solvent subtraction parameters ssfilter, sslsfrq, ssntaps, and ssorder.

Values: 'n', 10 to sw/2, in steps of 0.1 Hz. The default is 100 Hz.

- If ssfilter is set to a value and ssorder is set to some value, the zfs (zero-frequency) option of solvent subtraction is selected.
- If ssfilter is set to 'n', (“Not Used”), both the lfs (low-frequency suppression) and zfs options are turned off.

See also: NMR Spectroscopy User Guide

Related:
- `addpar` Add selected parameters to the current experiment (M)
- `ft` Fourier transform 1D data (C)
- `parfids` Create parameters for time-domain solvent subtraction (M)
- `ssntaps` Number of coefficients in the digital filter (P)
- `sslsfrq` Center of solvent-subtracted region of spectrum (P)
- `ssorder` Order of polynomial to fit digitally filtered FID (P)
- `sw` Spectral width in directly detected dimension (P)
- `wft` Weight and Fourier transform 1D data (C)

sslsfrq

Center of solvent-suppressed region of spectrum (P)

Description: Specifies the location of the center of the solvent-suppressed region of the spectrum. If sslsfrq does not exist in the current experiment, enter `addpar('ss')` to add it. `addpar('ss')` also creates time-domain solvent subtraction parameters ssfilter, ssntaps, and ssorder.
Values: 'n' (or 0) specifies solvent suppresses a region centered about the transmitter frequency. This is the default. Non-zero value shifts the solvent-suppressed region by \(ss_{lsfrq} \) Hz. Multiple regions may be suppressed by arraying the value of \(ss_{lsfrq} \). Up to 4 values are allowed.

See also: [NMR Spectroscopy User Guide](#)

Related:
- `addpar` Add selected parameters to the current experiment (M)
- `parfidss` Create parameters for time-domain solvent subtraction (M)
- `ssfilter` Full bandwidth of digital filter to yield a filtered FID (P)
- `ssntaps` Number of coefficients in the digital filter (P)
- `ssorder` Order of polynomial to fit digitally filtered FID (P)

ssntaps: Number of coefficients in digital filter (P)

Description: Specifies the number of taps (coefficients) to be used in the digital filter for solvent subtraction. If `ssntaps` does not exist in the current experiment, enter `addpar('ss')` to add it. `addpar('ss')` also creates time-domain solvent subtraction parameters `ssfilter`, `sslsfrq`, and `ssorder`.

Values: Integer from 1 to \(np/4 \). The default is 121. An odd number is usually best. The more taps in a filter, the flatter the passband response and the steeper the transition from passband to stopband, giving a more rectangular filter.

For the lfs (low-frequency suppression) option, the default is suitable. For the zfs (zero-frequency suppression) option, a value between 3 and 21 usually works better.

See also: [NMR Spectroscopy User Guide](#)

Related:
- `addpar` Add selected parameters to the current experiment (M)
- `fft` Fourier transform 1D data (C)
- `ni` Number of increments in 1st indirectly detected dimension (P)
- `np` Number of points (P)
- `parfidss` Create parameters for time-domain solvent subtraction (M)
- `ssfilter` Full bandwidth of digital filter to yield a filtered FID (P)
- `sslsfrq` Center of solvent-suppressed region of spectrum (P)
- `ssorder` Order of polynomial to fit digitally filtered FID (P)
- `wft` Weight and Fourier transform 1D data (C)

ssorder: Order of polynomial to fit digitally filtered FID (P)

Description: Specifies the order of the polynomial to fit the digitally filtered FID if the zfs (zero-frequency suppression) option is selected for solvent subtraction. `ssorder` is not used if the lfs (low-frequency suppression) option is selected. If `ssorder` does not exist in the current experiment, enter `addpar('ss')` to add it. `addpar('ss')` also creates time-domain solvent subtraction parameters `ssfilter`, `sslsfrq`, and `ssntaps`.

The solvent subtraction option (zfs or lfs) is selected as follows:

- If `ssorder` and `ssfilter` are both set to values, zfs is selected.
- If `ssorder='n'` and `ssfilter` is set to a value, lfs is selected.
- If `ssorder='n'` and `ssfilter='n'`, zfs and lfs are both turned off.

Values: 'n', integer from 1 to 20. The default is 'n'.

See also: [NMR Spectroscopy User Guide](#)

Related:
- `addpar` Add selected parameters to the current experiment (M)
- `parfidss` Create parameters for time-domain solvent subtraction (M)
stack

Stacking mode for processing and plotting arrayed spectra (M)

Syntax: `stack(mode)`

Description: When processing and plotting arrayed 1D spectra, VnmrJ automatically determines if the *stacking mode* is horizontal, vertical or diagonal from the number of traces and the number of lines in the spectrum. If you do not want this automatic function (or it makes an undesirable decision), you can override it by placing the `stack` macro in the experiment startup macro or by calling `stack` before processing (or reprocessing) a spectrum. The macro `autostack` switches back to automatic determination of the stack mode by destroying the parameter `stackmode`.

Arguments: `mode` is one of the stacking modes 'horizontal', 'vertical', or 'diagonal'.

See also: NMR Spectroscopy User Guide

Related:
- `autostack` Automatic stacking for processing and plotting arrays (M)
- `procarray` Process arrayed 1D spectra (M)
- `plarray` Plot arrayed 1D spectra (M)
- `stackmode` Stacking control for processing (P)

stackmode

Stacking control for processing arrayed 1D spectra (P)

Description: Controls whether stacking for processing arrayed 1D spectra is automatic or nonautomatic. The *automatic stacking mode* can be overridden by creating and setting `stackmode` in the startup macro or before calling `procplot` or `procarray`. The `autostack` macro switches back to automatic determination of the stack mode by destroying this parameter.

Values: 'horizontal', 'vertical', or 'diagonal'.

See also: NMR Spectroscopy User Guide

Related:
- `autostack` Automatic stacking for processing and plotting arrays (M)
- `procarray` Process arrayed 1D spectra (M)
- `procplot` Automatically process FIDs (M)
- `stack` Fix stacking mode for processing and plotting arrayed spectra (M)

startq

Start a chained study queue (M)

Description: Start a chained acquisition for a study queue.

Related:
- `sqmode` Study queue mode (P)
- `xmnext` Find next prescan or next experiment in study queue (M)

status

Display status of sample changer (C,U)

Applicability: Systems with an automatic sample changer.

Syntax:
- `status(directory<,config_file>)` (From UNIX)
- `status directory <config_file>`

Description: Displays a status window with a summary of all experiments and a scrollable list of individual experiments. Individual experiments are selected by clicking
anywhere on the experiment of interest. status updates as the state of an automation run changes. If an experiment finishes or a new experiment is added, the status display is updated.

Arguments: directory is the path to the directory where the done queue (doneQ) is stored. In the UNIX shell, a directory path is required. In VnmrJ, a directory path is optional. The default is the automation mode directory.

config_file is the name of a user-supplied file that customizes status for local use. Refer to the manual User Programming for details.

Examples: (From VnmrJ) status
(From VnmrJ) status('/home/vnmr1/AutoRun_621')
(From UNIX) status /home/vnmr1/AutoRun_621 mystatus

See also: VnmrJ Walkup; User Programming

Related: autodir Automation directory absolute path (P)
autoname Prefix for automation data file (P)
enter Enter sample information for automation run (C,U)

std1d Apptype macro for Standard 1D experiments (M)

Applicability: Liquids

Description: Perform the actions for Standard 1D protocols to set up, process, and plot experiments.

See also: NMR Spectroscopy User Guide, VnmrJ Walkup

Related: apptype Application type (P)
execpars Set up the exec parameters (M)

stdshm Interactively create a method string for autoshimming (M)

Syntax: stdshm

Description: Creates a method string to be used in adjusting the spinning controls z1, z2, z3, and z4 when a sample is changed. If non-spin controls also need adjusting, further shimming operations are required.

The method string is constructed in answer to questions about the sample length, the time available for shimming, and the solvent T1 or, in FID shimming, the T1 of the sample. In asking about sample height, stdshm assumes that z3 and z4 need adjusting only with short samples; therefore, select “sample height will vary” if z3 and z4 shimming is definitely wanted.

Try lock shimming first to see if it produces a satisfactory result. Lock shimming requires a much shorter shimming time than FID shimming and usually adjusts z1 and z2 just as well. If lock shimming is unsatisfactory, try FID shimming. Again, when z3 and z4 adjustment is required, lock shimming is faster, but FID shimming is more effective. stdshm displays the estimated shimming time, permitting revision when the time is too long.

To shim after running stdshm, enter method='std' (for lock shimming) or method='fidstd' (for FID shimming). Then enter shim or set the wshim parameter to shim before the start of acquisition.

Note that the command newshm is much like stdshm but that newshm provides more flexibility in making method strings

See also: NMR Spectroscopy User Guide

Related: dshim Display a shim method string (M)
method Autoshim method (P)
newshm Interactively create a shim method with options (M)
shim Submit an Autoshim experiment to acquisition (C)
wshim Conditions when shimming is performed (P)

sth Minimum intensity threshold (P)
Description: Intensity threshold above which transitions are printed and included in the simulated spectrum. Transitions whose intensity falls below this threshold are omitted from the simulation.
Values: 0 to 1.00. A typical value is 0.05.
See also: NMR Spectroscopy User Guide
Related: spins Perform spin simulation calculation (C)
spsm Enter spin system (M)
th Threshold (P)

string Create a string variable (C)
Syntax: string(variable)
Description: Creates a string variable without a value.
Arguments: variable is the string variable to be created.
Examples: string('strvar1')
See also: User Programming

strtext Starting point for LP data extension in np dimension (P)
Description: Specifies inclusively the complex time-domain data point at which LP (linear prediction) data extension (alteration) is to begin in the np dimension. Enter addpar('lp') to create strtext and other np dimension LP parameters in the current experiment.
Values: 1 to np/2
See also: NMR Spectroscopy User Guide
Related: addpar Add selected parameters to the current experiment (M)
lpalg LP algorithm in np dimension (P)
np Number of data points (P)
strtlp Starting point for LP calculation in np dimension (P)

strtext1 Starting point for LP data extension in ni dimension (P)
Description: Specifies inclusively the complex time-domain data point at which LP (linear prediction) data extension (alteration) is to begin in the ni dimension. Enter addpar('lp',1) to create strtext1 and other ni dimension LP parameters in the current experiment.
Values: 1 to ni/2
See also: NMR Spectroscopy User Guide
Related: addpar Add selected parameters to the current experiment (M)
lpalgi LP algorithm in ni dimension (P)
ni Number of increments in 1st indirectly detected dimension (P)
strtlpi Starting point for LP calculation in ni dimension (P)
strtext2
Starting point for LP data extension in ni2 dimension (P)

Description: Specifies inclusively the complex time-domain data point at which LP (linear prediction) data extension (alteration) is to begin in the \(\text{ni2} \) dimension. Enter `addpar('lp',2)` to create `strtext2` and other \(\text{ni2} \) dimension LP parameters in the current experiment.

Values: 1 to \(\frac{\text{ni2}}{2} \)

See also: *NMR Spectroscopy User Guide*

Related:
- `addpar` Add selected parameters to the current experiment (M)
- `lpalg2` LP algorithm in \(\text{ni2} \) dimension (P)
- `ni2` Number of increments in 2nd indirectly detected dimension (P)
- `strtlp2` Starting point for LP calculation in \(\text{ni2} \) dimension (P)

strtlp
Starting point for LP calculation in np dimension (P)

Description: Specifies the first complex, time-domain data point to be used in calculating the complex linear prediction (LP) coefficients in the \(\text{np} \) dimension. If \(\text{lpopt} = 'b' \), the `strtlp`-th complex time-domain data point and the ensuing \((2*\text{lpfilt}-1) \) data points are used in this calculation. If \(\text{lpopt} = 'f' \), the `strtlp`-th complex time-domain data point and the preceding \((2*\text{lpfilt}-1) \) data points are used in this calculation. Enter `addpar('lp')` to create `strtlp` and other \(\text{np} \) dimension LP parameters in the current experiment.

See also: *NMR Spectroscopy User Guide*

Related:
- `addpar` Add selected parameters to the current experiment (M)
- `lpalg` LP algorithm in \(\text{np} \) dimension (P)
- `lpfilt` LP coefficients to calculate in \(\text{np} \) dimension (P)
- `lpnupts` LP number of data points in \(\text{np} \) dimension (P)
- `lpopt` LP algorithm data extension in \(\text{np} \) dimension (P)
- `strtext` Starting point for LP data extension in \(\text{np} \) dimension (P)

strtlp1
Starting point for LP calculation in ni dimension (P)

Description: Specifies the first complex, time-domain data point to be used in calculating the complex linear prediction (LP) coefficients in the \(\text{ni} \) dimension. It functions analogously to `strlp`. Enter `addpar('lp',1)` to create `strtlp1` and other \(\text{ni} \) dimension LP parameters in the current experiment.

See also: *NMR Spectroscopy User Guide*

Related:
- `addpar` Add selected parameters to the current experiment (M)
- `lpalg1` LP algorithm in \(\text{ni} \) dimension (P)
- `lpfilt1` LP coefficients to calculate in \(\text{ni} \) dimension (P)
- `lpnupts1` LP number of data points in \(\text{ni} \) dimension (P)
- `lpopt1` LP algorithm data extension in \(\text{ni} \) dimension (P)
- `strtext1` Starting point for LP data extension in \(\text{ni} \) dimension (P)

strtlp2
Starting point for LP calculation in ni2 dimension (P)

Description: Specifies the first complex, time-domain data point to be used in calculating complex linear prediction (LP) coefficients in the \(\text{ni2} \) dimension. `strtlp2` functions analogously to `strlp`. Enter `addpar('lp',2)` to create `strtlp2` and other \(\text{ni2} \) dimension LP parameters in the current experiment.
studyid Study identification (P)
Applicability: Liquids
Description: Specifies the relative directory where a study is stored. In Walkup, it is relative to autodir. In imaging, it is relative to globalauto; it is set when a new study is created.

See also: NMR Spectroscopy User Guide, VnmrJ Walkup
Related: autodir Automation directory absolute path (P)
globalauto Automation directory name (P)
sqdir Study queue directory (P)
sqname Study queue parameter template (P)

studypar Study parameters (P)
Applicability: Liquids, Imaging
Description: A global parameter that contains the list of parameters saved with a study. If the parameter does not exist, it is created by cqsavestudy for liquids or sqsavestudy for imaging when a study is saved.

Related: cqsavestudy Macro to save study queue parameters (M)
sqsavestudy Macro to save study parameters for imaging (M)

studystatus Study status (P)
Applicability: VnmrJ Walkup
Description: The status of a study for a sample. The status is set from the status of the experiments within the study by the macro cqsavestudy.

See also: VnmrJ Walkup
Related: cqsavestudy Macro to save study queue parameters (M)
studytime Study time (P)
Applicability: Walkup
Description: The total time it takes to run a study. It is set by the xmtime macro when a study is created.

See also: VnmrJ Walkup
Related: xmsubmit Submit sample(s) to the study queue (M)
xmtime Update the study queue time (M)
su

Submit a setup experiment to acquisition (M)

Description: Sets up the system hardware to match the current parameters but does not initiate data acquisition. Typical uses of *su* are to change the system frequency in preparation for probe tuning, to change the sample temperature in advance of beginning an experiment (or after a variable temperature experiment is run), and to turn the decoupler on or off. If *load*='y', *su* can be used to set shim values. *su* also sets lock parameters (*lockpower*, *lockgain*, *lockphase*) and the field offset parameter (*z0*).

su does not delete any existing data in the current experiment (only *go*, *ga*, and *au* do that). Everything that *su* does is also done by *go*, *ga*, and *au*.

Shim DAC values are automatically loaded when the acquisition system boots up; if the acquisition system has been recently rebooted, *su* must be entered before *acqi* or *qtune* can be run.

See also: *NMR Spectroscopy User Guide*

Related:
- *acqi* Interactive acquisition display process (C)
- *au* Submit experiment to acquisition and process data (C)
- *change* Submit a change sample experiment to acquisition (M)
- *ga* Submit experiment to acquisition and FT the result (C)
- *go* Submit experiment to acquisition (C)
- *load* Load status of displayed shims (P)
- *lock* Submit an Autolock experiment to acquisition (C)
- *lockgain* Lock gain (P)
- *lockphase* Lock phase (P)
- *lockpower* Lock power (P)
- *qtune* Tune probe using swept-tune graphical tool (C)
- *sample* Submit change sample, autoshim experiment to acquisition (M)
- *shim* Submit an Autoshim experiment to acquisition (C)
- *spin* Submit a spin setup experiment to acquisition (C)
- *z0* Z0 field position (P)

sub

Subtract current FID from add/subtract experiment (C)

Syntax:
1. `sub<(multiplier<,'new'>)>`
2. `sub('new')`
3. `sub('trace',index)`

Description: Subtracts the last displayed or selected FID from the current contents of the add/subtract experiment (*exp5*). *lsfid* and *phfid* can be used to shift or phase rotate the selected FID before it is subtracted from the data in add/subtract experiment. A multi-FID add/subtract experiment can be created by using the 'new' keyword. Individual FIDs in a multi-FID add/subtract experiment can subsequently be subtracted by using the 'trace' keyword followed by the index number of the FID.

Arguments:
- *multiplier* is a value that the FID is to be multiplied by before being subtracted from the add/subtract experiment (*exp5*). The default is 1.0.
- 'new' is a keyword to create a new FID element in an add/subtract experiment.
- 'trace' is a keyword to use the next argument (index) as the number of the FID to subtract from in an add/subtract experiment. The default is to subtract from the first FID in a multi-FID add/subtract experiment.
- index is the index number of the FID to be used as a target in a multi-FID add/subtract experiment.

Examples:
- `sub`
- `sub(0.75)`
sub('new')
sub('trace',2)

See also: NMR Spectroscopy User Guide

Related:
- add: Add current FID to add/subtract experiment (C)
- clradd: Clear add/subtract experiment (C)
- lsfid: Number of complex points to left-shift ni interferogram (P)
- phfid: Zero-order phasing constant for np FID (P)
- select: Select a spectrum without displaying it (C)
- spsub: Subtract current spectra from add/subtract experiment (P)

substr

Select a substring from a string (C)

Applicability: VnmrJ

Syntax:
 substr('string',word_number):$n1<,$n2<,$n3>>
 substr('string',index,length<,'new_string'>):$n1<,$n2<,$n3>>
 substr('string',word_number,'delimiter',
 'delimiter_char'): $n1<,$n2<,$n3>>

Description: Picks a substring or word out of a string, replace, or delete a set of characters from a string and returns the result to the string variable $n1. The position of the first character of the word and the number of characters of the word are returned to $n2 and $n3 if these string variables are supplied.

Arguments:
- 'string' string or a string variable.
- word_number is the number of the word to select. Words are counted sequential beginning with the first word of the string as 1.
- index is the number of characters counted from the first character of the string or a string variable containing this number.
- length is the number of characters in the substring.
- new_string is string or a string variable to replace the contents of string at the position specified by index and length and pass the resulting string to the return string variable.
- 'delimiter' is a keyword that requires the 'delimiter_char' argument to specify that the argument that follows specifies the delimiter(s).
- 'delimiter_char' is a string of characters to use as delimiters to separate words.

Default delimiters are space and tab " \t".

Examples: Search examples:

```
substr('There are 10 samples to be run',4):n1
string nl='samples'
substr('There are 10 samples to be run',4):n1,$f,$num
sets strings nl='samples' $f=14 and $num=7
substr('abcdefg',2,3):n1
string nl='bcd'
```
substr('This is;a phrase',2):n1
string n1='is;a'

substr('This is;a phrase',2, 'delimiter',' ;	'):n1,$f,$num
sets strings n1='is' $f=6 and $num=2

Text substitution examples:

Explicit text substitution and passing the result to the return string variable.
substr('abcdefg',2,3,'1234'):n1
string n1='a1234efg'

Text substitution in a string variable using results held in return string variable
from a previous search. Start with the following text held in a string variable:
n1='There are 10 samples to be run'
substr(n1,4):n2,$f,$num
sets strings n2=samples, $f=14, and $num=7

substr(n1,$f,$num,'experiments'):n3
Counts 14 characters ($f=14) from the beginning of n1, substitutes the word
experiments for the 7 character ($num=7) word in n1, and passes the new
string to the return string variable setting
n3='There are 10 experiments to be run'

See also: User Programming
Related: length Determine length of a string (C)
 string Create a string variable (C)

suselfrq Select peak, continue selective excitation experiment (M)
Syntax: suselfrq
Description: Sets up selective frequency pulse, power, and shape and continue with the
selective excitation experiment. Used by Noesy1d, and TOCSY1D.
See also: NMR Spectroscopy User Guide, VnmrJ Walkup
Related: Noesy1d Change parameters for NOESY1D experiment (M)
 setselinv Set up selective inversion (M)
 setselfrqc Select selective frequency and width (M)
 TOCSY1D Change parameters for TOCSY1D experiment (M)

svdat Save data (C)
Syntax: svdat(file<,'f'|'m'|'i'|'b'>)
Description: Outputs current data from the current experiment to a file. Integer data is scaled
when it is written.
Arguments: file is the name of the data file. The file is created in the current directory
VnmrJ is in unless a full directory path is given. If a file of the same name
already exists, the user will queried to overwrite the file. If a fully qualified
filename is not given, the file will be created in VnmrJ’s current directory.
'f'|'m'|'i'|'b' defines how the data is to be written out: 'f' is 32-bit
floating point, 'm' or 'i' is 16-bit integer scaled to 12 bits, and 'b' is 8-bit
byte integer. The default is 'f'.
Floating point data is not scaled when written.
Integer data is scaled when written. A data value x is scaled as ax+b where:
a = (vs*grays1*numgray)/64.0
b = numgray*(0.5-(grays1*grayctr/64.0))
where numgray (see below) has a default of 4096 for 'm' and 'i' formats and a default of 256 for the 'b' format, graysl has a default of 1, and grayctr has a default of 32.0.

To scale 16-bit integer data other than 12-bits, the global parameter numgray can be created using create (numgray, real, global) and set to the value 2^n, where n is the number of bits desired. For example, to scale to 15-bits, set numgray=32768.

The display parameters graysl and grayctr are used to save data files for ImageBrowser.

Examples: svdat(rathead,'b')

See also: VnmrJ Imaging NMR

Related:
create Create new parameter in parameter tree (C)
grayctr Gray level window adjustment (P)
graysl Gray level slope (contrast) adjustment (P)

svf

Save FIDs in current experiment (M)

Syntax: svf(<file<,'nolog'>,<,'arch'>,<,'force'>,<,'nodb'>>)

Description: Saves parameters, text, and FID data in the current experiment to a file. No data is removed from the current experiment; svf merely saves a copy of the data in a different file. You can enter rt to retrieve the complete data set, or enter rtp to retrieve parameters only.

Arguments: file is the name of the file, with the suffix .fid added, to be created to save the data. The default is the system prompts for a file name. You are warned if you attempt to overwrite a file that already exists. In fact, if data has been acquired with the file parameter set, the data does not need to be saved. It is already stored in a named file.

'nolog' is a keyword to not save the log file with the data. The default is to save the log file.

'arch' is a keyword to assume that the data goes to a database and appends to the (or creates a) doneQ file with information that can be used by the command status.

If force is given, you are not warned and the older parameter set is removed.

nodb is a keyword to prevent svp from adding information to a database. This prevention is useful if temporary parameter files are saved that will soon be removed.

Examples: svf
 svf('/home/vnmr1/mydatafile')

See also: NMR Spectroscopy User Guide

Related:
file File name (P)
rt Retrieve FID (M)
rtp Retrieve parameters (M)
status Display status of all experiments (C)

svfdf

Save FID data in FDF format (M)

Syntax: svfdf(directory)

Description: Saves raw data from the FID file of the current experiment as an FDF (Flexible Data Format) file. Data is saved in multiple files, with one trace per file. The files are named fid0001.fdf, fid0002.fdf, etc. The procpar file from the current experiment is also saved in the same directory.
The FDF file format is described in the manual *User Programming*. Note that the data is complex (FDF type="complex"), and the FDF ordinate = ["intensity", "intensity"], indicating that each point consists of a pair of intensities. The FDF headers also contain the following special fields:

- *nfile* gives the sequential number of this file in the series.
- *ct* is the value of the *ct* parameter. The data should be divided by *ct* to give the average signal intensity for one scan.
- *scale* gives the power of two scaling factor for the data. The data should be multiplied by \(2^{\text{scale}}\) to give the true values.

Arguments: *directory_name* is the directory in which to store the files. The extension .dat is appended to the given name.

Examples: `svfdf(curexp+'/raw')`

See also: *User Programming*

Related: *ct* Completed transients (P)

svfdir

Directory for non-study data (P)

Description: Specifies the directory where data is saved when not using a study in VnmrJ.

See also: *NMR Spectroscopy User Guide, VnmrJ Walkup*

Related: *fidsave* Save data (M)

save Save data (M)

svfname Filename parameter template for non-study data ((P)

Svfname

Create path for data storage (C)

Applicability: Automation

Syntax: `Svfname:$path`

`Svfname(name_template):$path`

`Svfname(name_template,suffix):$path`

`Svfname(name_template,suffix, excluded_suffix'):$$path`

`Svfname(name_template,suffix', 'excluded_suffix', '<keepsplaces'|'replacespaces')':$$path`

Description: Determines the name used to store data. This command provides the functionality of the autoname parameter without being in automation mode.

Svfname default naming command with alternate suffixes is *svfname* and the default directory is *svfdir*. *Svfname* does not read a sample info file. A suffix is specified as the second argument. Use a suffix of " to access ordinary files and directories. Arguments used with *Svfname* are constructed the same way arguments are constructed for *autoname*.

The name is prefixed with using the value of the parameter *autodir* or *userdir+’/data/’* if *name_template* is a relative path.

The default suffix is .fid.

Arguments: *svfname* is default naming parameter.

svfdir is default directory parameter.

name_template (no quotes) is string that contains keywords separated by substitution specifiers to represent the data storage path. Substitution specifiers in this template are either a percent sign (%) or a dollar sign ($). The keywords are obtained using % substitution specifiers or VNMR parameters using $ substitution specifiers.
S
Percent sign (%) substitution specifier is used to scan for the text specified by
keyword between the first percent sign in the template string and the next
percent sign. The text specified by the keyword between the % substitution
specifiers is passed to $path.
The following percent substitutions (% keywords) for time and date are
obtained from the system clock, not from the sample info file:
Keyword

Format

Description

%DATE%

YYYYMMDD

4-digit year, 2-digit month, 2-digit day

%TIME%

HHMMSS

2-digit hour, 2-digit minute, 2-digit second

%YR%

YYYY

4-digit year

%YR2%

YY

2-digit year

%MO%

MM

2-digit month

%DAY%

DD

2-digit day

%HR%

HH

2-digit hour

%MIN%

MM

2-digit month

%SEC%

SS

2-digit second

Dollar sign ($) substitution specifier is used with the Svfname command to
interpreted a VNMR parameter and substitute the value of this parameter a
suffix.
Numeric parameters are truncated and represented as a string with the form:
<optional string>parameter value<optional string>. The
name_template, pw=pwusec, with vnmr parameter pw having a value
of 12.3 produces pw=12usec01 which is appended to .fid (or .img) and
passed to $path.
String parameters cannot not contain any of the following characters: ' ', '!', '"',
'$', '&', '\', '', '(', ')', '*', ';', '<', '>', '?', '\\', '[', ']', '^', '`', '{', '}', '|', ',', '\0'
A comma separated excluded suffix list appends a string based on the suffixes
and excluded suffixes to the path. Using the keyword 'replacespaces'
uses underscores (_) in place of spaces ' ' in the resulting path name. The
keyword 'keepspaces' retains spaces in the resulting path name.
'keepspaces'|'replacespaces' is an optional argument (includes
quotes) that uses either of the following keywords: replacespaces or
keepspaces. The argument is accepted if the third argument is a list of
suffixes. The action is the same as described for the third argument
Version number is specified by %Rn% where n is an integer from 0 to 9 (default
2), as follows:

578

n=

Description

0

no revision digits are appended (all names must be
uniquely constructed without these revision digits).

1 to 9

revision number is padded with leading zeroes to
form an n-digit number. If more places are needed
than specified, more zeroes are used.

>9
(more than
one digit)

Rnn is still used as a search string in the sampleinfo file. %Rn% must be specified at the end of
the name_template string. The revision digits
are always appended except if %R0% is used.

no %Rn%

default of %R2% is used

Command and Parameter Reference for VnmrJ 2.2MI

01-999380-00 A 07008


See also: *NMR Spectroscopy User Guide, VnmrJ Walkup*

Related:
- **autoname** Determines path for data storage during an automation run (C)
- **autoname** Temple determining the path where is data stored (P)
- **sqname** Study queue parameter template (P)
- **svfname** Specifies the filename template (P)

svfname
Filename parameter template for non-study data (P)

Description: Specifies the filename template where data is saved when not using a study in VnmrJ. The template is constructed using the same keywords and delimiter, dollar sign ($) and percent sign (%), as **autoname**.

Examples:
- If `svfdir=userdir+'/data'`, the result from `fidsave` is:
  ```
  svfname='$pslabel$_$tn$_' -> userdir+'/data/
  Proton_H1_01.fid'
  svfname='%DATE%/t%TIME%%R0%' -> userdir+'/data/
  20040501/t113005.fid'
  ```

See also: *NMR Spectroscopy User Guide, VnmrJ Walkup*

Related:
- **fidsave** Save data (M)
- **Svfname** Create path for data storage (C)
- **sqname** Study queue parameter template (P)
- **save** Save data (M)
- **svfname** Filename parameter template for non-study data (P)

svp
Save parameters from current experiment (M)

Syntax: `svp(file) <(file<,'force'><,'nodb'>)>`

Description: Saves parameters from current experiment to a file. The parameter set can be retrieved with the **rt** and **rt** macros. **svp** reflects any changes made in parameters up to the moment of entering **svp**, including acquisition parameters (unlike macro **svf**).

Arguments:
- **file** is the name of the file, with the suffix `.par` added, to be created to save the parameters. The default is the system prompts for a file name. You are warned if you attempt to overwrite a parameter set that already exists.
 - If **force** is given, you are not warned and the older parameter set is removed.
 - **nodb** is a keyword to prevent **svp** from adding information to a database. This prevention is useful if temporary parameter files are saved that will soon be removed.

Examples:
- `svp('/vnmr/stdpar/P31')`
- `svp('/usr/george/testdata')`

See also: *NMR Spectroscopy User Guide*

Related:
- **rt** Retrieve FID (M)
- **rt** Retrieve parameters (M)
- **svf** Save FIDs in current experiment (M)

svs
Save shim coil settings (C)

Syntax: `svs(file)<:status>`

Description: Saves all shim coil settings except Z0 to a file.

Arguments:
- **file** is the name of a file for saving the shim coil settings. If the file name is an absolute path, **svs** uses it with no modifications. Otherwise, **svs** saves the shim in the first application directory for which it has write permission.
The `svs` command reports where it stored the shims, unless it is requested to return the status.

`status` is a return variable with one of the following values after `svs` finishes:

- `0` indicates `svs` failed to store shim file.
- `1` indicates `svs` stored the shim file, either as an absolute path or in the `shims` directory of the first application directory.
- `>=2` indicates `svs` stored the file in `shims` directory of the second, third, or later application directory.

Examples:

```
svs('acetone')
svs('bb10mm'):r1
```

See also: [NMR Spectroscopy User Guide](#)

Related: `rts` Retrieve shim coil settings (C)

svs

Spin simulation vertical scale (P)

Description: Vertical scale for simulated spectrum.

Values: 0 to 1e10. A typical value is 200.

See also: [NMR Spectroscopy User Guide](#)

Related: `spins` Perform spin simulation calculation (C)
`spsm` Enter spin system (M)

svtmp

Move experiment data into experiment subfile (M)

Syntax: `svtmp<(file)>`

Description: Moves the experiment data (parameters, FID, and transformed spectrum) from current experiment into a subdirectory inside `curexp+/subexp`. Unlike the macro `cptmp`, the experiment data is no longer accessible in the current experiment; only a copy of the parameters is still present.

Arguments: `file` is the name of the subfile that receives the experiment data. The default name is either the transmitter nucleus (if `seqfil='s2pul'`) or the pulse sequence name.

Examples:

```
svtmp
svtmp('cosy')
```

See also: [NMR Spectroscopy User Guide](#)

Related: `cptmp` Copy experiment data into experiment subfile (M)
`curexp` Current experiment directory (P)
`rttmp` Retrieve experiment data from experiment subfile (M)
`seqfil` Pulse sequence name (P)

sw

Spectral width in directly detected dimension (P)

Description: Sets the total width of the spectrum to be acquired, from one end to the other. All spectra are acquired using quadrature detection. The spectral width determines the sampling rate for data, which occurs at a rate of `2*sw` points per second (actually `sw` pairs of complex points per second). Note that the sampling rate itself is not entered, either directly or as its inverse (known on some systems as the `dwell time`).

If a value of `sw` is entered whose inverse is not an even multiple of the time base listed above, `sw` is automatically adjusted to a slightly different value to give an acceptable sampling rate.
To enter a value in ppm, append the character \(p \) (e.g., \(sw=200p \)).

If a DSP facility is present in the system (i.e., \(dsp='i' \) or \(dsp='r' \)) and oversampling in the experiment has not been turned off by setting \(oversamp='n' \), then the oversampling factor will be recalculated.

Values: Number, in Hz. The range possible is based on the system:
- 100 Hz to 500 kHz.
- Solids systems: up to 5 MHz.

See also: *NMR Spectroscopy User Guide*

Related:
- **dp** Double precision (P)
- **dsp** Type of DSP for data acquisition (P)
- **oversamp** Oversampling factor for acquisition (P)
- **setlp0** Set parameters for zero linear phase (M)
- **sw1** Spectral width in 1st indirectly detected dimension (P)
- **sw2** Spectral width in 2nd indirectly detected dimension (P)
- **sw3** Spectral width in 3rd indirectly detected dimension (P)

sw1

Spectral width in 1st indirectly detected dimension (P)

Description: Analogous to the \(sw \) parameter except that \(sw1 \) applies to the first indirectly detected dimension of a multidimensional data set. The increment of the variable evolution time \(d2 \) is automatically calculated from \(sw1 \). The number of increments for this dimension is set by \(ni \). To create \(sw1 \) in the current experiment, as well as \(ni \) and \(phase \), enter \texttt{addpar('2d')}.

See also: *NMR Spectroscopy User Guide*

Related:
- **addpar** Add selected parameters to the current experiment (M)
- **d2** Incremented delay in 1st indirectly detected dimension (P)
- **ni** Number of increments in 1st indirectly detected dimension (P)
- **phase** Phase selection (P)
- **sw** Spectral width in directly detected dimension (P)
- **sw2** Spectral width in 2nd indirectly detected dimension (P)
- **sw3** Spectral width in 3rd indirectly detected dimension (P)

sw2

Spectral width in 2nd indirectly detected dimension (P)

Description: Analogous to the \(sw \) parameter except that \(sw2 \) applies to the second indirectly detected dimension of a multidimensional data set. The increment of the variable evolution time \(d3 \) is automatically calculated from \(sw2 \). The number of increments for this dimension is set by \(ni2 \). To create \(sw2 \) in the current experiment, as well as \(d3, ni2 \), and \(phase2 \), enter \texttt{addpar('3d')}.

See also: *NMR Spectroscopy User Guide*

Related:
- **addpar** Add selected parameters to the current experiment (M)
- **d3** Incremented delay for 2nd indirectly detected dimension (P)
- **ni2** Number of increments in 2nd indirectly detected dimension (P)
- **phase2** Phase selection for 3D acquisition (P)
- **sw** Spectral width in directly detected dimension (P)
- **sw1** Spectral width in 2nd indirectly detected dimension (P)
- **sw3** Spectral width in 3rd indirectly detected dimension (P)

sw3

Spectral width in 3rd indirectly detected dimension (P)

Description: Analogous to the \(sw \) parameter except that \(sw3 \) applies to the third indirectly detected dimension of a multidimensional data set. The increment of the
variable evolution time \(d_4 \) is automatically calculated from \(sw_3 \). The number of increments for this dimension is set by \(ni_3 \). To create \(sw_3 \) in the current experiment, as well as \(d_4, ni_3, \) and \(phase_3 \), enter \texttt{addpar(’4d’)}.

See also: \textit{NMR Spectroscopy User Guide}

Related: \texttt{addpar} Add selected parameters to the current experiment (M)
\texttt{d4} Incremented delay for 3rd indirectly detected dimension (P)
\texttt{ni3} Number of increments in 3rd indirectly detected dimension (P)
\texttt{par4d} Create 4D acquisition parameters (C)
\texttt{phase3} Phase selection for 4D acquisition (P)
\texttt{sw} Spectral width in directly detected dimension (P)
\texttt{sw1} Spectral width in 1st indirectly detected dimension (P)
\texttt{sw2} Spectral width in 2nd indirectly detected dimension (P)

\texttt{sysgcoil} \quad \textbf{System gradient coil (P)}

\textbf{Description:} Specially reserved string parameter that specifies which physical gradient set is currently installed, and allows convenient updating of important gradient characteristics when one gradient set is interchanged for another. The value to \texttt{sysgcoil} is assigned to the parameter \texttt{gcoil} when joining experiments or retrieving parameter sets.

This parameter is set in the Spectrometer Configuration window to the name of the gradient set in use. Once set, it is then available to all experiments and to all users.

See also: \textit{VnmrJ Installation and Administration}; \textit{VnmrJ Imaging NMR}

Related: \texttt{config} Display current configuration and possibly change it (M)
\texttt{gcoil} Current gradient coil (P)
\texttt{gmax} Maximum gradient strength (P)
\texttt{setgcoil} Assign sysgcoil configuration parameter (M)

\texttt{system} \quad \textbf{System type (P)}

\textbf{Description:} A global parameter that sets the basic type of system: spectrometer or data station. The value is set using the System Type label in the Spectrometer Configuration window.

\textbf{Values:}
- 'spectrometer' is a spectrometer system (Spectrometer choice in Spectrometer Configuration window).
- 'datastation' is a system used as a data station (Data Station choice in Spectrometer Configuration window). Acquisition is not allowed in this setting.

See also: \textit{VnmrJ Installation and Administration}

Related: \texttt{config} Display current configuration and possibly change it (M)
\texttt{Console} System console type (P)

\texttt{systemdir} \quad \textbf{VnmrJ system directory (P)}

\textbf{Description:} Contains path to VnmrJ system directory, typically /vnmr. The UNIX environmental variable \texttt{vnmrsystem} initializes \texttt{systemdir} at bootup.

See also: \textit{NMR Spectroscopy User Guide}
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>T_1 exponential analysis (M)</td>
</tr>
<tr>
<td>t1s</td>
<td>T_1 exponential analysis with short output table (M)</td>
</tr>
<tr>
<td>t2</td>
<td>T_2 exponential analysis (M)</td>
</tr>
<tr>
<td>t2s</td>
<td>T_2 exponential analysis with short output table (M)</td>
</tr>
<tr>
<td>tabc</td>
<td>Convert data in table order to linear order (M)</td>
</tr>
<tr>
<td>tan</td>
<td>Find tangent value of an angle (C)</td>
</tr>
<tr>
<td>tape</td>
<td>Read tapes from VXR-style system (M,U)</td>
</tr>
<tr>
<td>tape</td>
<td>Control tape options of files program (P)</td>
</tr>
<tr>
<td>target_bval</td>
<td>Adjust gdiff to achieve target b-value (M)</td>
</tr>
<tr>
<td>tchan</td>
<td>RF channel number used for tuning (P)</td>
</tr>
<tr>
<td>tcl</td>
<td>Send Tcl script to Tcl version of dg window (C)</td>
</tr>
<tr>
<td>temp</td>
<td>Open the Temperature Control window (C)</td>
</tr>
<tr>
<td>temp</td>
<td>Sample temperature (P)</td>
</tr>
<tr>
<td>tempcal</td>
<td>Temperature calculation (C)</td>
</tr>
<tr>
<td>tempcalc</td>
<td>Measure approximate sample temperature in Cold Probes (M)</td>
</tr>
<tr>
<td>testacquire</td>
<td>Test acquire mode (P)</td>
</tr>
<tr>
<td>testct</td>
<td>Check ct for resuming signal-to-noise testing (M)</td>
</tr>
<tr>
<td>testsn</td>
<td>Test signal-to-noise of a spectrum (M)</td>
</tr>
<tr>
<td>teststr</td>
<td>Find which array matches a string (M)</td>
</tr>
<tr>
<td>text</td>
<td>Display text or set new text for current experiment (C)</td>
</tr>
<tr>
<td>textis</td>
<td>Return the current text display status (C)</td>
</tr>
<tr>
<td>textvi</td>
<td>Edit text file of current experiment (M)</td>
</tr>
<tr>
<td>th</td>
<td>Threshold (P)</td>
</tr>
<tr>
<td>th2d</td>
<td>Threshold for integrating peaks in 2D spectra (P)</td>
</tr>
<tr>
<td>thadj</td>
<td>Adjust threshold for peak printout (M)</td>
</tr>
<tr>
<td>time</td>
<td>Display experiment time or recalculate number of transients (M)</td>
</tr>
<tr>
<td>tin</td>
<td>Temperature interlock (P)</td>
</tr>
<tr>
<td>tilt</td>
<td>First-order baseline correction (P)</td>
</tr>
<tr>
<td>tmove</td>
<td>Left-shift FID to time-domain cursor (M)</td>
</tr>
<tr>
<td>tmsref</td>
<td>Reference 1D proton or carbon spectrum to TMS (M)</td>
</tr>
<tr>
<td>tn</td>
<td>Nucleus for observe transmitter (P)</td>
</tr>
<tr>
<td>tncosy</td>
<td>Set up parameters for TNCOSYPS pulse sequence (M)</td>
</tr>
<tr>
<td>tndqc</td>
<td>Set up parameters for TNDQCOSY pulse sequence (M)</td>
</tr>
<tr>
<td>tmqcosy</td>
<td>Set up parameters for TNMQCOSY pulse sequence (M)</td>
</tr>
<tr>
<td>tnnoesy</td>
<td>Set up parameters for TNNOESY pulse sequence (M)</td>
</tr>
<tr>
<td>tnroesy</td>
<td>Set up parameters for TNROESY pulse sequence (M)</td>
</tr>
<tr>
<td>tnryoey</td>
<td>Set up parameters for TNOESY pulse sequence (M)</td>
</tr>
<tr>
<td>tntoecs</td>
<td>Set up parameters for TNTOCSY pulse sequence (M)</td>
</tr>
<tr>
<td>Tocsy</td>
<td>Convert the parameters to a TOCSY experiment (M)</td>
</tr>
<tr>
<td>Tocsy1d</td>
<td>Convert the parameter set to a Tocsy1d experiment (M)</td>
</tr>
<tr>
<td>TocsyHT</td>
<td>Set up the tocsyHT experiment (M)</td>
</tr>
<tr>
<td>tof</td>
<td>Frequency offset for observe transmitter (P)</td>
</tr>
<tr>
<td>tpwr</td>
<td>Observe transmitter power level with linear amplifiers (P)</td>
</tr>
<tr>
<td>tpwrf</td>
<td>Observe transmitter fine power (P)</td>
</tr>
</tbody>
</table>
t1

T_1 exponential analysis (M)

Description: Processes data obtained using an array of values of the parameter d2 for a \(T_1 \) experiment. It runs `expfit`, which does an exponential curve fitting that determines the value of \(T_1 \). The output is matched to the equation:

\[
M(t) = (M(0) - M0) \cdot \exp(-t/T1) + M0
\]

where \(M0 \) is the equilibrium Z magnetization and \(M(0) \) is the magnetization at time zero (e.g., immediately after the 180° pulse for an inversion recovery \(T_1 \) experiment). Notice that this equation will fit inversion recovery data (for which \(M(0) \) is approximately equal to \(-M0 \)) or saturation recovery data (for which \(M(0) \) is 0).

The required input is the file `fp.out` from `fp` and the values of the arrayed parameter. The \(T_1 \) analysis is done for all the peaks listed in `fp.out`. Peaks are selected for analysis by entering `fp(index1,index2,...)` before running the analysis. The output file is the `analyze.list` in the current experiment. The file `analyze.out` is used by `exp1` to display the results. The output of the analysis program shows \(T_1 \) and its standard deviation, but does not explicitly show \(M(0) \), \(M0 \), or their standard deviations. The \(M(0) \) and \(M0 \) values can be found in “raw” form in `analyze.out` in the current experiment, but their standard deviations are not part of the program output.

See also: *NMR Spectroscopy User Guide*

Related:
- d2: Incremented delay in 1st indirectly detected dimension (P)
- expfit: Make least squares fit to polynomial or exponential curve (C)
- fp: Find peak heights (C)
- tls: \(T_1 \) exponential analysis with short output table (M)
- t2: \(T_2 \) exponential analysis (M)
- t2s: \(T_2 \) exponential analysis with short output fable (M)

Related:
- d2: Incremented delay in 1st indirectly detected dimension (P)
- expfit: Make least squares fit to polynomial or exponential curve (C)
- fp: Find peak heights (C)
- tls: \(T_1 \) exponential analysis with short output table (M)
- t2: \(T_2 \) exponential analysis (M)
- t2s: \(T_2 \) exponential analysis with short output fable (M)

t1s

T_1 exponential analysis with short output table (M)

Description: Performs the same analysis as `t1` but produces a short output table showing only a summary of the measured relaxation times.
See also: *NMR Spectroscopy User Guide*

Related: `t1`
`T1 exponential analysis (M)`

t2
T₂ exponential analysis (M)

Description: Processes data obtained using an array of values for the base time parameter `bt` for a `T₂` experiment. It runs `expfit`, which does an exponential curve fitting that determines the value of `T₂`. The output is matched to the equation:

\[M(t) = (M(0) - M(\text{inf}))*\exp(-t/T2) + M(\text{inf}) \]

where `M(0)` is the magnetization at time zero (i.e., the full magnetization excited by the observe pulse) and `M(\text{inf})` is the xy-magnetization at infinite time (zero unless the peak is sitting on an offset baseline).

The required input is the file `fp.out` from `fp` and the values of the arrayed parameter. The `T₂` analysis is done for all the peaks listed in `fp.out`. Peaks are selected for analysis by entering `fp(index1,index2,...)` before running the analysis. The output file is the file `analyze.list` in the current experiment. The file `analyze.out` is used by `exp1` to display the results.

The output of the analysis program shows `T₂` and its standard deviation, but does not explicitly show `M(0)`, `M(\text{inf})`, or their standard deviations. The `M(0)` and `M(\text{inf})` values can be found in “raw” form in `analyze.out` in the current experiment, but their standard deviations are not part of the program output.

See also: *NMR Spectroscopy User Guide*

Related: `expfit`
Make least squares fit to polynomial or exponential curve (C)

`fp`
Find peak heights (C)

`t1`
`T1 exponential analysis (M)`

`t1s`
`T1 exponential analysis with short output table (M)`

`t2s`
`T2 exponential analysis with short output table (M)`

t2s
T₂ exponential analysis with short output table (M)

Description: Performs the same analysis as `t2` but produces a short output table showing only a summary of the measured relaxation times.

See also: *NMR Spectroscopy User Guide*

Related: `t2`
`T₂ exponential analysis (M)`

tabc
Convert data in table order to linear order (M)

Syntax: `tabc<dimension>`

Description: Converts arbitrarily ordered data obtained under control of an external AP table to linear monotonic order, suitable for processing in VnmrJ. The data must have been acquired according to a table in the `tablib` directory.

Imaging and other 2D experiments are normally acquired so that the order of the incremented acquisition parameter, such as the phase-encode gradient, is linear and monotonic. For a standard imaging experiment, this linear order means that the phase-encode gradient progresses from a starting negative value monotonically up through zero to a positive value (e.g., –64, –63, –62, ..., –1, 0, 1, ..., 62, 63). The `ft2d` program assumes this structure in its operation.

Data from table-driven 2D pulse sequences is used by entering `tabc only once` before normal 2D processing and/or parameter storage. In this situation, `tabc` takes no arguments and is executed by entering `tabc` in the command window. A simple check is done by `tabc` to prevent it from being executed more than once on the same data set.
2D data is expected to be in the standard VnmrJ format, but if the 2D data is in the compressed format, setting \texttt{dimension} to 1 converts the data. \texttt{tabc} supports all 2D data types recognized by VnmrJ: arrayed, compressed multislice, and arrayed compressed multislice.

3D data is expected to be in the compressed/standard format, in which there are \texttt{ni} standard 2D planes of data (the third dimension), each consisting of \texttt{nf} compressed FIDs (the second dimension). Setting \texttt{dimension} to 3 reorders 3D data acquired with an external table.

\texttt{tabc} reads the file \texttt{fid} in the \texttt{acqfil} subdirectory of the current experiment. Before the data is reordered, this file is written to the file \texttt{fid.orig} in the same \texttt{acqfil} directory. If for any reason \texttt{tabc} fails or results in an unpredictable or undesired transformation, the original raw data can be recovered by moving \texttt{fid.orig} back to \texttt{fid}. To gain more disk space, you can delete \texttt{fid.orig} after you are satisfied that conversion is successful.

Use \texttt{tabc} on saved data that has been loaded into an experiment or on data in an experiment that has just been acquired but not yet saved. In the first case, converted data must be resaved for the saved data set to reflect conversion.

\texttt{tabc} requires that data must have the same number of “traces” as the table elements. It does not support any of the advanced features of table expansion (e.g., the entire table must be explicitly listed in the table file), and expects to find only one table in a file; whether the table is t1 or t60 is unimportant.

Arguments: \texttt{dimension} specifies the type of data to be converted: 1 for 2D compressed data, 2 for 2D standard data, or 3 for 3D compressed/standard data. The default is 2.

Examples:
- \texttt{tabc}
- \texttt{tabc(1)}
- \texttt{tabc(3)}

See also: \textit{VnmrJ Imaging NMR}

Related:
- \texttt{flashc} Convert compressed 2D data to standard 2D format (C)
- \texttt{ft2d} Fourier transform 2D data (C)
- \texttt{ni} Number of increments in 1st indirectly detected dimension (P)
- \texttt{nf} Number of FIDs (P)

\textbf{tan} \hspace{1cm} \textit{Find tangent value of an angle (C)}

Syntax: \texttt{tan(angle):<n>}

Description: Finds the tangent of an angle.

Arguments:
- \texttt{angle} is an angle, in radians.
- \texttt{n} is the return value giving the tangent of \texttt{angle}. The default is to display the tangent value in the status window.

Examples:
- \texttt{tan(.5)}
- \texttt{tan(val):tan_val}

See also: \textit{User Programming}

Related:
- \texttt{atan} Find arc tangent value of a number (C)
- \texttt{cos} Find cosine value of an angle (C)
- \texttt{exp} Find exponential value of a number (C)
- \texttt{ln} Find natural logarithm of a number (C)
- \texttt{sin} Find sine value of an angle (C)

\textbf{tape} \hspace{1cm} \textit{Read tapes from VXR-style system (M,U)}

Syntax: (From VnmrJ) \texttt{tape(-d device,><type,>option <,file1,file2,...>)}
(From UNIX) `tape -d device> <type> <option> <file1> <file2>...

Description: Displays the contents of a VXR-style (Gemini, VXR-4000, or XL) 9-track tape for use with VnmrJ or reads one or several files from the tape into the current directory. Note that the `write` option is not supported (i.e., VnmrJ only `reads` tapes in a VXR-style format and does not write to a tape).

Arguments: `device` is the tape drive device name. The default value is `/dev/rst8`. For AIX systems, `device` should be `/dev/rmt0`. If the default value is not set properly or another device name is wanted, be sure to type `-d` and a space before the device name you want to input.

`type` is the type of tape to be accessed. `-q' or `-s' select the 1/4-inch tape unit ("streaming" or cartridge tape); this is the default. `-9', `-h', or `-n' select the 1/2- inch tape unit (open reel tape drive).

`option` is one of the following:

- 'help' is a keyword to display help on the use of the system.
- 'cat' is a keyword to display a catalog of files on tape.
- 'read' is a keyword to read one or more files. This option requires that the files be listed as the next argument.
- 'rewind' is a keyword to rewind tape (1/2-inch tape only).
- 'quit' is a keyword to release the tape drive (1/2-inch tape only).

`file1, file2, ...` are the names of one or more files to be read. Wildcard characters (* and ?) can be used.

Examples:
```
tape ('cat')
tape ('-h','read','mydata')
tape -h read mydata
```
```
tape -d /dev/rmt/0lb read mydata
```

Related:
`decomp` Decompose a VXR-style directory (C)
`vxr_unix` Convert VXR-style text files to UNIX format (M,U)

`tape` Control tape options of files program (P)

Description: Defines device that `files` program accesses when it is instructed to read or write to a tape. The parameter `tape` is in the user’s global parameter tree.

Values: Name of a device. The default device is `/dev/rst8`. If `tape` does not exist or is set to the null string (two single quotes with no space between), `files` uses its default device value. Notice that different computers define tape drives differently. For VnmrSGI, `tape='/dev/tapens'` is appropriate. For Solaris, `tape='/dev/rmt/0mb'`.

Related:
`files` Interactively handle files (C)

`target_bval` Adjust gdiff to achieve target b-value (M)

Applicability: Imaging Systems

Syntax: `target_bval(value)`

Description: This macro iteratively adjusts `gdiff` and calls the sequence `go ('check')` to achieve the target `b-value`. The sequence is evoked because the contributions from the imaging gradients must be taken into account backwards calculation of `b` is not possible because the relationship between `gdiff` and `b-value` is not simple. The macro defaults to getting within
1 s/mm² of the target or maximum of 20 iterations and exits if either condition is met.

Arguments: value, the target b-value in s/mm².
Examples: target_bval(1000)
See also: VnmrJ Imaging User’s Guide

tchan
RF channel number used for tuning (P)
Description: Set by the protune macro.
See also: NMR Spectroscopy User Guide
Related: protune Macro to start ProTune (M)
atune ProTune Present (P)
mtune Tune probe using swept-tune graphical display (M)
tugain Receiver gain used in tuning (P)
tunesw Width of the tuning sweep in Hz (P)
tupwr Transmitter power used in tuning (P)

tcl
Send Tcl script to Tcl version of dg window (C)
Syntax: tcl(script)
Description: Sends a Tcl (Tool Command Language) script to the Tcl version of the dg window. If this window is not active, this command does nothing.
Arguments: script is any legal Tcl script.
See also: User Programming
Related: dg Display group of acquisition/processing parameters (C)

temp
Open the Temperature Control window (C)
Applicability: Systems with a variable temperature (VT) controller.
Description: Opens the Temperature Control window, which has the following capabilities:
• Turn temperature control off.
• Set temperature control on at a specified temperature in degrees C.
• Enable temperature control from within an experiment using the temp parameter and the su, go, ga, or au macros. This mode is the default.
• Alternatively, turn off experiment control of the temperature and allow only the Temperature Control window (and sethw) to set the temperature. This mode has the advantage that, often times, temp is different between experiments. Joining a different experiment and entering go can unexpectedly change the temperature. This mode prevents this problem.
• Resetting the temperature controller when the temperature cable is reconnected to a probe.
See also: NMR Spectroscopy User Guide
Related: acqi Interactive acquisition display process (C)
au Submit experiment to acquisition and process data (M)
ga Submit experiment to acquisition and FT the result (M)
go Submit experiment to acquisition (M)
readhw Read current values of acquisition hardware (C)
sethw Set values for hardware in acquisition system (C)
su Submit a setup experiment to acquisition (M)
temp **Sample temperature (P)**

Applicability: Systems with a variable temperature (VT) module.

Description: Sets the temperature of sample.

Values: ‘n’ or -150 to +200, in steps of 0.1°C. ‘n’ instructs the acquisition system not to change the VT controller and to ignore temperature regulation throughout the course of the experiment.

See also: NMR Spectroscopy User Guide

Related:
- `readhw` Read current values of acquisition hardware (C)
- `temp` Open the Temperature Control window (C)
- `tempcal` Temperature calculation (C)
- `tin` Temperature interlock (P)
- `vtc` Variable temperature cutoff point (P)

tempcal **Temperature calculation (C)

Applicability: Systems with a variable temperature (VT) module.

Syntax:
```
tempcal(solvent)<:temperature>
```

Description: For exact determination of sample temperature when using the VT unit, a temperature calibration curve must be made for each probe used. All data, such as gas flow, must be noted. Use samples of ethylene glycol for high-temperature calibration, and use samples of methanol for low-temperature calibration. To make the calculation:

- Bring the sample to the desired temperature and allow sufficient time for equilibration, then obtain a spectrum.
- Next, align two cursors on the two resonances in the spectrum, then enter `tempcal('e')` for ethylene glycol, or enter `tempcal('m')` for methanol. The temperature is calculated based on the difference frequency between the cursors.

Arguments:
- `solvent` is the sample solvent: ‘glycol’, ‘e’, or ‘g’ for ethylene glycol, or ‘methanol’ or ‘m’ for methanol.
- `temperature` returns the calculated value of the sample temperature. The default is the system displays the value.

Examples:
```
tempcal('glycol')
tempcal('m'):temp
```

See also: NMR Spectroscopy User Guide

tempcalc Measure approximate sample temperature in Cold Probes (M)

Applicability: Systems with Varian, Inc. Cold Probes

Description: Measure the approximate sample temperature and the actual sample temperature gradient and generate a report. Requires a ~1% HOD CH₃CN sample.

testacquire **Test acquire mode (P)**

Description: Allows test acquisitions to be done while a study queue is active, without using the study queue. When this mode is enabled, acquisitions do not update the...
status of the currently loaded experiment in the study queue, and data is not saved in the study queue. This mode is set from the Test mode check box in the Acquisition menu or from the command line.

Syntax: `testacquire=<'y' or 'n'>`

Values: 'y' test acquire mode enabled
'n' test acquire mode disabled

Related: `acquire` Acquire data (M)
 `save` Save data (M)

testct

Check ct for resuming signal-to-noise testing (M)

Description: Used by the `testsn` macro to decide when to resume testing of signal-to-noise. See the description of `testsn` for details.

See also: *NMR Spectroscopy User Guide*

Related: `ct` Completed transients (P)
 `testsn` Test signal-to-noise of a spectrum (M)

testsn

Test signal-to-noise of a spectrum (M)

Description: Part of the automatic periodic signal-to-noise testing that occurs during various automated acquisitions, most notably `c13`. Transforms the data using `fn=16000`, and then baseline corrects, setting the left-most 10% of the spectrum and the right-most 2% as baseline. After the baseline correction, `testsn` uses `getsn` to calculate the signal-to-noise.

- If signal-to-noise exceeds the desired goal in parameter `sn` (found in the standard carbon parameter set `/vnmr/stdpar/c13`), `testsn` aborts the experiment using the command `halt`, which initiates processing according to the `wexp` parameter.

- If signal-to-noise is not reached, `testsn` estimates the signal-to-noise ratio at the end of the experiment. If signal-to-noise target will not be reached by then, it cancels subsequent signal-to-noise testing, but allows the experiment to proceed.

- If the signal-to-noise target will be reached before the end of the experiment, it saves the estimated number of transients required to reach the goal in the parameter `r7` (using a conservative estimate), and then sets the processing at future blocks to be only `testct`, which simply tests if `ct` is greater than `r7`, and, if so, resumes testing of signal-to-noise with `testsn`.

See also: *NMR Spectroscopy User Guide*

Related: `c13` Automated carbon acquisition (M)
 `fn` Fourier number in directly detected dimension (P)
 `getsn` Get signal-to-noise estimate of a spectrum (M)
 `halt` Abort acquisition with no error (C)
 `r1–r7` Real parameter storage for macros (P)
 `sn` Signal-to-noise ratio (P)
 `testct` Check ct for resuming signal-to-noise testing (M)
 `wexp` Specify action when experiment completes (C)

teststr

Find which array matches a string M)

Syntax: `teststr(parameter,string <,tree>):$ret`
Description: The teststr command requires at least two arguments. The first is the name of a string parameter. The first argument must generally be enclosed in single quotes. The teststr command needs the name of the parameter, not its values. The second is a string. The optional third argument is the parameter tree. The default is current.

Macro parameters can be used as the first argument. In this case, the third argument must be 'local'.

This command sets $ret to the index of the array element that matches the second argument. If none of the array values of the parameter match the second argument, a zero is returned.

Examples: n1='hello','labas','gidday','hola','bonjour','ciao'
teststr('n1','labas'):r1
sets r1=2, since 'labas' matches element 2 of the n1 array.

The elements do not need to be single words. For example,

n1='good night','labanaktis','bonne nuit','gute Nacht','boa noite','buonas noces'
teststr('n1','boa noite'):r1
sets r1=5. The strings must match exactly, including upper and lower case

teststr('n1','gute nacht'):r1
sets r1=0, since the lower case n in nacht does not match the upper case N in Nacht.

For local dollar variables, the 'local' argument must be used. Again, enclose the name of the local parameter in single quotes.

$greet='hello','labas','gidday','hola','ciao'
teststr('$greet','labas','local'):r1

Display text or set new text for current experiment (C)

Syntax: text<(text_string)><:string_variable>

Description: Associated with each experiment is a text file, consisting of a block of text, that can be used to describe the sample and experiment. text allows displaying the text file and changing the text file for the current experiment. A UNIX text editor, such as vi, or the macro textvi can also be used to edit the text file of the current experiment.

Arguments: text_string is a string of text that replaces the existing text file. The default is to display the text file in the current experiment. The characters \ or \n can be used in the string to denote a new line, and the characters \t can be used to denote a tab (see example below).

string_variable returns the text in text_string as a string variable. Thus, for example, the text:n1 and text(n1+'cosy experiment') commands, where n1 is a string, can be used in a macro to add a "cosy experiment" to the text. An equivalent operation using the atext command would be atext('cosy experiment').

Examples: text('Sample 101	CDCl3\13 February')

See also: NMR Spectroscopy User Guide

Related: atext Append string to the current experiment text (M)
current Clear the text of the current experiment (C)
currentdir Current experiment directory (P)
display Display a text file in the graphics window (C)
puttxt Put text file into another file (C)
textvi Edit text file of current experiment (M)
vmnrprint Print text files (U)
textis

Return the current text display status (C)

Syntax: (1) textis(command):$yes_no
(2) textis:$display_command

Description: Determines if a command given by the user currently controls the text window (syntax 1) or returns the name of the command currently controlling the text window (syntax 2).

Arguments: command is the name of a command that potentially may be controlling the text window.

$yes_no returns 1 if command controls the text window, or 0 if it does not.

$display_command returns the name of the command currently controlling the text window.

Examples: textis:$display
if ($display = 'dg') then . . . endif

See also: User Programming

Related: graphis Return the current graphics display status (C)

textvi

Edit text file of current experiment (M)

Description: Edits the text file of the current experiment using the UNIX text editor vi. textvi is equivalent to the command vi(curexp+'/text')

See also: NMR Spectroscopy User Guide

Related: edit Edit a file with user-selectable editor (M)
text Display text or set new text for current experiment (C)
vi Edit text file with vi editor (M)

th

Threshold (P)

Description: Sets threshold for printout of peak frequencies so that peaks greater than th on the plot appear on any peak listings. th is always bipolar (i.e., negative peaks greater in magnitude than th also appear in peak listings). Values: 0 to 1e9, in mm.

See also: NMR Spectroscopy User Guide

Related: thadj Adjust threshold for peak printout (M)

th2d

Threshold for integrating peaks in 2D spectra (P)

Description: Used by 112d when determining the bounds of a peak and calculating its volume. To create the 2D peak picking parameters th2d and xdiag in the current experiment, enter addpar('112d'). Values: From 0.0 to 1.0. If th2d=1.0, 112d integrates all points in the peak that are above the current threshold for the spectrum (i.e., the portion of the peak that can be seen in a contour plot of the spectrum). A smaller value causes 112d to integrate a larger area when determining the volume of a peak. If th2d=0.5, for example, 112d integrates all points in a peak that are above 0.5 times the current threshold.

See also: NMR Spectroscopy User Guide

Related: addpar Add selected parameters to the current experiment (M)
112d Automatic and interactive 2D peak picking (C)
xdiag Threshold for excluding diagonal peaks when peak picking (P)
thadj

Adjust threshold for peak printout (M)

Syntax:

```plaintext
thadj< (max_peaks<, noise_mult<, llarg1<, llarg2>>>)>
```

Description:
Adjusts the threshold th so that no more than a specified maximum number of peaks are found in a subsequent line listing (see nll) and so that th is at least a specified noise multiplier times the root-mean-square noise level.

Arguments:
- `max_peaks` is the maximum number of peaks in the displayed spectral range. The default is $wc/4$ (i.e., the threshold is adjusted such that ppf will produce a “reasonable” number of lines with any width of plot).
- `noise_mult` is a noise multiplier used to calculate the minimum value for th from the size of the root-mean-square noise.
- `llarg1` is the `noise_mult` argument (the default is 3) to the `nll` command used inside this macro
- `llarg2` is the keyword argument (‘pos’, ‘neg’, ‘all’; the default is ‘all’) to the `nll` command used inside this macro.

Examples:

```plaintext
thadj
thadj(50)
thadj(200,4)
thadj(200,4,2)
thadj(200,4,2,’pos’)
```

See also: NMR Spectroscopy User Guide

Related:
- `nll` Find line frequencies and intensities (C)
- `ppf` Plot peak frequencies over spectrum (M)
- `th` Threshold (P)
- `vsadj` Automatic vertical scale adjustment (M)
- `vsadj2` Automatic vertical scale adjustment by powers of two (M)
- `vsadjc` Automatic vertical scale adjustment for 13C spectra (M)
- `vsadjh` Automatic vertical scale adjustment for 1H spectra (M)
- `wc` Width of chart (P)

time

Display experiment time or recalculate number of transients (M)

Syntax:

```plaintext
time<(<hours,>minutes)>
```

Description:
Estimates the acquisition time or recalculates the number of transients so that the total acquisition time is approximately the requested time. The parameters looked at when calculating the time per transient are $d1$, $d2$, $d3$, at, ni, $sw1$, $ni2$, and $sw2$.

Arguments:
- `hours` and `minutes` are numbers making up a time to be used by the system to recalculate the parameter `nt` so that the total acquisition time is approximately the time requested; the default (no arguments) is for the system to estimate the acquisition time for a 1D, 2D, or 3D experiment using the parameters in the current experiment.

Examples:

```plaintext
time
time(2,45)
```

See also: NMR Spectroscopy User Guide

Related:
- `at` Acquisition time (P)
- `d1` First delay (P)
- `d2` Incremented delay in 1st indirectly detected dimension (P)
- `d3` Incremented delay in 2nd indirectly detected dimension (P)
- `exptime` Display experiment time (C)
- `ni` Number of increments in 1st indirectly detected dimension (P)
- `ni2` Number of increments in 2nd indirectly detected dimension (P)
\textbf{tln} \hspace{1cm} \textbf{Temperature interlock (P)}

Description: Controls error handling based on temperature regulation. If temperature regulation is lost, \texttt{tln} can be used to select whether an error is generated and acquisition is halted or whether a warning is generated and acquisition continues. In both cases, the lost regulation will cause \texttt{werr} processing to occur, thus providing a user-selectable mechanism to respond to VT failure.

Values: 'n' turns off the temperature interlock feature

'w' indicates the variable temperature regulation light is monitored during the course of the experiment and, if it starts to flash (regulation lost), a warning is generated; however, acquisition is not stopped.

'y' indicates the variable temperature regulation light is monitored during the course of the experiment and, if it starts to flash (regulation lost), the current data acquisition is stopped. The acquisition will not resume automatically if regulation is regained.

See also: \textit{NMR Spectroscopy User Guide}

Related: \texttt{in} Lock and spin interlock (P)

\texttt{werr} When error (P)

\textbf{tlt} \hspace{1cm} \textbf{First-order baseline correction (P)}

Description: When spectral display is active, the command \texttt{dc} turns on a linear drift correction (baseline correction). The result of this operation includes calculating a first-order baseline correction parameter \texttt{tlt}. The calculation is made by averaging of a small number of points at either end of the display and drawing a straight line baseline between them.

See also: \textit{NMR Spectroscopy User Guide}

Related: \texttt{cdc} Cancel drift correction (C)

\texttt{dc} Calculate spectral drift correction (C)

\texttt{lvl} Zero-order baseline correction (P)

\textbf{tmove} \hspace{1cm} \textbf{Left-shift FID to time-domain cursor (M)}

Description: Provides an alternative method of left shifting time-domain data. To use this method, position the right time cursor at the place that should be the start of the FID, then enter \texttt{tmove}. This adjusts \texttt{lsfid} to left-shift the FID.

See also: \textit{NMR Spectroscopy User Guide}

Related: \texttt{lsfid} Number of complex points to left-shift \texttt{np} FID (P)

\textbf{tmsref} \hspace{1cm} \textbf{Reference 1D proton or carbon spectrum to TMS (M)}

Syntax: \texttt{tmsref:tms_found}

Description: Tries to locate a TMS line. If found, \texttt{tmsref} re-references the spectrum to the TMS line and returns a 1 to the calling macro; if not found, \texttt{tmsref} returns 0 and the referencing is left as it was. In the case of other signals (e.g., from silicon grease) immediately to the left of the TMS line (even if they are higher than the reference line), \texttt{tmsref} tries avoiding those by taking the rightmost line in that area, as long as it is at least 10\% of the main Si-CH\textsubscript{3} signal. Large signals within
0.6 ppm for 1H (or 6 ppm for 13C) to the right of TMS may lead to misreferencing.

Arguments:
\texttt{tms_found} returns 1 if a TMS line was located or returns 0 if not.

See also: \textit{NMR Spectroscopy User Guide}

\textbf{Related:} \texttt{c13} Automated carbon acquisition (M)
\texttt{h1} Automated proton acquisition (M)

\textbf{tn} \hspace{1cm} \textbf{Nucleus for observe transmitter (P)}

Description: Changing the value of \texttt{tn} causes a macro (\texttt{_tn}) to be executed that extracts values for \texttt{sfrq} and \texttt{tof} from lookup tables. The tables, stored in the directory \texttt{/vnmr/nuctables}, are coded by atomic weights.

Values: In the lookup tables, typically given by \texttt{'H1'}, \texttt{'C13'}, \texttt{'P31'}, etc. The value \texttt{tn='lk'} sets the deuterium frequency, and also holds the lock current and switches the relay in the automated deuterium gradient shimming module, if present, so that deuterium signal may be observed without disturbing lock. The frequency is the same as \texttt{tn='H2'}.

See also: \textit{NMR Spectroscopy User Guide}

\textbf{Related:} \texttt{dn} Nucleus for first decoupler (P)
\texttt{dn2} Nucleus for second decoupler (P)
\texttt{dn3} Nucleus for third decoupler (P)
\texttt{sfrq} Transmitter frequency of observe nucleus (P)
\texttt{tof} Frequency offset for observe transmitter (P)

\textbf{tncosy} \hspace{1cm} \textbf{Set up parameters for TNCOSY pulse sequence (M)}

Description: Sets up a homonuclear correlation experiment (phase-sensitive version) with water suppression.

See also: \textit{NMR Spectroscopy User Guide}

\textbf{tndqcosy} \hspace{1cm} \textbf{Set up parameters for TNDQ COSY pulse sequence (M)}

Applicability: Systems with a linear amplifier on the observe channel and a T/R switch.

Description: Sets up a 2D J-correlation experiment with water suppression.

See also: \textit{NMR Spectroscopy User Guide}

\textbf{tnmqcosy} \hspace{1cm} \textbf{Set up parameters for TNMQ COSY pulse sequence (M)}

Applicability: Systems with hardware digital phasemover for transmitting with direct-synthesis rf; otherwise, software small-angle phasemover for transmitting with the old-style rf is used.

Description: Sets up a multiple-quantum filtered COSY experiment with water suppression.

See also: \textit{NMR Spectroscopy User Guide}

\textbf{tnnoesy} \hspace{1cm} \textbf{Set up parameters for TN NOESY pulse sequence (M)}

Applicability: Systems with a linear amplifier on the observe channel and a T/R switch.

Description: Sets up a 2D cross-relaxation experiment with water suppression.

See also: \textit{NMR Spectroscopy User Guide}
tnroesy Set up parameters for TNROESY pulse sequence (M)
Description: Sets up a rotating-frame NOE experiment with water suppression.
See also: NMR Spectroscopy User Guide

tntocsy Set up parameters for TNTOCSY pulse sequence (M)
Applicability: Systems with T/R switch, computer-controlled attenuators, and linear
amplifiers on observe channel.
Description: Sets up a total-correlation spectroscopy experiment (HOHAHA) with water
suppression.
See also: NMR Spectroscopy User Guide

Tocsy Convert the parameters to a TOCSY experiment (M)
Description: Convert parameters to a TOCSY experiment.
See also: NMR Spectroscopy User Guide
Related: ft1dac Combined arrayed 2D FID matrices (M)
ft2dac Combined arrayed 2D FID matrices (M)
wft1dac Combined arrayed 2D FID matrices (M)
wft2dac Combined arrayed 2D FID matrices (M)

Tocsy1d Convert the parameter set to a Tocsy1d experiment (M)
Description: Convert the parameter set to a Tocsy1d experiment.
See also: NMR Spectroscopy User Guide
Related: Proton Set up parameters for 1H experiment (M).
sel1d Selective 1D protocols to set up (M).

TocsyHT Set up the TocsyHT experiment (M)
Description: Sets up parameters for a Hadamard-encoded tocsy experiment.
See also: NMR Spectroscopy User Guide
Related: htofs1 Hadamard offset in ni (P)
fn1 Fourier number in 1st indirectly detected dimension (P)
ni Number of increments in 1st indirectly detected dimension (P)
ft2d Fourier transform 2D data (C)
sethtfrql Set Hadamard frequency list from a line list (M)
Tocsy Set up parameters for a TOCSY pulse sequence (M)
htfrql Hadamard frequency list in ni (P)

tof Frequency offset for observe transmitter (P)
Description: Controls the exact positioning of the transmitter. As the value assigned to tof
increases, the transmitter moves to a higher frequency (toward the left side of
the spectrum). The minimum step size of tof is determined by the type of rf
hardware in the spectrometer. The limit is specified using the Step Size label in
the Spectrometer Configuration window. Systems with broadband style rf
(rftype='b') generally have 100-Hz resolution; all other systems have 0.1
Hz resolution.
Values: Approximate, depends on frequency–100000 to 100000, in Hz.
tpwr

Observe transmitter power level with linear amplifiers (P)

Applicability: Systems with a linear amplifier on the observe channel.

Description: Controls transmitter power. The value of the attenuator upper safety limit is set using the Upper Limit label in the Spectrometer Configuration window. Depending on hardware adjustments, the system may saturate at a given value of tpwr (i.e., values above a certain value may give equal output).

Values:
- On systems with 63-dB attenuator installed: 0 to 63 (63 is maximum power), in units of dB. About 55 to 60 is normal. Lower values (e.g., 49) might be used for water suppression experiments like 1-3-3-1.
- On systems with 79-dB attenuator installed: –16 to 63 (63 is maximum power), in units of dB.

CAUTION: Continuous power greater than 2 watts in a switchable probe will damage the probe. Always carefully calibrate power to avoid exceeding 2 watts. The maximum value for tpwr on a 200-MHz, 300-MHz, or 400-MHz system with a linear amplifier on the decoupler channel has been set to 49, corresponding to about 2 watts of power. Before using tpwr=49 for continuous decoupling, ensure safe operation by measuring the output power. This should be done during system installation and checked periodically by the user.

See also: NMR Spectroscopy User Guide

Related:
- config Determine current configuration and possibly change it (M)
- dof Frequency offset for first decoupler (P)
- dof2 Frequency offset for second decoupler (P)
- dof3 Frequency offset for third decoupler (P)
- rftype Type of rf generation (P)

tpwrf

Observe transmitter fine power (P)

Applicability: Systems with a fine attenuator on the observe transmitter channel.

Description: Controls the transmitter fine attenuator. Systems with this attenuator are designated using the Fine Attenuator label in the Spectrometer Configuration window. The fine attenuator is linear and spans 60 dB or 6 dB. If tpwrf is not present, enter create('tpwrf','integer') setlimit('tpwrf',4095,0,1) to create it.

Values: 0 to 4095, where 4095 is maximum power. If tpwrf does not exist in the parameter table, a value of 4095 is assumed.

See also: NMR Spectroscopy User Guide

Related:
- config Determine current configuration and possibly change it (M)
- dpwr Power level for first decoupler with linear amplifiers (P)
- dpwr2 Power level for second decoupler (P)
- dpwr3 Power level for third decoupler (P)
- dpwrf First decoupler fine power (P)
- fattn Fine attenuator (P)
- tpwrf Observe transmitter fine power (P)
tpwr
Observe transmitter power level with linear amplifier (P)

tpwr
Observe transmitter linear modulator power (P)

tpwr
Observe transmitter linear modulator power (P)

Description: Controls the power level on the observe transmitter linear modulator. The fine power control is linear and spans 0 to \(tpwr \).

Values: 0 to 4095, where 4095 is maximum power. If \(tpwr \) does not exist in the parameter table, a value of 4095 is assumed.

See also: NMR Spectroscopy User Guide

Related: config Determine current configuration and possibly change it (M)

dpwrf First decoupler fine power (P)

fattn Fine attenuator (P)

trace
Mode for n-dimensional data display (P)

Description: Sets the multidimensional data display mode.

Values: 'f1' displays the f1 axis horizontally and allows f1 traces to be displayed.
'f2' displays the f2 axis horizontally and allows f2 traces to be displayed.
'f3' displays the f3 axis horizontally and allows f3 traces to be displayed if the data set is 3D.

See also: NMR Spectroscopy User Guide

traymax Sample changer tray slots (P)

Applicability: Systems with an automatic sample changer.

Description: Specifies the type of sample changer. It also can be used to disable the sample changer. The value is set using the Sample Changer label in the Spectrometer Configuration window.

Values: 0 is setting for no sample changer present or, if a sample changer is attached, to disable the changer (None choice in the Spectrometer Configuration window). 9, 50, 100, 96, 48 are traymax values that indicate the number of sample slots for the corresponding sample changer (9 is for Carousel, 50 is for SMS/ASM 50 Sample, 100 is for SMS/ASM 100 Sample, 96 is for VAST, and 48 is for NMS, 768 for 768AS).

See also: VnmrJ Installation and Administration; VnmrJ Walkup

Related: config Display current configuration and possibly change it (M)

troesy Set up parameters for TROESY pulse sequence (M)

Description: Sets up parameters for the transverse cross-relaxation experiment in a rotating frame.

See also: NMR Spectroscopy User Guide

trunc Truncate real numbers (O)

Description: In MAGICAL programming, an operator that truncates real numbers.

Examples: \$3 = \text{trunc}(3.6)\$

See also: User Programming

Related: acos Find arc cosine of number (C)
asin Find arc sine of number (C)
tshift

Adjust tau2 to current cursor position (M)

Applicability: Systems with a solids module.

Description: Adjusts tau2 to make the current time cursor position the start of acquisition. As the time-domain cursor can move between points, this macro allows the accurate adjustment of tau2 so as to start another acquisition exactly at the top of an echo.

See also: User Guide: Solid-State NMR

tugain

Receiver gain used in tuning (P)

Description: Used internally by the protune macro to set the receiver gain.

See also: NMR Spectroscopy User Guide

Related:
- protune Macro to start ProTune (M)
- atune ProTune Present (P)
- mtune Tune probe using swept-tune graphical display (M)
- tchan RF channel number used for tuning (P)
- tunematch Default match target, in percent of optimum (P)
- tunesw Width of the tuning sweep in Hz (P)
- tupwr Transmitter power used in tuning (P)

tune

Assign a frequency to a channel for probe tuning (C)

Syntax:
1. \texttt{tune(freq1,<freq2,freq3,freq4>)}
2. \texttt{tune(chan1,freq1,<chan2,freq2,...>)}

Description: Assigns a frequency to a channel when tuning the probe. The frequency assignment remains in effect (as a tune frequency) until the next au or go command is executed. Although only the first synthesizer is connected to the tuning system, the console is programmed to set this synthesizer to the desired frequency based on the channel shown on the CHAN readout on the TUNE INTERFACE unit.

The \texttt{tune} program has two formats. If syntax 1 is used, frequencies are assigned to channels based on the order of the arguments. The first argument is interpreted and assigned to the first (observe) channel, the second argument is assigned to the second (decoupler) channel. A third or fourth argument would be interpreted and assigned in a similar manner.

If syntax 2 is used, the arguments are entered in pairs, with the first argument specifying the rf channel and the next argument specifying the frequency. \texttt{tune} selects the format based on the first argument. If the first argument is a name for an rf channel, syntax 2 is assumed; otherwise, syntax 1 is used.

Arguments: \texttt{freq1,freq2,freq3, and freq4} specify the frequency of the rf channel as a value in MHz (e.g., 200 or 300) or indirectly using the nucleus for tuning the probe (e.g., \texttt{H1} or \texttt{C13}). If a nucleus is entered, it must be found in the nucleus table. The frequency of any channel without an argument is unaffected. For example, \texttt{tune('H1','C13','N15')} sets the first channel to tune at...
the 1H, the second channel at 13C, and the third channel at 15N. If a fourth channel is present, it is not affected. Entering `tune('H1', 'C13', 200)` assigns the same frequencies for the first and second channels but the third channel tunes to 200 MHz, regardless of the proton frequency.

`chan1`, `chan2`, `chan3`, and `chan4` specify the channel directly:

- `'todev'` or `'ch1'` specify channel 1 (observe transmitter).
- `'dodev'` or `'ch2'` specify channel 2 (first decoupler).
- `'do2dev'` or `'ch3'` specify channel 3 (second decoupler).
- `'do3dev'` or `'ch4'` specify channel 4 (third decoupler).

Only one of these keywords is used per channel (do not enter the channel using just its number). If a channel does not have a keyword entered as an argument, that channel is not affected (e.g., `tune('ch4', 'P31')` selects the frequency corresponding to 31P on the fourth channel, but leaves the first three channels unaffected).

Examples:

```
tune('H1', 'C13', 'N15')
tune('H1', 'C13', 200)
tune('ch4', 'P31')
```

See also: `NMR Spectroscopy User Guide`

Related:

- `dfrq` Transmitter frequency of first decoupler (P)
- `dfrq2` Transmitter frequency of second decoupler (P)
- `dfrq3` Transmitter frequency of third decoupler (P)
- `go` Submit experiment to acquisition (C)
- `mtune` Tune probe using swept-tune graphical display (M)
- `qtune` Tune probe using swept-tune graphical tool (C)
- `sfrq` Transmitter frequency of observe nucleus (P)
- `spcfrq` Display frequencies of rf channels (M)
- `su` Submit a setup experiment to acquisition (C)
- `tune` Assign frequencies (C)

tunehf

Tune both H1 and F19 on an HFX probe (M)

Syntax: `tunehf('<x>')`

Description: Tune both H1 and F19 on an HFX probe. Including the optional argument, `tunehf('<x>')` also tunes the low band channel to dn (`dfrq`).

Arguments: `<x>` — low band channel to dn (`dfrq`)

See also: `NMR Spectroscopy User Guide`

Related:

- `protune` Macro to start ProTune (M)

tunematch

Default match target, in percent of optimum (P)

Description: The default match target, in percent of optimum. This local real parameter must be created. It is used as the match criterion in calls of the form `protune(599.96)`

See also: `NMR Spectroscopy User Guide` and `VnmrJ Walkup`

Related:

- `protune` Macro to start ProTune (M)
- `create` Create new parameter in a parameter tree (C)
- `atune` ProTune Present (P)
- `mtune` Tune probe using swept-tune graphical display (M)
- `tchan` RF channel number used for tuning (P)
- `tugain` Receiver gain used in tuning (P)
tunemethod Method to use for tuning (P)
Applicability: Liquids, VnmrJ Walkup, Automation
Description: Specify probe tuning method. Methods are located in:
$home/vnmrsys/tune/methods for local user or
/vnmr/tune/methods for access by all users.
The method determines the nucleus to tune and how coarse or fine the probe is
tuned as a percentage of the optimal pw.
Values: 'lohi' – tune low band to medium criterion then tune high band to medium
criterion
'<name>' – user defined method.
See also: NMR Spectroscopy User Guide and VnmrJ Walkup
Related: atune ProTune Present (P)
protune Macro to start ProTune (M)
wttune Specify when to tune (P)

tuneoff Turn off probe tuning mode on MERCURYplus/-Vx (M)
Applicability: MERCURYplus/-Vx systems.
Description: Takes a MERCURYplus/-Vx broadband system out of tuning mode by turning
off the transmitter directing rf to the probe. After entering tuneoff, be sure to
change the cables on the probe and magnet leg back to the normal BNC
connectors (as they were before they were moved for tuning purposes).
See also: Autoswitchable NMR Probes Installation

 tuneResult Message indicating how well the tuning succeeded (P)
Description: Message indicating how well the tuning succeeded. This local string parameter
is created by ProTune and set to a string describing the result of the tuning. The
first word of the message will be "ok" if tuning is successful, "failed" if it fails,
and "Warning:" if tuning was not done but the experiment should proceed.
See also: NMR Spectroscopy User Guide and VnmrJ Walkup
Related: protune Macro to start ProTune (M)

tunesw Width of the tuning sweep in Hz (P)
Description: Sets the width of the tuning sweep in Hz and is set by the protune macro.
See also: NMR Spectroscopy User Guide and VnmrJ Walkup
Related: protune Macro to start ProTune (M)
atune ProTune Present (P)
mtune Tune probe using swept-tune graphical display (M)
tchan RF channel number used for tuning (P)
tugain Receiver gain used in tuning (P)
tunematch Default match target, in percent of optimum (P)
tupwr Transmitter power used in tuning (P)
tupwr
Transmitter power used in tuning (P)

Description: The transmitter power used in tuning. The `aptune` pulse sequence uses this to set the transmitter power. Set by the `protune` macro.

See also: *NMR Spectroscopy User Guide* and *VnmrJ Walkup*

Related:
- `protune`
 Macro to start ProTune (M)
- `atune`
 ProTune Present (P)
- `mtune`
 Tune probe using swept-tune graphical display (M)
- `tchan`
 RF channel number used for tuning (P)
- `tugain`
 Receiver gain used in tuning (P)
- `tunematch`
 Default match target, in percent of optimum (P)
- `tunesw`
 Width of the tuning sweep in Hz (P)

typeof
Return identifier for argument type (O)

Syntax: `typeof`

Description: In MAGICAL programming, an operator that returns an identifier (0 or 1) for the type (real or string) of an argument.

Examples:
```
if typeof('$1') then $arg=1 else $arg=$1 endif
```

See also: *User Programming*

Related:
- `isreal`
 Utility macro to determine a parameter type (M)
- `isstring`
 Utility macro to determine a parameter type (M)
- `on`
 Make a parameter active or test its state (C)
- `size`
 Return number of elements in an arrayed parameter (O)
ultra8 Selects the Ultra 8 shim configuration (M)
Syntax: ultra8
Description: The ultra8 macro selects the Ultra 8 shim configuration and selects an appropriate template for the dgs command and manual shim panel. Administrator privilege is required to change the shim configuration. The shims are: z1c z2c x1 y1 xz yz xy x2y2.
Related: ultra18 selects the Ultra 18 shim configuration (M)

ultra18 Select 18 shim configuration for Ultra 18 shim power supply (M)
Syntax: ultra18
Description: Selects the 18 shim configuration for the Ultra 18 shim power supply and selects an appropriate template for the dgs command and manual shim panel. Administrator privilege is required to change the shim configuration.

The shims are: z1 z2c z2 z3c z4c x1 y1 xz yz xy x2y2 x3 y3 xz2 yz2 zxy zx2y2
Related: ultra8 selects the Ultra 8 shim configuration (M)

undospins Restore spin system as before last iterative run (M)
Description: Returns the values of the line assignments and the chemical shifts and coupling constants existing before the last iterative adjustment with spins('iterate'), and then runs spins. The parameters are returned from the file spini.inpar and the transitions from the file spini.savela in the current experiment.
undosy

Restore original 1D NMR data from sub experiment (M)

Description: Restores the 1D DOSY data stored by the dosy macro (if data exists) by recalling the data stored in the file subexp/dosy2Ddisplay in the current experiment. undosy and redosy enable easy switching between the 1D DOSY data (spectra as a function of gzlvl1) and the 2D DOSY display (signal as a function of frequency and diffusion coefficient).

See also: *NMR Spectroscopy User Guide*

Related: dosy Process DOSY experiments (M)
redosy Restore 2D DOSY display from subexperiment (M)

unit

Define conversion units (C)

Syntax:

```
unit<(suffix, label, m<b, tree><,'mult'|'div'> 
, b<,tree><,'add'|'sub'>}>  
```

Description: Defines a linear relationship that can be used to enter parameters with units. The unit is applied as a suffix to the numerical value (e.g., 10k, 100p). The definition of the linear relations follows the traditional $y=mx+b$ equation, where x is the input value and y is the converted result.

Entering the `unit` command with no arguments displays all currently defined units. To remove a unit, define the unit with a 0 for the slope.

A convenient place to put `unit` commands for all users is in the bootup macro. Put private `unit` commands in a user’s login macro.

Arguments:

- `suffix` is a string identifying the name for the unit. The length of the string is limited to 12 characters.
- `label` is a string for the name to be displayed when the `axis` parameter is set to the value of the suffix (if the suffix is only a single character). The length of the string is limited to 12 characters.
- `m` is the slope of the linear relationship, defined either as a numerical value or as the name of a parameter. If a parameter name is used, it may be optionally followed with the parameter tree to use (argument `tree`) and by another optional keyword that specifies whether the parameter value should be a multiplier (keyword `'mult'`) or divisor (keyword `'div'`).
- `tree` is the parameter tree to use (i.e., `'current'`, `'processed'`, `'global'`, or `'systemglobal'`). The default tree is `'current'`.
- `'mult'` is a keyword that specifies that a parameter value used for the slope should be a multiplier. This is the default for the slope.
- `'div'` is a keyword that specifies that a parameter value used for the slope should be a divisor.
- `b` is the intercept of the linear relationship, defined either as a numerical value or as the name of a parameter. If a parameter name is used, it may be optionally followed with the parameter tree to use (argument `tree`) and by another optional keyword that specifies whether the parameter value should be added (keyword `'add'`) or subtracted (keyword `'sub'`).
- `'add'` is a keyword that specifies that a parameter value used for the intercept should be added. This is the default for the intercept.
- `'sub'` is a keyword that specifies that a parameter value used for the intercept should be a subtract.
Examples: `unit`
Displays all currently defined units

`unit('k','kHz',1000)`
r1=10k will set r1 to 10000

`unit('p','ppm','reffrq','processed')`
r1=10p will set r1 to 10*reffrq, where reffrq from processed tree

`unit('p','','0')`
r1=10p will set r1 to 10 and give an error “unknown unit p”

`unit('F','degF',5/9,-32*5/9)`
r1=212F will set r1 to 100 (degrees C)

`unit('C','degC',9/5,32)`
r1=100C will set r1 to 212 (degrees F)

See also: *NMR Spectroscopy User Guide, User Programming*

Related: `axis` Axis label for displays and plots (P)

`bootup` Macro executed automatically when VnmrJ is activated (M)

unlock Remove inactive lock and join experiment (C)

Syntax: `unlock(exp_number,'force')`

Description: In attempting to join another experiment, the `jexp` command may abort claiming the experiment is locked. This feature prevents two users from processing the same experimental data at the same time, which could corrupt the data (a “user” can also be a background operation invoked by the same user, such as in `wexp` processing). This lock can be left behind if the program or the computer crashes.

The `unlock` command removes the lock if it is inactive and joins the unlocked experiment. The command will fail if the lock is still active (i.e., the process that made the lock is still executing) or if the lock was placed on the experiment by a remote host. The latter situation can only occur when one or more nodes are sharing the same file system (and experimental data).

Arguments: `exp_number` is the number of the experiment from 1 to 9 to be unlocked.

`force` unlocks an experiment under all circumstances and joins the unlocked experiment.

Examples: `unlock(3)`

See also: *NMR Spectroscopy User Guide*

Related: `jexp` Join existing experiment (C)

updatepars Update all parameter sets saved in a directory (M)

Syntax: `updatepars(directory)`

Description: Corrects saved parameter sets. Starting with VNMR version 4.2, all parameters, upper limit, lower limit, and step sizes have been tightened. Further additions were made in VNMR 4.3. `updatepars` searches a directory for parameter and FID files and corrects the procpar files found. This macro overwrites parameters in the current experiment. The corrections applied to the parameter sets are defined by the `parfix` macro. Because `updatepars` uses the current experiment to process the parameter sets, the experiment chosen for running `updatepars` should not contain a valuable data set.

Arguments: `directory` is the name of the directory to be searched.

Examples: `updatepars('myparlib')`
`updatepars('mydata')`
updateprobe
Update probe file (M)

Syntax:
updateprobe(<probe|'tmplt'>,<,'system'>)

Description: Updates the current existing probe file or probe template.

Arguments:
- **probe** is the probe parameter to update. The default is the current probe parameter value.
- `'tmplt'` is a keyword to update the local probe template. The default is the current probe file.
- `'system'` is a keyword to update the system template or probe file, providing you have write permission to the file. The default is to update the local template or probe file.

Examples:
- `updateprobe`
- `updateprobe('autosw')`
- `updateprobe('autosw','system')`
- `updateprobe('tmplt')`

See also: *NMR Spectroscopy User Guide*

Related:
addparams
getparam
setparams

updaterev
Update after installing new VnmrJ version (M)

Description: Updates experiment parameters and the global file following installation of a new VNMR software version. `updaterev` is called by the `makeuser` command during the installation process.

See also: *VnmrJ Installation and Administration*

updtgcoil
Update gradient coil (M)

Applicability: Systems with three-axis gradients.

Description: Creates the `gcoil` parameter, if it does not exist, and sets it to the current value of the system gradient coil `sysgcoil`. `updtgcoil` only executes if gradients are configured in the system.

The `updtgcoil` macro is called when a new experiment is joined or new parameters are read into an experiment; however, it is only called at these times if the `gcoil` parameter exists. If `sysgcoil` is set to a gradient table name and if the values of `sysgcoil` and `gcoil` are different, a message is displayed in the Status window to let the user know that the gradient coil parameters have been updated.

`updtgcoil` can be called directly if the user wants to update the parameter set with the `gcoil` and gradient table parameters.

See also: *NMR Spectroscopy User Guide; User Programming; VnmrJ Imaging NMR*

Related:
gcoil
`sysgcoil`

updtparam
Update specified acquisition parameters (C)

Description: Enables interactive updating of specified acquisition parameters.
Use “mark” output as deconvolution starting point (M)

Description: In some cases it is not possible to produce a line list that is a suitable starting point for a deconvolution (e.g., lines may overlap so severely that a line list does not find them). In this case, or in any case, the results of a “mark” operation during a previous spectral display (ds) may be used to provide a starting point. If the “mark” has been made with a single cursor, the information in the file mark1d.out contains only a frequency and intensity, and the starting linewidth is taken from the parameter slw.

If the “mark” is made with two cursors, placed symmetrically about the center of each line at the half-height point, mark1d.out contains two frequencies and an intensity. In this case, the starting frequency is taken as the average of the two cursor positions; the starting linewidth is taken as their difference (thus allowing different starting linewidths for each line).

See also: SpinCAD

Related: psgupdateoff Prevent update of acquisition parameters (C)
psgupdateon Enable update of acquisition parameters (C)

userdir VnmrJ user directory (P)

Description: Stores the full UNIX path of the directory that contains a user's private VnmrJ files. These include a user's private maclib, menulib, shims, psglib, experiments, etc. This parameter is initialized at bootup by the UNIX environmental variable vnmruser.

Values: Typical value is /home/vnmr2/vnmrsys

See also: NMR Spectroscopy User Guide

Related: curexp Current experiment directory (P)
systemdir VnmrJ system directory (P)

usergo Experiment setup macro called by go, ga, and au (M)

Description: Called by macros go, ga, or au before starting an experiment. The user typically creates usergo as a means to set up general experiment conditions.

See also: NMR Spectroscopy User Guide

Related: au Submit experiment to acquisition and process data (M)
ga Submit experiment to ac acquisition and FT the result (M)
go Submit experiment to acquisition (M)
go_ Pulse sequence setup macro called by go, ga, and au (M)

userfixpar Macro called by fixpar (M)

Description: Called by the macro fixpar to provide an easy mechanism to customize parameter sets.

See also: NMR Spectroscopy User Guide

Related: fixpar Correct parameter characteristics in experiment (M)
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vast1d</td>
<td>Set up initial parameters for VAST experiments (M)</td>
</tr>
<tr>
<td>vastget</td>
<td>Selects and displays VAST spectra (M)</td>
</tr>
<tr>
<td>vastglue</td>
<td>Assemble 1D datasets into a 2D (or pseudo-2D) datasets (M)</td>
</tr>
<tr>
<td>vastglue2</td>
<td>Assemble 1D datasets into a 2D (or pseudo-2D) datasets (M)</td>
</tr>
<tr>
<td>vastgo</td>
<td>Turn off LC stop flow automation, start VAST automation (M)</td>
</tr>
<tr>
<td>vbg</td>
<td>Run VNMR processing in background (U)</td>
</tr>
<tr>
<td>vf</td>
<td>Vertical scale of FID (P)</td>
</tr>
<tr>
<td>vi</td>
<td>Edit text file with vi text editor (M)</td>
</tr>
<tr>
<td>vibradd</td>
<td>Display relative amplitudes of Cold Probe vibrations (M)</td>
</tr>
<tr>
<td>vjhelp</td>
<td>Display VnmrJ help (U)</td>
</tr>
<tr>
<td>vn</td>
<td>Start VNMR directly (U)</td>
</tr>
<tr>
<td>vnmr</td>
<td>Start VNMR in current windowing system (U)</td>
</tr>
<tr>
<td>vnmr2sc</td>
<td>VNMR to SpinCAD pulse sequence translator (M)</td>
</tr>
<tr>
<td>vnmr_accounting</td>
<td>Open Accounting window (U)</td>
</tr>
<tr>
<td>vnmrexit</td>
<td>Exit from the VNMR system (C)</td>
</tr>
<tr>
<td>vnmrj</td>
<td>Start VnmrJ (U)</td>
</tr>
<tr>
<td>vnmrjcmd()</td>
<td>Commands to invoke the GUI popup (C)</td>
</tr>
<tr>
<td>vnmrplot</td>
<td>Plot files (U)</td>
</tr>
<tr>
<td>vnmrprint</td>
<td>Print text files (U)</td>
</tr>
<tr>
<td>vo</td>
<td>Vertical offset (P)</td>
</tr>
<tr>
<td>vp</td>
<td>Vertical position of spectrum (P)</td>
</tr>
<tr>
<td>vpaction</td>
<td>Set initial state for multiple viewports (M)</td>
</tr>
<tr>
<td>vpf</td>
<td>Current vertical position of FID (P)</td>
</tr>
<tr>
<td>vpf1</td>
<td>Current vertical position of imaginary FID (P)</td>
</tr>
<tr>
<td>vpset3def</td>
<td>Set the viewport state to three default viewports (M)</td>
</tr>
<tr>
<td>vpsetup</td>
<td>Set new viewports (M)</td>
</tr>
<tr>
<td>vs</td>
<td>Vertical scale (P)</td>
</tr>
<tr>
<td>vs2d</td>
<td>Vertical scale for 2D displays (P)</td>
</tr>
<tr>
<td>vsadj</td>
<td>Automatic vertical scale adjustment (M)</td>
</tr>
<tr>
<td>vsadj2</td>
<td>Automatic vertical scale adjustment by powers of 2 (M)</td>
</tr>
<tr>
<td>vsadjc</td>
<td>Automatic vertical scale adjustment for 13C spectra (M)</td>
</tr>
<tr>
<td>vsadjh</td>
<td>Automatic vertical scale adjustment for 1H spectra (M)</td>
</tr>
<tr>
<td>vsproj</td>
<td>Vertical scale for projections and traces (P)</td>
</tr>
<tr>
<td>vtairflow</td>
<td>Variable Temperature Air Flow (P)</td>
</tr>
<tr>
<td>vtairlimits</td>
<td>Variable Temperature Air Flow Limits (P)</td>
</tr>
<tr>
<td>vtc</td>
<td>Variable temperature cutoff point (P)</td>
</tr>
<tr>
<td>vtcpcomplvl</td>
<td>Variable temperature compensation for gradient shimming (P)</td>
</tr>
<tr>
<td>vtttype</td>
<td>Variable temperature controller present (P)</td>
</tr>
<tr>
<td>vtwait</td>
<td>Variable temperature wait time (P)</td>
</tr>
<tr>
<td>vxr_unix</td>
<td>Convert VXR-style text files to UNIX format (M,U)</td>
</tr>
</tbody>
</table>
vast1d
Set up initial parameters for VAST experiments (M)

Applicability: Systems with VAST accessory.

Description: Sets up initial VAST parameters from the /vnmr/stdpar directory or from the user's stdpar directory if the appropriate file exists there. Any changes made to the files in these directories are reflected in the setup. The file /vnmr/stdpar/vast1d.par contains the “default” parameters for VAST spectra and should be modified as needed to produce spectra under desirable conditions. After running vast1d, the solvent parameter can be set by choosing it from the list of solvents listed in /vnmr/solvents.

See also: *NMR Spectroscopy User Guide*

vastget
Selects and displays VAST spectra (M)

Applicability: Systems with VAST accessory.

Syntax: vastget(<well>,<well>, ...)

Description: Selects and displays the spectra from any arbitrary well or wells using the well label(s) as arguments. The spectra are displayed in a dss stacked plot.

Arguments:
- **well** is the well label from which you want to select and display spectra. The wells are labeled [A->H][1-8].

Examples: vastget('B6','B7','C11','G3')

See also: *NMR Spectroscopy User Guide*

vastglue
Assemble 1D datasets into a 2D (or pseudo-2D) datasets (M)

Applicability: Systems with the VAST accessory.

Syntax:
- vastglue(<rack>,<zone>)
- vastglue(<glue order>,<plate>)

Description: Used to artificially reconstruct a 2D datasets from a series of 1D data sets having similar filenames. It is crucial to ensure that the format of the file names of each of the 1D data sets is identical. vastglue reads in each 1D file, in succession, and adds it to the previous data, but in a 2D format. It assumes that file names are of the format obtained when using the default setting of autoname (autoname=''). If autoname has been redefined, use a macro like vastglue2. Save the resulting reconstructed 2D datasets in the normal manner using svf.

Arguments:
- **rack** is the rack number; the default is 1. If you enter a rack number, you must also enter a zone number.
- **zone** is the zone number; the default is 1. If you want to specify a zone number, you must enter a rack number.
- **glue order** is the specific glue order to be defined based on the order defined in a plate_glue file. If glue order is specified, you can provide a plate number as the second argument and used with the glue order argument.

See also: *NMR Spectroscopy User Guide*

Related:
- autoname Prefix for automation data file (P)
- vastglue2 Assemble related 1D datasets into a 2D (or pseudo-2D) datasets (M)
Syntax: `vastglue2<(number)>`

Description: Used to artificially reconstruct a 2D data set from a series of 1D datasets having similar filenames. It is crucial to ensure that the format of the file names of each of the 1D datasets is identical. `vastglue2` reads in each 1D file, in succession, and adds it to the previous data, but in a 2D format. It assumes that file names are of the format obtained using a nondefault setting of `autoname` (`autoname='filename_R%RACK:%_Z%ZONE:%_S%SAMPLE#:;'`). This definition must be hard coded into the macro by the user. If `autoname` has not been redefined, use a macro like `vastglue`. Save the resulting reconstructed 2D data set in the normal manner using `svf`.

Arguments: `number` is used to specify that only spectra from 1 through `number` are to be glued. The default is to glue all the spectra stored in the current directory that have the proper file name format (from 1 through `arraydim`).

See also: `NMR Spectroscopy User Guide`

Related:
- `autoname` Prex for automation data file (P)
- `vastglue` Assemble related 1D datasets into a 2D (or pseudo-2D) data set (M)

`vastgo`
Turn off LC stop flow automation, start VAST automation (M)

Applicability: Systems with the LC-NMR and VAST accessory

Description: Turns off LC stopped flow use of automation and starts VAST automation run.

`vbg`
Run VNMR processing in background (U)

Syntax: `(From UNIX) vbg exp_number command_string <prefix>`

Description: Enables user to perform VNMR tasks in the background. `vbg` (for “VNMR background processing”) must be run from within a UNIX shell, and no foreground or other background processes can be active in the designated experiment (e.g., if you are working in `exp2` in VNMR (in the foreground), you cannot execute background processing in `exp2` as well).

Foreground processing causes a lock file to be placed in the appropriate experiment. The file has a format such as `f.1268`, where 1268 indicates the process number in the process table (accessed in UNIX by entering the command `ps -e`). Background processing causes a lock file to be in the appropriate experiment as well. This file has a format such as `b.4356`, where 4356 indicates the process number. By displaying the files within an experiment, the user can readily determine whether any foreground or background processes are active in that experiment.

Arguments: `exp_number` is the number of the experiment, from 1 to 9, in the user’s directory in which the background processing is to take place.

`command_string` is the command string to be executed by VNMR in the background. Double quotes enclosing the string are mandatory (e.g., "fn=4096 fn1=2048 wft2da").

`prefix` is a prefix to be added to the name of the log file, making the name `prefix_bgf.log`. The default name is `exp_number_bgf.log`, where `exp_number` is the experiment number. The log file is placed in the experiment in which the background processing takes place.

Examples: (From UNIX) `vbg 1 "wft2da bc('f1')"`

(From UNIX) `vbg 3 "vsadj pl pscale pap page" plotlog`

See also: `User Programming`
vf

Vertical scale of FID (P)

Description: In normalized intensity (\textit{nm}) mode, \(\text{vf}\) is the height of the largest FID. In absolute intensity (\textit{ai}) mode, \(\text{vf}\) is a multiplier that is adjusted to produce a desired vertical scale, using the appearance on the display screen as a guide (full scale on the screen gives full scale on the plotter).

\(\text{vf}\) can be entered in the usual way or interactively controlled by clicking the middle mouse button in the graphics window during a FID display (click above the FID to increase \(\text{vf}\) or below the FID to decrease it).

Values: 1e–6 to 1e9, in mm (in \textit{nm} mode) or as a multiplier (in \textit{ai} mode).

See also: \textit{NMR Spectroscopy User Guide}

Related: \textit{ai} Select absolute intensity mode (C)
\textit{df} Display a single FID (C)
\textit{nm} Select normalized intensity mode (C)
\textit{sf} Start of FID (P)
\textit{wf} Width of FID (P)

vi

Edit text file with \textit{vi} text editor (M)

Syntax: \textit{vi(file)}

Description: Invokes the UNIX text editor \textit{vi} for editing the file name given. On the Sun workstation, a popup screen contains the editing window. On the GraphOn terminal, the main screen becomes the editing window. \textit{vi} is a powerful text editor, but its user interface is limited: the mouse is not used, menus are not available, and status information is virtually nonexistent.

\textit{vi} operates in three modes: the \textit{command mode} (for moving the cursor and editing text), the \textit{insert mode} (for inserting text into the file), and the \textit{last line mode} (for special operations). Each mode is described below.

Command mode

\textit{vi} starts up in the command mode. In this mode, user commands consist mostly of a single character, sometimes in combination with another character, or a number, or both. A number preceding a command typically defines how many times a command should be executed (e.g., 3\textit{dd} means delete three lines). The commands available include the following:

- \texttt{G} go to the start of the last line in the file
- \texttt{3G} go to the start of line 3
- \texttt{0} (zero) go to the start of the current line
- \texttt{$} go to the end of the current line
- \texttt{Return or +} go to start of next line
- \texttt{-} (hyphen) go to start of previous line
- \texttt{Ctrl-d} scroll down (forward) half a screen
- \texttt{Ctrl-f} scroll forward by a full screen
- \texttt{Ctrl-u} scroll up (back) half a screen
- \texttt{Ctrl-b} scroll back by a full screen
- \texttt{/expression} find next \textit{expression} and jump to its first character
- \texttt{?expression} find previous \textit{expression}, jump to its first character
- \texttt{n} find next \textit{expression} (from the last search)
- \texttt{N} find previous \textit{expression} (from the last search)
- \texttt{dd} delete one line and put it into the buffer
- \texttt{3dd} delete three lines and put them into the buffer
- \texttt{dw} delete word
Because there is no command line, these commands do not show up on the screen but are executed immediately (without pressing the Return key).

Insert mode

In the insert mode, characters typed on the keyboard (except for the Esc key) show up in the text. The insert mode is entered by typing one of the following commands from the command mode:

- `x` erase one character forward (under cursor)
- `X` erase one character backwards (before cursor)
- `3x` erase three characters forward
- `rcharacter` erase character and replace with character
- `ZZ` write if necessary and quit vi
- `.` (period) repeat the last command
- `u` undo the last command
- `J` join the next line to the current line
- `yy` or `Y` yank one line and put into a buffer (called yank buffer)
- `p` put contents of yank buffer after the cursor
- `P` put contents of yank buffer before the cursor
- `"aY` yank line into buffer a (buffers b to z also available)
- `"ap` put contents of buffer a below current line
- `"aP` put contents of buffer a above current line

You can insert special (normally nondisplayable) characters into the text if they are preceded by a Ctrl-v (e.g., entering Ctrl-v Ctrl-q is displayed in the text as ^Q).

Changing selected occurrences

The following actions find one or more occurrences of a particular word and change it to another word:

- First, type `/ word` and press Return, where / is a forward slash and word is word you want to change.
- Next, press `n` as necessary until you reach the occurrence of the word you want to change.
- Finally, type `cw newword` and press Esc, where newword is replacement word.
- To repeat for another occurrence of word, press `n` as necessary to scan forward, and then type `.` (a period) to repeat `cw newword` (or whatever was the last change)
Changing selected occurrences of an expression (one or more words) is similar. To change two words, for example, take the same actions as above but use the command `2cw` (or `c2w`) instead.

Last line mode

The last line mode is initiated with a colon; thereafter, commands such as the following can be used (press Return to execute these commands):

- `:r filename` read file named `filename` (insert in currently open file)
- `:w` write (save) file
- `:w filename` write under a new file named `filename`
- `:e filename` edit a different file named `filename`
- `:q` quit vi (only possible if file has been written back)
- `:wq` write back file (save changes) and quit vi
- `:q!` quit vi without saving changes

Exiting from vi is accomplished by using the `ZZ` command in the command mode, or with the `:q`, `:wq`, or `:q!` commands in the last line mode.

This description lists only a selection of the most important commands. For more information on vi, refer to UNIX books and manuals.

Examples:
- `vi(userdir+'/psglib/apt.c')`
- `vi(curexp+'/text')`

See also: *User Programming*

Related:
- `edit` Edit a file with user-selectable editor (M)
- `paramvi` Edit a parameter and its attributes with vi text editor (M)
- `macrovi` Edit a user macro with the vi text editor (C)
- `menuvi` Edit a menu with the vi text editor (M)
- `textvi` Edit text file of current experiment (M)

vibradd

Display relative amplitudes of Cold Probe vibrations (M)

- **Applicability:** Systems with Varian, Inc. Cold Probes
- **Description:** Display the relative amplitudes of the vibrations reaching the probe. Requires a doped HOD sample.

vjhelp

Display VnmrJ help (U)

- **Syntax:** `vjhelp file:///vnmr/jhelp/jhelp.html`
- **Description:** Displays the VnmrJ help in a Web browser.

vn

Start VNMR directly (U)

- **Syntax:** `(From UNIX) vn <-display Xserver> <-fn font> &`
- **Description:** Starts the VNMR application directly without checking the operating system and attempting to run the window manager.

- **Arguments:** `-display Xserver` specifies X server display (e.g., `hostname:0.0`). The default is the environment set by the `DISPLAY` variable.
- `-fn font` specifies the size of the font displayed (e.g., `9x15, 8x13, or 7x13`). The default is the font set in the `.Xdefaults` file. Note that the size of the font affects the size of the VNMR window.

- **Examples:** `vn &`
 - `vn -display hostname:0.0 &`
 - `vn -font 8x13 &`
See also: *NMR Spectroscopy User Guide*
Related: `vnmr` Start VNMR (U)

vnmr

Starts VnmrJ (U)

Applicability: VnmrJ
Syntax: `vnmr`
Description: Starts the VnmrJ application
See also: *NMR Spectroscopy User Guide*
Related: `vnmrj` Start VnmrJ (U)

vnmr2sc

VNMR to SpinCAD pulse sequence translator (M)

Syntax: `vnmr2sc<('sequence_name'<,rfchannels<,gradchannels>>)>`
Description: Converts the pulse sequence pointed to by the `seqfil` parameter in the current VNMR parameter set from a C program into a SpinCAD pulse sequence. The conversion result is stored in the local `spincad/psglib` under the same name as the C pulse sequence (i.e., the name stored in the `seqfil` parameter), but without the `.c` extension.

`vnmr2sc` uses `dps` output to generate the SpinCAD code, i.e., the pulse sequence must be compiled and must be displayable with `dps`. Pulse sequences that do not compile with the `dps` option cannot be translated. For the same reason, `vnmr2sc` cannot translate features that do not show up in `dps`. This means that go-time decisions (such as flag-based C if constructs) will *not* show up in the translated SpinCAD sequence. In such cases, you have two options:

- Translate the sequence several times, once for each of the relevant flag settings. That is, generate several (simpler) SpinCAD pulse sequences from a single C sequence.
- Translate the sequence once (preferably with all options turned on), then manually insert the necessary if statements and other missing elements using SpinCAD.

Arguments: `sequence_name` is an optional argument that permits the name of the resulting SpinCAD pulse sequence to be specified. By default, `vnmr2sc` creates a SpinCAD sequence with the name specified in the `seqfil` parameter (i.e., the SpinCAD sequence has the same name as the C pulse sequence). `sequence_name` is particularly useful if a C sequence is to be translated into multiple SpinCAD sequences; see the examples.

`rfchannels` is an optional numeric argument specifying the number of rf channels. Use it when you want the SpinCAD sequence to address more rf channels. By default, `vnmr2sc` determines the number of rf channels from the source sequence. You can only *increase* the number of rf channels. If you specify 0 rf channels, the number of rf channels is left unchanged.

`gradchannels` is a second optional numeric argument specifying the number of gradient channels or axes. Use it when you want to convert a nongradient sequence to a gradient sequence or when you want the SpinCAD sequence to address more gradient axes than the source sequence. By default, `vnmr2sc` determines the number of gradient axes from the source sequence. You can only *increase*, not decrease, the number of gradient axes.

Examples:

```
vnmr2sc
setup('H1','CDCl3') hmqc null=0.2 vnmr2sc
null=0 mbond='y' vnmr2sc('hmbc')
```
\texttt{vnmr2sc('gcosy',2,3)}
\texttt{nt=256 vnmr2sc}
\texttt{vnmr2sc(4,1)}
\texttt{vnmr2sc(0,1)}

See also: \textit{SpinCAD Manual}

Related: \texttt{dps} Display pulse sequence (C)
\texttt{spincad} Run SpinCAD program (C)

\texttt{vnmr_accounting} Open Accounting window (U)

Description: Opens a window for creating and maintaining cost accounting data for groups of users on a spectrometer system. The program accommodates multiple rate schedules for spectrometer usage. A calendar tool can be used to define holidays for holiday rates. There is no limit on the number of rates that can be defined. Multiple printers can be selected.

Any user can view the accounting information (enter \texttt{cd /vnmr/bin} followed by \texttt{./vnmr_accounting}), but to update information, the user must have root privileges.

See also: \textit{System Installation and Administration}

Related: \texttt{operator} Operator name (P)
\texttt{operatorlogin} Sets work space and parameters for the operator (M)

\texttt{vnmrjcmd()} Commands to invoke the GUI popup (C)

Syntax:
\texttt{vnmrjcmd('command1','command2',..., parametername)}
\texttt{vnmrjcmd('command1','command2',...<, callback>)}

Description: The \texttt{vnmrjcmd()} commands are needed in order to invoke the GUI popup in which the user enters the parameters.

Note that \texttt{vnmrbg} and VnmrJ cannot be easily synchronized. When a macro invokes VnmrJ via \texttt{vnmrjcmd}, the VnmrJ thread runs independently and the macro continues on and takes action without otherwise having knowledge of VnmrJ. In order to have events associated with required parameters occur in the proper order, a callback strategy was devised. In simple terms, the \texttt{vnmrj} commands can have a callback string such that when the required parameters are established in VnmrJ, \texttt{vnmrbg} can be re-invoked - the foremost example of this is re-entering the 'go' macro after the parameters are established in VnmrJ.

Examples: Sends parameters one at a time to VnmrJ to be eventually displayed in an entry popup:
\begin{verbatim}
\texttt{vnmrjcmd('reqpar','warngui','set', 'real', parametername)}
\texttt{vnmrjcmd('reqpar','warngui','set', 'string', parametername)}
\end{verbatim}

Display a GUI panel listing required parameters sent from \texttt{vnmrbg} in the previous 'set' option above:
\begin{verbatim}
\texttt{vnmrjcmd('reqpar','warngui','show')}\texttt{vnmrjcmd('reqpar','warngui','show', callback)}
\end{verbatim}

The callback is a command string to be sent back to \texttt{vnmrbg}, if needed. See the \texttt{reqpartest} macro source code for examples of how to use callback.
vnmrexit Exit from the VNMR system (C)
Description: Exits from the VNMR system in a graceful manner by writing parameters and data to the disk, removing lock files, and restoring the terminal (if on a GraphOn). To provide flexibility when exiting VNMR, the macro exit calls vnmrexit to exit from VNMR.
CAUTION: When you exit from the VNMR user interface on your X display system, whether you are using an X terminal or a Sun computer, and whether you are using OpenWindows, CDE, or Motif, you must first exit from any copy of VNMR running on your system. Failure to do this can cause current parameter values and even current data to be lost.

vnmrj Start VnmrJ (U)
Applicability: VnmrJ
Syntax: vnmrj
Description: Starts the VnmrJ application
See also: NMR Spectroscopy User Guide; VnmrJ Walkup
Related: vnmrprint Print text files (U)

vnmrplot Plot files (U)
Syntax: (From UNIX) vnmrplot <file>
Description: A UNIX command that plots files from inside VNMR commands. To plot a file, you should use the page command, which uses vnmrplot internally.
Arguments: file is the name of the file to be plotted.
See also: NMR Spectroscopy User Guide
Related: vnmrprint Print text files (U)

vnmrprint Print text files (U)
Syntax: (From UNIX) vnmrprint printfile <printcap>
printer_type <clear|file>>
Description: A UNIX command installed as part of the VNMR system to print text files. The printon and printoff commands use vnmrprint to print files. vnmrprint can also be used to delete a print file or save a print file to a different name.
Arguments: printfile is the name of the text file to be printed.
printcap is a UNIX printcap entry (e.g. LaserJet_300) for the printer to print the text file. The default is the printer selected by the -p option of the UNIX lp command.
printer_type is the type of printer from the list of VNMR printers (e.g., LaserJet_300). printer_type is required as an argument when it is desired to clear the printer file or save the printer file to another name.
clear is a keyword to delete the current print file. Deleting this file also requires that the printfile, printcap, and printer_type arguments be entered so that clear is the fourth argument.
file is the name of the file to use in saving the printfile. If a file with the
name specified already exists, it is overwritten. Saving the file also requires that
the printfile, printcap, and printer_type arguments be entered so
that file is the fourth argument.

Examples:
```
vnmrprint /vnmr/psglib/tocsy.c LaserJet_300
vnmrprint myfile LaserJet_300 LaserJet_300 clear
vnmrprint myfile ps PS_AR yourfile
```

See also: *NMR Spectroscopy User Guide*

Related:
- printoff Stop sending text to printer and start print operation (C)
- printon Direct text output to printer (C)
- vnmrplot Plot files (U)

vo

Vertical offset (P)

Description: Sets the vertical offset, for 1D data sets, of the each spectrum in a *stacked display* with respect to the previous spectrum. The parameter *ho* sets the horizontal offset. For a “left-to-right” presentation, *ho* is typically negative; for a “bottom-to-top” presentation, *vo* is positive.

For 2D data sets, the parameter *wc2* sets the distance between the first and last trace and the *vo* parameter is inactive.

Values: Number, in mm.

See also: *NMR Spectroscopy User Guide*

Related:
- *ho* Horizontal offset (P)
- *wc2* Width of chart in second direction (P)

vp

Vertical position of spectrum (P)

Description: Contains vertical position of spectrum with respect to the bottom of the display or plotter.

Values: –200 to +200, in mm.

See also: *NMR Spectroscopy User Guide*

Related:
- *vpf* Current vertical position of FID (P)
- *vpfi* Current vertical position of imaginary FID (P)

vpaction

Set initial state for multiple viewports (M)

Applicability: *VnmrJ Walkup*

Description: Sets the initial state for multiple viewports. Used by the viewport editor dialog under *Edit -> Viewports*.

See also: *User Programming*

Related:
- *jcurwin* Work space numbers of all viewports (P)
- *jviewportlabel* Work space labels for all viewport buttons (P)
- *jviewports* Viewport layout (P)

vpf

Current vertical position of FID (P)

Description: Contains the current vertical position of an FID. To create this parameter and the other FID display parameters *axisf, crf, deltaf, dotflag*, and *vpfi* (if the parameter set is older and lacks these parameters), enter
```
addpar('fid')
```

Values: Number, in mm. If *vpf=0*, the FID is positioned in the middle of the screen.
vpfi

Current vertical position of imaginary FID (P)

Description: Contains the current vertical position of the imaginary part of an FID. To create this parameter and the other FID display parameters axisf, crf, deltaf, dotflag, and vp (if the parameter set is older and lacks these parameters), enter `addpar('fid')`.

Values: Number, in mm. In `vpfi`=0, the imaginary part is positioned in the middle of the screen.

See also: NMR Spectroscopy User Guide

Related:

- **addpar**: Add selected parameters to the current experiment (M)
- **axisf**: Axis label for FID displays and plots (P)
- **crf**: Current time-domain cursor position (P)
- **deltaf**: Difference of two time-domain cursors (P)
- **dotflag**: Display FID as connected dots (P)
- **vp**: Vertical position of spectrum (P)
- **vpf**: Current vertical position of FID (P)

vpset3def

Set the viewport state to three default viewports (M)

Description: Sets the number of viewports to three, and resets the viewport button labels.

See also: User Programming

Related:

- **jcurwin**: Work space numbers of all viewports (P)
- **jviewportlabel**: Work space labels for all viewport buttons (P)
- **jviewports**: Viewport layout (P)

vpsetup

Set new viewports (M)

Description: Sets the viewports from the selections made in the viewport editor dialog. For each viewport, it checks the work space number to join, then joins the appropriate work space.

See also: User Programming

Related:

- **jcurwin**: Work space numbers of all viewports (P)
- **jviewportlabel**: Work space labels for all viewport buttons (P)
- **jviewports**: Viewport layout (P)

vs

Vertical scale (P)

Description: In normalized (nm) mode, `vs` is the height of the largest peak in the spectrum. In absolute intensity (ai) mode, `vs` is a multiplier that is adjusted to produce a desired vertical scale, using the appearance on the display screen as a guide (full scale on the screen gives full scale on the plotter). `vs` can be entered in the usual way or interactively controlled by clicking the middle mouse button.

Values: 1e−6 to 1e9, in mm (in nm mode) or as a multiplier (in ai mode).
vs2d

Vertical scale for 2D displays (P)

Description: Sets a multiplier for 2D spectra and images that is adjusted to produce a desired vertical scale for display or plotting. *vs2d* takes the place of *vs* for 2D data display and can be adjusted by explicitly setting it to a value or by clicking the middle mouse button when pointing to a point on a 2D display. If *vs2d* does not exist, it can be created by running *par2d*.

See also: *NMR Spectroscopy User Guide*

Related:
- *par2d* Create 2D acquisition, processing, and display parameters (M)
- *vs* Select vertical scale (C)
- *vsproj* Adjust vertical scale for projections and traces (M)

vsadj

Automatic vertical scale adjustment (M)

Syntax:
```
vsadj<(height)>
```

Description: Automatically sets the vertical scale *vs* in the absolute intensity (ai) mode so that the largest peak is at the requested height.

Arguments:
- *height* is the desired height, in mm, of the largest signal in the displayed portion of the spectrum. The default is \(0.9 \times (wc2max-vp-sc2)\).

Examples:
```
vsadj
vsadj(100)
```

See also: *NMR Spectroscopy User Guide*

Related:
- *ai* Select absolute intensity mode (C)
- *isadj* Adjust integral scale (M)
- *thadj* Adjust threshold for peak printout (M)
- *vs* Vertical scale (P)
- *vsadj2* Automatic vertical scale adjustment by powers of two (M)
- *vsadjc* Automatic vertical scale adjustment for \(^1^3\)C spectra (M)
- *vsadjh* Automatic vertical scale adjustment for \(^1\)H spectra (M)
- *wc2max* Maximum width of chart in second direction (P)

vsadj2

Automatic vertical scale adjustment by powers of 2 (M)

Syntax:
```
vsadj2<(height)>::scaling_factor
```

Description: Adjusts the vertical scale by powers of two as required for expansion plots (see *aexppl* for more information).

Arguments:
- *height* is desired height of largest (or largest relevant) signal in displayed portion of the spectrum. The default is \(0.9 \times (wc2max-vp-sc2)\).

.scaling_factor returns to the calling macro the ratio of the new compared to the old value of *vs*.
Examples:
\texttt{vsadj2} \\
\texttt{vsadj2(50):r1}

See also: \textit{NMR Spectroscopy User Guide}

Related:
\texttt{aexppl}
Automatic expansions plot (M)
\texttt{isadj}
Adjust integral scale (M)
\texttt{sc2}
Start of chart in second direction (P)
\texttt{thadj}
Adjust threshold for peak printout (M)
\texttt{vp}
Vertical position of spectrum (P)
\texttt{vs}
Vertical Scale (P)
\texttt{vsadj}
Automatic vertical scale adjustment (M)
\texttt{vsadjc}
Automatic vertical scale adjustment for 13C spectra (M)
\texttt{vsadjh}
Automatic vertical scale adjustment for 1H spectra (M)
\texttt{wc2max}
Maximum width of chart in second direction (P)

\textbf{vsadjc}
\textit{Automatic vertical scale adjustment for 13C spectra (M)}

\texttt{vsadjc<(height)>}

Description: Functionally the same as the macro \texttt{vsadj}, except excludes solvent and TMS signals from the carbon spectra for the adjustment of \texttt{vs}.

Arguments: \texttt{height} is desired height of largest (or largest relevant) signal in displayed portion of the spectrum. The default is $0.9 \times (\text{wc2max} - \text{vp} - \text{sc2})$.

Examples: \texttt{vsadjc} \\
\texttt{vsadjc(wc2max-sc2-wc2-5)}

See also: \textit{NMR Spectroscopy User Guide}

Related:
\texttt{isadj}
Adjust integral scale (M)
\texttt{thadj}
Adjust threshold for peak printout (M)
\texttt{vs}
Vertical Scale (P)
\texttt{vsadj}
Automatic vertical scale adjustment (M)
\texttt{vsadjh}
Automatic vertical scale adjustment for 1H spectra (M)
\texttt{vsadjh2}
Automatic vertical scale adjustment by powers of two (M)

\textbf{vsadjh}
\textit{Automatic vertical scale adjustment for 1H spectra (M)}

\texttt{vsadjh<(height,<do_not_ignore_solvent>>)}

Description: Works as the same as the macro \texttt{vsadj}, except disregards solvent and TMS signals from proton spectra and, if from the remaining spectrum the highest line is more than three times as high as the second highest line, the spectrum is scaled to this second highest signal (otherwise the highest signal is taken as relevant).

Arguments: \texttt{height} is desired height of largest (or largest relevant) signal in displayed portion of the spectrum. If \texttt{height} is 0 or a negative value, it defaults to $0.9 \times (\text{wc2max} - \text{vp} - \text{sc2})$, which is also the default with no arguments. \texttt{do_not_ignore_solvent} is any second argument. If present, it signals \texttt{vsadjh} to not ignore the solvent line and regard the solvent line as normal signal (i.e., only exclude the TMS line). This argument was added for the situation where frequently there are high “real” signals at the position of the solvent line. Such signals could otherwise be regarded as solvent line and would then be ignored. This could then lead to overscaling in the result.

Examples: \texttt{vsadjh} \\
\texttt{vsadjh(0.7*wc2max)}
See also: \textit{NMR Spectroscopy User Guide}

Related:
- \texttt{isadj} Adjust integral scale (M)
- \texttt{sc2} Start of chart in second direction (P)
- \texttt{thadj} Adjust threshold for peak printout (M)
- \texttt{vs} Vertical scale (P)
- \texttt{vogradj} Automatic vertical scale adjustment (M)
- \texttt{vogradj2} Automatic vertical scale adjustment by powers of two (M)
- \texttt{vogradjc} Automatic vertical scale adjustment for 13C spectra (M)

\textbf{vsproj} \hspace{1cm} \textit{Vertical scale for projections and traces (P)}

Description: Sets a multiplier that is adjusted to produce a desired vertical scale for projections or traces of 2D data sets. \texttt{vsproj} can be explicitly adjusted by setting it to a value or by clicking the middle mouse button when pointing at the projection or trace. When interactively adjusting the scale with the mouse, the higher the pointer is in the trace display, the larger the vertical scale. If the parameter does not exist, it can be created by running the \texttt{par2d} macro.

See also: \textit{NMR Spectroscopy User Guide}

Related:
- \texttt{par2d} Create 2D acquisition, processing, and display parameters (M)
- \texttt{vs} Select vertical scale (C)
- \texttt{vs2d} Adjust vertical scale for 2D displays (M)

\textbf{vtairflow} \hspace{1cm} \textit{Variable Temperature Air Flow (P)}

Applicability: DirectDrive systems

Description: This global parameter sets the VT air flow, in l/min. The adjustment is coarse, +/- 1 l/min. If there is not enough air flow available it may not reach the requested value.

Values: 0 - 25

Related:
- \texttt{pin} Pneumatics router interlock (P)
- \texttt{vtairlimits} Variable temperature air flow limits (P)

\textbf{vtairlimits} \hspace{1cm} \textit{Variable Temperature Air Flow Limits (P)}

Applicability: DirectDrive systems

Description: This global parameter determines the range of safe VT air flow, as indicated by the LEDs on the flow meter. It sets the LEDs on the air flow meter, upper and lower LEDs are orange, in between are green. As long as the ball in the air flow meter is next to a green LED the air flow is considered safe. If the air flow drops or increases such that the ball is next to an orange LED, the pneumatics box will turn the VT Controller off and notify the experiment, provided the switch is in the 'run' position. A bit value of 1 sets an unsafe orange state, a bit value of 0 sets a safe green state.

To create the parameter:
\begin{verbatim}
create('vtairlimits','integer','global')
setlimit('vtairlimits',1023,0,1,'global')
\end{verbatim}

Examples: a value of 775 or 0x307 will set the two lower and the three upper LEDs (orange) and clear the remaining 5 in between (green). Note that the upper bits determine the lower LEDs. If the parameter does not exist the value defaults to 0x307 for liquids; 0x200 for solids.

Values: 0 - 1023
vtc
Variable temperature cutoff point (P)

Applicability: Systems with a variable temperature (VT) module.

Description: Sets a VT cutoff point. Above this temperature, VT air flows straight into the probe, past the heater, then past the sample. Below this temperature, air goes first through the heat exchange bucket, for cooling by the heat exchange fluid, and then into the probe and past the heater.

Values: 0 to 50, in degrees celsius. **vtc** is typically set 5°C higher than the supply gas used for VT regulation.

See also: *NMR Spectroscopy User Guide*

Related:
- **temp** Sample temperature (P)
- **tin** Temperature interlock (P)

vtcomplvl
Variable temperature compensation for gradient shimming (P)

Description: Specifies the level of VT compensation used by gradient shimming.

Values: 0, disable VT compensation.
1, enable VT compensation
2, enable VT compensation with extra gradient dephasing.

Related:
- **gmapz** Get parameters and files for gmapz pulse sequence (M)
- **gmapsys** Run gradient autoshimming, set parameters, map shims (M)
- **gzsize** Number of z-axis shims used by gradient shimming (P)
- **temp** Sample temperature (P)
- **vttype** Variable temperature controller present (P)

vttype
Variable temperature controller present (P)

Description: In the Spectrometer Configuration window, this parameter specifies whether a variable temperature (VT) controller is present or not on the system. The value is set using the VT Controller label in the Spectrometer Configuration window.

When entered from command line in VNMR, control of the variable temperature (VT) controller from the current experiment is either engaged (vttype=2) or disengaged (vttype=0). The current state of the variable temperature (VT) controller is not changed when vttype is set in the command window.

The variable temperature (VT) controller setting in Spectrometer Configuration is not affected by entering vttype on the command line.

Values: 2 is setting for VT controller (Present choice in Spectrometer Configuration window).
0 is setting for no VT controller (Not Present choice in Spectrometer Configuration window).

Examples: If **temp='some temperature'** while vttype=2 and vttype is then changed to vttype=0 on the command line, the variable temperature (VT) controller will continue regulate the sample at the value set by temp. While vttype=0 changes to temp will have no effect.
vtwait
Variable temperature wait time (P)

Applicability: Systems with a variable temperature (VT) module.

Description: Sets a time for establishing temperature regulation. If temperature interlock `tin` is set and regulation is not established after the time set by `vtwait`, VNMR displays the message “VT FAILURE” and aborts the experiment.

Values: Number, in seconds, A typical value is 180 seconds.

See also: NMR Spectroscopy User Guide

Related:
- `pad` Preacquisition delay (P)
- `tin` Temperature interlock (P)

vxr_unix
Convert VXR-style text files to UNIX format (M, U)

Syntax:
(From VNMR) `vxr_unix(VXR_file<,UNIX_file>)`
(From UNIX) `vxr_unix VXR_file UNIX_file`

Description: Converts a VXR-style text file (from a Gemini, VXR, or XL system) to the UNIX format.

Arguments:
- `VXR_file` is the name of the input file, which must be a text file.
- `UNIX_file` is the name of the output file after conversion. The names of the input and output files must be different.

Examples:
(From VNMR) `vxr_unix('oldtextfile','newtextfile')`
(From UNIX) `vxr_unix oldtextfile newtextfile`

See also: NMR Spectroscopy User Guide

Related:
- `convert` Convert data set from a VXR-style system (C,U)
- `decomp` Decompose a VXR-style directory (C)
who is using system (C)
walkup walkup automation (M)
waltz WALTZ decoupling present (P)
wbs Specify action when bs transients accumulate (C)
wbs When block size (P)
wc Width of chart (P)
w2 Width of chart in second direction (P)
w2max Maximum width of chart (P)
w2max Maximum width of chart in second direction (P)
wdone Specify action when experiment is done (C)
wdone Specify action when experiment is done (P)
werr Specify action when error occurs (C)
werr When error (P)
wet Flag to turn on or off wet solvent suppression (P)
wetd Set up parameters for wet 1H experiment (M)
wetdqc Set up parameters for a WETDQCOSY pulse sequence (M)
wetgcosy Set up parameters for a WETGCOSY pulse sequence (M)
wetgmcqcs Set up parameters for a WETGMCQCS pulse sequence (M)
wetghsqc Set up parameters for a WETGHSCQ pulse sequence (M)
wetgmqcosy Set up parameters for a WETGMQCSY pulse sequence (M)
wetit Set up and create pulse shapes for Wet1d experiment (M)
wetnoesy Set up parameters for a WETNOESY pulse sequence (M)
wetp Number of peaks for wet solvent suppression (P)
wetpwcal Set up parameters for a WETPWCAL pulse sequence (M)
wettntocsy Set up parameters for a WETNTTOCSY pulse sequence (M)
wetshape Shape for pwet pulses (P)
wexp Specify action when experiment completes (C)
wexp When experiment completes (P)
wf Width of FID (P)
wf1 Width of interferogram in 1st indirectly detected dimension (P)
wf2 Width of interferogram in 2nd indirectly detected dimension (P)
wf3 Waveform generator test (M)
wft Weight and Fourier transform 1D data (C)
wft1 Weight and Fourier transform f1 for 2D data (C)
wft1da Weight and Fourier transform phase-sensitive data (M)
wftdac Combine arrayed 2D FID matrices (M)
wft2 Weight and Fourier transform 2D data (C)
wft2da Weight and Fourier transform phase-sensitive data (M)
wft2dac Combine arrayed 2D FID matrices (M)
wft3 Process f3 dimension during 3D acquisition (M)
which Display which command or macro is used (M)
wnt Specify action when nt transients accumulate (C)
wnt When number of transients (P)
W

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>See also</th>
</tr>
</thead>
<tbody>
<tr>
<td>wp</td>
<td>Width of plot in directly detected dimension (P)</td>
<td></td>
</tr>
<tr>
<td>wp1</td>
<td>Width of plot in 1st indirectly detected dimension (P)</td>
<td></td>
</tr>
<tr>
<td>wp2</td>
<td>Width of plot in 2nd indirectly detected dimension (P)</td>
<td></td>
</tr>
<tr>
<td>write</td>
<td>Write formatted text to a device (C)</td>
<td></td>
</tr>
<tr>
<td>writefid</td>
<td>Write numeric text file using a FID element (C)</td>
<td></td>
</tr>
<tr>
<td>writeparam</td>
<td>Write one of more parameters to a file (C)</td>
<td></td>
</tr>
<tr>
<td>writespectrum</td>
<td>Write a spectrum to a binary file (C)</td>
<td></td>
</tr>
<tr>
<td>wrtp</td>
<td>Command string executed after rtp command (P)</td>
<td></td>
</tr>
<tr>
<td>wsram</td>
<td>Send hardware configuration to acquisition console (C)</td>
<td></td>
</tr>
<tr>
<td>wshim</td>
<td>Conditions when shimming is performed (P)</td>
<td></td>
</tr>
<tr>
<td>wtfile</td>
<td>User-defined weighting in directly detected dimension (P)</td>
<td></td>
</tr>
<tr>
<td>wtfile1</td>
<td>User-defined weighting in 1st indirectly detected dimension (P)</td>
<td></td>
</tr>
<tr>
<td>wtfile2</td>
<td>User-defined weighting in 2nd indirectly detected dimension (P)</td>
<td></td>
</tr>
<tr>
<td>wtgen</td>
<td>Compile user-written weighting functions (M,U)</td>
<td></td>
</tr>
<tr>
<td>wti</td>
<td>Interactive weighting (C)</td>
<td></td>
</tr>
<tr>
<td>wtiia</td>
<td>Interactive weighting for 2D absorptive data (M)</td>
<td></td>
</tr>
<tr>
<td>wtune</td>
<td>Specify when to tune (P)</td>
<td></td>
</tr>
<tr>
<td>wtunedone</td>
<td>What to do after ProTune tuning is done (P)</td>
<td></td>
</tr>
<tr>
<td>wysiwyg</td>
<td>Set plot display or full display (P)</td>
<td></td>
</tr>
</tbody>
</table>

Who is using system (C)

Description: Displays information about users currently on the system. It functions like the UNIX command of the same name.

See also: *User Programming*

Walkup automation (M)

Description: Enables using sample changers for continuous “walk-up” operation. Click on Utilities -> New automation run to run this macro from the VnmrJ Walkup interface. The macro creates a new automation directory each day with the name *auto_yyyy_mm_dd*, where *yyyy* is the year, *dd* is the day of the month, and *mm* is the month (e.g., *auto_20040601*). The automation directory is saved in a directory specified by the global parameter *globalauto*. `walkup` creates the directory *globalauto* and the parameter *globalauto*, and then sets the *globalauto* parameter.

See also: *VnmrJ Walkup*

Related: enter Enter sample information for automation run (M.U)
 globalauto Automation directory name (P)

WALTZ decoupling present (P)

Description: Sets whether system is equipped for WALTZ decoupling. The value is changed by normal parameter entry rather than using the Spectrometer Configuration window.

Values:
- `'n'` sets WALTZ decoupling not present.
- `'y'` sets WALTZ decoupling present.

See also: *VnmrJ Installation and Administration*
wbs
Specify action when bs transients accumulate (C)

Syntax: `wbs(string)`

Description: Specifies what action to take when bs transients accumulate. The command `wbs` sets the corresponding parameter `wbs`. Using the command, rather than setting the parameter value explicitly, notifies the acquisition process that the associated parameter value has changed. Thus, the desired operation can be effected even if the experiment has already started.

Arguments: `string` is a string argument containing the command or macro to be executed when this event happens. The string must be enclosed in single quotes. If single quotes are required within the text string, place a backslash character before each of the interior single quotes (`\`). Maximum length of the string is 256 characters. To turn off `wbs` processing, enter `wbs('')`, where the argument is two single quotes with no space between.

Syntax:
- `wbs('dg wft')`
- `wbs('mf(3)')`
- `wbs('')`

See also: NMR Spectroscopy User Guide

Related:
- `bs` Block size (P)
- `makefid` Make a FID element using numeric text input (C)
- `phfid` Zero-order phasing constant for np FID (P)
- `wbs` When block size (P)
- `werr` Specify action when error occurs (C)
- `wexp` Specify action when experiment completes (C)
- `wnt` Specify action when nt transients accumulate (C)

wbs
When block size (P)

Description: Invokes an action to occur automatically after each bs block of transients is completed. For example, `wbs='wft'` results in an automatic weighting and Fourier transformation after each bs transients. To specify no `wbs` processing, set `wbs` to the null string. If the acquisition has already started, the `wbs` command must be used to change this parameter.

Values: Command, macro, or null string (`wbs=' '`, where the value is given by two single quotes with no space between them).

See also: NMR Spectroscopy User Guide

Related:
- `bs` Block size (P)
- `wbs` Specify action when bs transients accumulate (C)

wc
Width of chart (P)

Description: Specifies the width of the chart (plotting or printing area).

Values: 5 to `wcmax`, in mm.

See also: NMR Spectroscopy User Guide

Related: `wc2` Width of chart in second direction (P)
- `wcmax` Maximum width of chart (P)

wc2
Width of chart in second direction (P)

Description: Specifies width of chart (plotting or printing area) along the second axis (or y axis) of a 2D contour plot or 2D “stacked display.” For plots made in the cutoff mode, `wc2` specifies the width of the plotted area along the y-axis.
wcmax
Maximum width of chart (P)

Description: Specifies the maximum width of a chart (plotting or printing area). Set when plotter or printer is installed.

Values: Width, in mm.

See also: *NMR Spectroscopy User Guide*

Related: wc (Width of chart (P)), wc2 (Width of chart in second direction (P))

wc2max
Maximum width of chart in second direction (P)

Description: Specifies the maximum width of a chart (plotting or printing area) in the second direction (y-axis). Set when the plotter or printer is installed.

Values: Width, in mm.

See also: *NMR Spectroscopy User Guide*

Related: wc2 (Width of chart in second direction (P)), wcmax (Maximum width of chart (P))

wdone
Specify action when experiment is done (C)

Syntax: `wdone(string)`

Description: Specifies the action to take when the experiment is done, after `wexp` has been executed. The `wdone` command sets the corresponding parameter `wdone`. Using the command, rather than setting the parameter value explicitly, notifies the acquisition process that the associated parameter value has changed and the desired operation is effected even if the experiment has already started.

Arguments: The `string` argument contains the command or macro to be executed when the experiment is done. The string must be enclosed in single quotes. If single quotes are required within the text string, place a backslash character before each of the interior single quotes (`\'`). Maximum length of the string is 256 characters.

```
' ' (null string) turns off wdone processing.
```

Related: `wexp` (Specify action when experiment completes (C))

wdone
Specify action when experiment is done (P)

Syntax: `wdone'<command, macro, or null string >'`

Description: Invokes a single action to occur just after `wexp` is executed. As with `wexp`, it is executed automatically after the experiment is finished, which can occur at the end of a single FID or after the last fid in a multi-FID experiment. To specify no `wdone` processing, set `wdone` to the null string. If the acquisition has already started, the `wdone` command must be used to change the `wdone`
parameter. For wdone to execute after an experiment finishes and after wexp has executed, start the experiment with the au command.

If the wexp action sets the wdone parameter, the new value of the wdone parameter will be executed and the old value will be ignored.

Arguments: Any command, macro, or null string (e.g. wdone=' ').

Related: acquire Acquire data (M)
 au Submit experiment to acquisition and process data (M)
 wexp When experiment completes (P)

werr Specify action when error occurs (C)

Syntax: werr(string)

Description: Specifies what action to take if an error occurs during acquisition. The command werr sets the corresponding parameter werr. Using the command, rather than setting the parameter value explicitly, notifies the acquisition process that the associated parameter value has changed. Thus, the desired operation can be effected even if the experiment has already started.

Arguments: string is a string argument containing the command or macro to be executed when this event happens. The string must be enclosed in single quotes. If single quotes are required within the text string, place a backslash character before each of the interior single quotes (\'). Maximum length of the string is 256 characters. To turn off werr processing, enter werr(''), where the argument is two single quotes with no space between them.

Examples: werr('react')
 werr('')

See also: NMR Spectroscopy User Guide

Related: wbs Specify action when bs transients accumulate (C)
 werr When error (P)
 wexp Specify action when experiment completes (C)
 wnt Specify action when nt transients accumulate (C)

werr When error (P)

Description: Specifies a macro (e.g., werr='react') that will take appropriate action when an error occurs during acquisition. To specify no werr processing, set werr to the null string. If the acquisition has already been started, the werr command must be used to change the werr parameter. Arrayed parameter acqstatus provides the error code to werr in acqstatus[1] and acqstatus[2]. For a list of error codes, refer to the description of acqstatus or view the file acq_errors in directory /vnmr/manual.

Values: Macro or null string (werr=' ', where the value is given by two single quotes with no space between them).

See also: NMR Spectroscopy User Guide

Related: acqstatus Acquisition status (P)
 react Recover from error conditions during werr processing (M)
 werr Specify action when error occurs (C)
wet
Flag to turn on or off wet solvent suppression ((P)
Description: Specifies if wet solvent suppression is turned on or off. It is now a standard option in many liquids pulse sequences, including Wet1d and sequences of apptype hetero2d and homo2d.
Related: apptype Application type (P)
 hetero2d Execute protocol actions of apptype hetero2d (M)
 homo2d Execute protocol actions of apptype homo2d (M)
 std1d Execute protocol actions of apptype std1d (M)
 Wet1d Set up parameters for a WET1D pulse sequence (M)

Wet1d
Set up parameters for wet ¹H experiment (M)
Description: Set up parameters for wet ¹H experiment.

wetdqcory
Set up parameters for a WETDQCOSY pulse sequence (M)
Applicability: Systems with LC-NMR accessory.
Description: Sets up for a WETDQCOSY LC-NMR experiment.
See also: NMR Spectroscopy User Guide

wetgcosy
Set up parameters for a WETGCOSY pulse sequence (M)
Applicability: Systems with LC-NMR accessory.
Description: Sets up for a WETGCOSY LC-NMR experiment.
See also: NMR Spectroscopy User Guide

wetghmqcyps
Set up parameters for a WETHMQCPS pulse sequence (M)
Applicability: Systems with LC-NMR accessory.
Description: Sets up for a WETHMQCPS LC-NMR experiment.
See also: NMR Spectroscopy User Guide

wetghsqc
Set up parameters for a WETGHSQC pulse sequence (M)
Applicability: Systems with LC-NMR accessory.
Syntax: wetghsqc('nucleus')
Description: Sets up for a WETGHSQC LC-NMR experiment.
See also: NMR Spectroscopy User Guide

wetgmqcosy
Set up parameters for a WETGMQCO S pulse sequence (M)
Applicability: Systems with LC-NMR accessory.
Description: Sets up for a WETGMQCO S LC-NMR experiment.
See also: NMR Spectroscopy User Guide

wetit
Set up and create pulse shapes for Wet1d experiment (M)
Applicability: VnmrJ Walkup
Description: A macro to set up and create pulse shapes for a Wet1d experiment. It is based on suppressing the largest N peaks found in a spectrum.
wetnoesy

Set up parameters for a WETNOESY pulse sequence (M)

Applicability: Systems with LC-NMR accessory.

Description: Sets up for a WETNOESY LC-NMR experiment.

See also: NMR Spectroscopy User Guide.

wetpeaks

Number of peaks for wet solvent suppression (P)

Applicability: Walkup

Description: Sets the number of peaks to be suppressed by wet solvent suppression for the Wet1d protocol. The wetit macro suppresses the N tallest peaks found in the scout spectrum, where N is specified by wetpeaks. The parameter is set by the Number of peaks to suppress menu on the Prescan page.

Values: 1 to 7 for DirectDrive or Unity Inova systems; 3 for MERCURYplus/-Vx systems are the default values.

Related: Wet1d Set up parameters for wet 1H experiment (M)
wetit Set up and create pulse shapes for Wet1d experiment (M)

wetpwxcal

Set up parameters for a WETPWXCAL pulse sequence (M)

Applicability: Systems with LC-NMR accessory.

Description: Sets up for a WETPWXCAL LC-NMR pulse width calibration.

See also: NMR Spectroscopy User Guide

wettntocsy

Set up parameters for a WETTNTOCSY pulse sequence (M)

Applicability: Systems with LC-NMR accessory.

Description: Sets up for a WETTNTOCSY LC-NMR experiment.

See also: NMR Spectroscopy User Guide

wetshape

Shape for pwwet pulses (P)

Applicability: Systems with LC-NMR accessory.

Description: Sets the name of the shape used for pwwet pulses (e.g., wetshape='wet').

See also: NMR Spectroscopy User Guide

wexp

Specify action when experiment completes (C)

Syntax: wexp(string)

Description: Specifies what action to take when the experiment completes. The wexp command sets the corresponding parameter wexp. Using the command, rather than setting the parameter value explicitly, notifies the acquisition process that the associated parameter value has changed. Thus, the desired operation can be effected even if the experiment has already started.

Arguments: string is a string argument containing the command or macro to be executed when the experiment completes. The string must be enclosed in single quotes. If single quotes are required within the text string, place a backslash character
before each of the interior single quotes (\'). Maximum length of the string is 256 characters. To turn off \wexp\ processing, enter \wexp\('', where argument is two single quotes with no space between them.

Examples: \wexp\('wft(\'all\') calcT1')
\wexp\(''

See also: \textit{NMR Spectroscopy User Guide}

\textbf{\wexp\command}

\textbf{When experiment completes (P)}

\textbf{Description:} Invokes a single action to occur automatically after the experiment is finished, which can occur after a single FID or after a number of FIDs in a multi-FID experiment. To specify no \wexp\ processing, set \wexp\ to the null string. If the acquisition has already started, the \wexp\ \textit{command} must be used to change the \wexp\ \textit{parameter}. For \wexp\ to execute after an experiment finishes, start the experiment with the \textit{au} command.

\wexp\ processing occurs after \textit{wnt} processing in a single FID experiment, and both can be used. \wexp\ also occurs after \textit{wnt} during the last FID of a multi-FID experiment. Thus, \texttt{wnt='wft ('all\')' wexp='calcT1'} and \texttt{wexp='wft ('all\') calcT1'} transforms each FID in a T_1 experiment as it is performed, and when each of the FIDs has been collected, performs the calculation of the T_1 using a hypothetical macro command \texttt{calcT1}. Notice the use of the backslash to include a single quotation mark inside the string.

\textbf{Values:} Command, macro, or null string (\texttt{wexp=''}, where the value is given by two single quotes with no space between them). If the command or macro uses a file name as an argument, specifying an absolute path is best. Be sure the path is valid and you have the appropriate write permission.

See also: \textit{NMR Spectroscopy User Guide}

Related: \texttt{\wexp\}, \texttt{\wnt\}, \texttt{\au\}

\textbf{\wf\command}

\textbf{Width of FID (P)}

\textbf{Description:} Width of the FID display. This parameter can be entered in the usual way or interactively controlled by selecting the \textit{sf wf} button during a FID display.

\textbf{Values:} 0 to the value of \textit{at}, in seconds.

See also: \textit{NMR Spectroscopy User Guide}

Related: \texttt{\at\}, \texttt{\dcon\}, \texttt{\dconi\}, \texttt{\df\}, \texttt{\s\}, \texttt{\vf\}, \texttt{\wf1\}, \texttt{\wf2\}}
wf1

Width of interferogram in 1st indirectly detected dimension (P)

Description: Sets the width of the interferogram display in the first indirectly detected dimension.

Values: 0 to \((2 \times \text{ni})/\text{sw1}\), in seconds.

See also: *NMR Spectroscopy User Guide*

Related:
- \(\text{ni}\) Number of increments in 1st indirectly detected dimension (P)
- \(\text{sf1}\) Start of interferogram in 1st indirectly detected dimension (P)
- \(\text{sw1}\) Spectral width in 1st indirectly detected dimension (P)
- \(\text{wf}\) Width of FID (P)

wf2

Width of interferogram in 2nd indirectly detected dimension (P)

Description: Sets the width of the interferogram display in the second indirectly detected dimension.

Values: 0 to \((2 \times \text{ni2})/\text{sw2}\), in seconds.

See also: *NMR Spectroscopy User Guide*

Related:
- \(\text{ni2}\) Number of increments in 2nd indirectly detected dimension (P)
- \(\text{sf2}\) Start of interferogram in 2nd indirectly detected dimension (P)
- \(\text{sw2}\) Spectral width in 2nd indirectly detected dimension (P)
- \(\text{wf}\) Width of FID (P)

wfgtest

Waveform generator test (M)

Applicability: Systems with a waveform generator.

Description: Retrieves a parameter set and pulse sequence, and compiles the sequence, in order to set up an experiment to test the waveform generators.

See also: *Waveform Generator Kit Installation*

wft

Weight and Fourier transform 1D data (C)

Syntax:
1. \(\text{wft}(<\text{options},><'nf'>,<\text{start},><\text{finish},><\text{step}>)>\)
2. \(\text{wft}('\text{inverse}',\text{exp_number},\text{expansion_factor})\)

Description: Performs a Fourier transform on one or more 1D FIDs with weighting applied to the FID. The command executes a left-shift, zero-order phase rotation, and a frequency shift according to the parameters \(\text{lsfid}\), \(\text{phfid}\), and \(\text{lsfrq}\), respectively, on the time-domain data prior to the weighting and Fourier transformation. The type of Fourier transformation to be performed is determined by \(\text{proc}\). \(\text{wft}\) uses the same arguments as the command \(\text{ft}\), and except for weighting, it functions the same as the \(\text{ft}\) command.

See also: *NMR Spectroscopy User Guide*

Related:
- \(\text{ft}\) Fourier transform 1D data (C)
- \(\text{lsfid}\) Number of points to left-shift \(\text{np}\) FID (P)
- \(\text{lsfrq}\) Frequency shift of the \(\text{fn}\) spectrum in Hz (P)
- \(\text{phfid}\) Zero-order phasing constant for \(\text{np}\) FID (P)
- \(\text{proc}\) Type of processing on \(\text{np}\) FID (P)

wft1d

Weight and Fourier transform \(f_2\) for 2D data (C)

Syntax:
1. \(\text{wft1d}(\text{element_number})\)
2. \(\text{wft1d}(<\text{options},><'coefficients'>)>\)
Description: Performs the first Fourier transformation along the dimension defined by \(sw \), with weighting and matrix transposition. This allows the display of \(t_1 \) interferograms with the \(dcon \) and \(dconi \) commands. Except for weighting, \(wft1d \) functions the same as the \(ft1d \) command. See the description of \(ft1d \) for further information.

Arguments: Same as the arguments to \(ft1d \). See the \(ft1d \) command for details.

See also: *NMR Spectroscopy User Guide*

Related:
- \(dcon \): Display noninteractive color intensity map (C)
- \(dconi \): Interactive 2D data display (C)
- \(ft1d \): Fourier transform along \(f_2 \) dimension (C)
- \(sw \): Spectral width in directly detected dimension (P)

\(wft1da \)

Weight and Fourier transform phase-sensitive data (M)

Values: \(wft1da<\) (options)>

Description: Processes 2D FID data as well as 2D planes at particular \(t_1 \) or \(t_2 \) times from a 3D data set for a pure absorptive display.

\(wft1da \) differs from \(ft1da \) only in that weighting of the time-domain data is performed prior to the Fourier transform. See the description of \(ft1da \) for further information.

Arguments: Same as arguments to \(ft2da \). See the \(ft2da \) command for details.

See also: *NMR Spectroscopy User Guide*

Related:
- \(ft1da \): Fourier transform phase-sensitive data (M)
- \(ft2da \): Fourier transform phase-sensitive data (M)
- \(wft2da \): Weight and Fourier transform phase-sensitive data (M)

\(wft1dac \)

Combine arrayed 2D FID matrices (M)

Syntax: \(wft1dac\left(<mult1>, <mult2>, ..., <multn>\right) >\)

Description: Allows the ready combination of 2D FID matrices within the framework of the 2D Fourier transform program. Weighting is performed. This command requires that the data be acquired either without \(f_1 \) quadrature or with \(f_1 \) quadrature using the TPPI method. \(wft1dac \) is used with TOCSY (with multiple mixing times).

Arguments: \(mult1, mult2, ..., multn \) are multiplicative coefficients. The \(n \)th argument is a real number and specifies the multiplicative coefficient for the \(n \)th 2D FID matrix.

See also: *NMR Spectroscopy User Guide*

Related:
- \(ft1dac \): Combine arrayed 2D FID matrices (M)
- \(Tocsy \): Set up parameters for TOCSY pulse sequence (M)
- \(wft2dac \): Combine arrayed 2D FID matrices (M)

\(wft2d \)

Weight and Fourier transform 2D data (C)

Syntax: \(wft2d\left(<options, >coefficients\right) >\)

Description: Performs a complete 2D transformation with weighting after 2D data has been acquired. If the first Fourier transformation has already been done using \(ft1d, wft1d, ft1da, \) or \(wft1da \), then the \(wft2d \) command performs only the second transform.

For arrayed 2D experiments, a single array element can be transformed and weighted using the array element number as an argument. Interferograms can
be constructed explicitly using the following coefficient table:
\[\text{wft2d}(r_{11}, i_{11}, r_{12}, i_{12}, \ldots, r_{i1}, i_{i1}, r_{i2}, i_{i2}, \ldots) . \]
\[\text{wft2d}('ptype', ...) \text{ transforms P-type spectra, and} \]
\[\text{wft2d}('ntype', ...) \text{ transforms N-type spectra. The default is N-type.} \]
\[\text{wft2d also completes a 2D transform that has been started with wft1d (or} \]
related commands such as wft1da). The first transform will not be done again if it has already been performed. For phase-sensitive 2D experiments, the coefficients must be applied as part of the first transform (e.g., with wft1da) since the interferograms are formed at that stage. These coefficients need not be repeated when invoking the subsequent transform: a simple \text{wft2d} or \text{ft2d}
can suffice.

See the \text{ft2d} command description for further information.

Arguments: Same as the arguments to \text{ft2d}. See the \text{ft2d} command for details.

Examples:
\begin{verbatim}
 wft2d(1,0,0,0)
 wft2d(2)
 wft2d(1,0,1,0,0,1,0,1)
 wft2d(.67,0,.33,0,0,.67,0,.33)
\end{verbatim}

See also: \textit{NMR Spectroscopy User Guide}

Related:
\begin{itemize}
 \item \texttt{dconi} Interactive 2D data display (C)
 \item \texttt{ft1d} Fourier transform along \(f_2 \) dimension (C)
 \item \texttt{ft1da} Fourier transform “halfway” for pure absorption 2D data (M)
 \item \texttt{ft2d} Fourier transform 2D data (C)
 \item \texttt{wft1d} Weight and Fourier transform \(f_2 \) for 2D data (C)
 \item \texttt{wft1da} Weight and FT “halfway” for pure absorption 2D data (M)
 \item \texttt{wft2da} Weight and transform for pure absorption 2D data (M)
\end{itemize}

\texttt{wft2da} \hspace{1em} \textbf{Weight and Fourier transform phase-sensitive data (M)}

Syntax: \texttt{wft2da<(options)>}

Description: Processes 2D FID data, as well as 2D planes at particular \(t_1 \) or \(t_2 \) times, from a 3D data set for a pure absorptive display.

\texttt{wft2da} differs from \texttt{ft2da} only in that weighting of the time-domain data is performed prior to the Fourier transform. See the description of \texttt{ft2da} for further information.

Arguments: Same as used with \texttt{ft2da}. See the \texttt{ft2da} command for details.

See also: \textit{NMR Spectroscopy User Guide}

Related:
\begin{itemize}
 \item \texttt{ft1da} Fourier transform phase-sensitive data (M)
 \item \texttt{ft2da} Fourier transform phase-sensitive data (M)
 \item \texttt{wft1da} Weight and Fourier transform phase-sensitive data (M)
\end{itemize}

\texttt{wft2dac} \hspace{1em} \textbf{Combine arrayed 2D FID matrices (M)}

Syntax: \texttt{wft2dac<(<mult1><,mult2>,...<,multn>)>}

Description: Allows the ready combination of 2D FID matrices within the framework of the 2D Fourier transform program. Weighting is performed. This command requires that the data be acquired either without \(f_1 \) quadrature or with \(f_1 \) quadrature using the TPPI method. \texttt{wft2dac} is used with TOCSY (with multiple mixing times).

Arguments: \texttt{mult1, mult2, ..., multn} are multiplicative coefficients. The \texttt{n}th argument is a real number and specifies the multiplicative coefficient for the \texttt{n}th 2D FID matrix.
wftt3

Process f₃ dimension during 3D acquisition (M)

Description: Allows f₃ processing of 3D data to be performed concurrently with data acquisition. To invoke this function, set `wnt='wftt3'` and use `au` to start the acquisition of the 3D data. When `wftt3` detects that all the FIDs comprising a (t₁,t₂) block have been acquired, it starts up the `ft3d` program in background to process that block of FIDs in f₃.

The 3D processing information file, created by entering `set3dproc` within VnmrJ, does not need to contain valid f₁ and f₂ processing information but only valid f₃ processing information. Once the f₃ processing is complete, a new 3D information file can be created for the f₁-f₂ processing stages that contains valid f₁ and f₂ processing information.

The non-standard string parameter `path3d` can be used to specify the directory into which the f₃ processed 3D data is to be stored. Normally, `path3d` is absent in the parameter set. If this is the case or if `path3d=' '`, the f₃-processed 3D data is stored in the directory `curexp/datadir/path3d` can be created by entering `create('path3d','string')` `setgroup('path3d','display')`.

See also: *NMR Spectroscopy User Guide*

Related:
- `ft1dac` Combine arrayed 2D FID matrices (M)
- `ft2dac` Combine arrayed 2D FID matrices (M)
- `Tocsy` Set up parameters for TOCSY pulse sequence (M)
- `wft1dac` Combine arrayed 2D FID matrices (M)

which

Display which command or macro is used (M)

Syntax: `which(name)`

Description: Searches VnmrJ libraries and then displays on line 3 which VnmrJ command or macro with the given name will be executed. For macros, which displays the type of macro (user, local, application, or Varian) and the path to the library.

Arguments: `name` is the name of a command or macro.

Examples: `which('wft')`

See also: *User Programming*

Related:
- `exists` Determine if a parameter, file, or macro exists (C)
- `hidecommand` Execute macro instead of command with same name (M)

wnt

Specify action when nt transients accumulate (C)

Syntax: `wnt(string)`

Description: Specifies what action to take when nt transients accumulate. The `wnt command` sets the corresponding parameter `wnt`. Using the command, rather than setting the parameter value explicitly, notifies the acquisition process that
the associated parameter value has changed. Thus, the desired operation can be
effected even if the experiment has already started.

Arguments: string is a string argument containing the command or macro to be executed
when this event happens. The string must be enclosed in single quotes. If single
quotes are required within the text string, place a backslash character before
each of the interior single quotes (\'). Maximum length of the string is 256
characters. To turn off wnt processing, enter wnt (''), where the argument is
two single quotes with no space between them.

Examples: wnt ('wft (\'all\'))
wnt ('')

See also: NMR Spectroscopy User Guide

Related: nt Number of transients (P)
wbs Specify action when bss transients accumulate (C)
werr Specify action when error occurs (C)
wexp When experiment completes (P)
wnt When number of transients (P)

wnt

When number of transients (P)

Description: Invokes a single action to occur automatically after the FID is finished (ct=nt)
or after each FID in a multi-FID experiment involving an arrayed parameter.
The most common processing to occur after an FID is an automatic weighting
and Fourier transformation (i.e., wnt='wft'); however, this is normally not
needed because the command ga is the exact equivalent of
wnt='wft (\'acq\')' au (i.e., ga sets the wnt action automatically). To
specify no wnt processing, set wnt to the null string. If the acquisition has
already been started, the wnt command must be used to change this parameter.

Values: Command, macro, or null string (wnt='', where the value is given by two
single quotes with no space between them).

See also: NMR Spectroscopy User Guide

Related: nt Number of transients (P)

wp

Width of plot in directly detected dimension (P)

Description: Sets the width of the displayed or plotted region of the spectrum.

Values: Always stored in Hz, but can be entered in ppm by using the p suffix (e.g.,
wp=6p sets the width of plot to 6 ppm).

See also: NMR Spectroscopy User Guide

Related: wp1 Width of plot in 1st indirectly detected dimension (P)
wp2 Width of plot in 2nd indirectly detected dimension (P)

wp1

Width of plot in 1st indirectly detected dimension (P)

Description: Analogous to the wp parameter except that wp1 applies to the first indirectly
detected dimension of a multidimensional data set.

See also: NMR Spectroscopy User Guide

Related: wp Width of plot in directly detected dimension (P)
wpt Width of plot in 2nd indirectly detected dimension (P)
wp2
Width of plot in 2nd indirectly detected dimension (P)

Description: Analogous to the wp parameter except that wp2 applies to the second indirectly detected dimension of a multidimensional data set.

See also: NMR Spectroscopy User Guide

Related:
wp
Width of plot in directly detected dimension (P)
wp1
Width of plot in 1st indirectly detected dimension (P)

write
Write formatted text to a device (C)

Syntax:
(1) write('keywords'><,color|pen> <,'reverse'>,x,y,<template>) <:height>
(2) write('alpha'|'printer'|'line3'|'error',template)
(3) write('reset'|'file'|'fileline',file,<template>)
(4) write('net',host,port, template)

Description: Writes text to a graphics screen or plotter in a given format (syntax 1), writes formatted text to another device (syntax 2), clears a file (syntax 3), or writes to a file (syntax 3). The input to the command comes from arguments in template, which can be parameters such as nl or pw.

Arguments:
'keywords' identify the output device ('graphics'|'plotter') and the drawing mode ('xor'|'normal'|'newovly'|'ovly'|'ovlyC').

- 'graphics'|'plotter' is a keyword selecting the output device. The default is 'plotter'. The output selected is passed to subsequent pen, move, or draw commands and remains active until a different mode is specified.
- 'xor','normal' is a keyword for the drawing mode when using the 'graphics' output device. The default is 'normal'. In the 'xor' mode, if a line is drawn such that one or more points of the line are in common with a previous 'xor' line, the common points are erased. In the normal mode, the common points remain. The mode selected is passed to subsequent pen, move, and draw commands and remains active until a different mode is specified.
- 'newovly','ovly', and 'ovlyC' are keywords that specify an interactive drawing capability that is slightly slower than the 'xor' mode but more consistent in color. 'newovly' clears any previous draws, boxes, and writes made with the 'ovly' modes and draws the figure. 'ovly' draws without clearing so that multi-segment figures can be created. 'ovlyC' clears without drawing.

color is the color of the text on a color display: 'red', 'yellow', 'green', 'cyan', 'blue', 'magenta', and 'white'. The default is 'yellow'.

pen is the plotter pen: 'pen1', 'pen2', etc.

'reverse' is a keyword specifying a sideways orientation of the output.

x and y are coordinates on the screen or plotter, in mm.

template is a string of formatting characters along with arguments to those characters. The format is the same as used with the UNIX printf command (for details, see any basic UNIX manual or enter man printf in UNIX). For example, 'pw = %12.5f' is a template to format the parameter pw as fixed point with a field width of 12 spaces and 5 decimal places. The following format characters are implemented:
character %c
integer %d
hexadecimal %h
exponential: %e
fixed point %f
exponential/fixed point %g
octal %o
string %s
write a % character use write(...'%s','%')

height returns the height of the characters on the screen or plotter. This is useful for positioning multiple-line displays. See the source code of the macro dtext in the maclib directory for an example of usage.

'alpha' is a keyword to write text to the alphanumeric screen.

'printer' is a keyword to print text on the printer.

'line3' is a keyword to write text as a message on line 3.

'error' is a keyword to write text as an error on line 3 and sound a beep.

'reset' is a keyword to clear the file specified.

'file' is a keyword to append data to the file specified. Existing data in the file is not overwritten. By writing repeated 'file' calls, a formatted data file can be created (see the fifth example below). Each write command automatically appends a carriage return (line feed) to the end of the string defined by the template argument. To append data without the automatic line feed, use the 'fileline' keyword instead of 'file'. Also, two backslashes (\) are interpreted as a new line.

'fileline' is a keyword to append data to the file specified, the same as using the 'file' keyword, but without automatically appending a carriage return (line feed) to the end of the data. Any line feeds desired must be explicitly defined (using \n) by the template argument (see the sixth example below). Furthermore, two backslashes (\) output a single backslash into the file.

file is the name of the file used with the 'reset', 'file', and 'fileline' keywords.

'net' is a keyword for writing to a network program. The host name and port number must be supplied. The host name may also be an IP address, such as 10.190.x.y. The hostname of the local computer is stored in the instrument parameter. The command serverport may be used to get the port number for the currently executing VnmrJ program.

Examples:
write('graphics',100,100):$ys
write('plotter',20,180, 'pw = %12.5f',pw)
write('line3', 'Too many arguments')
write('reset','templ')
write('file','templ','%10f %10.1f',n1,pw)
write('fileline','templ', '\nEnd of data\n\n')
serverport:$port
write('net',instrument,$port,'banner(`hello`)')

See also: User Programming

Related: dtext Display a text file in the graphics window (M)
serverport Returns the value of the VnmrJ network listening port (C)
writefid

Write numeric text file using a FID element (C)

Syntax: `writefid(file,<element_number>)`

Description: Writes a text file using data from the selected FID element. The program writes two values per line—the first is the value from the X (or real) channel and the second is the value from the Y (or imaginary) channel. `writefid` writes the raw FID data (i.e., FID data processing based on the parameters `phfid`, `lsfid`, and `lsfrq` does not occur).

Arguments:
- `file` is the name of a text file to store the data.
- `element_number` is an integer larger than 0 for the number of a FID element. The default is 1.

See also: *NMR Spectroscopy User Guide, User Programming*

Related:
- `lsfid` Number of complex points to left-shift np FID (P)
- `lsfrq` Frequency shift of fn spectrum in Hz (P)
- `makefid` Make a FID element using numeric text input (C)
- `phfid` Zero-order phasing constant for np FID (P)
- `writesspectrum` Write a spectrum to a binary file (C)

writeparam

Write one of more parameters to a file (C)

Syntax: `writeparam(file,parlist[,tree][,'add' | 'replace'])`

Description: The `writeparam` command will write one or more parameters to a specified file. The first argument is the name of the file. The second argument is a list of the names of the parameters to be written. It is a string parameter and the names can be separated either by a space or a comma. The optional third argument is the tree from which the parameters are copied.

The variable trees are `current`, `global`, `processed` and `systemglobal`.

An optional final argument is the keyword `add` or `replace`. The add keyword will cause the parameters to be appended to the specified file.

If they already exists in the file, their values will be updated. The replace keyword will replace the values in the file with the current values from the tree. The parameters must exist in both the file and the tree.

A special case for the replace option occurs when the parameter list is an empty string. In this case, all the parameters in the file will be updated with the current values in the tree. If the parameter does not exist in the tree, no change will be made for that parameter.

This command may be used to store temporary values. For example, you may want to save `wexp`, `wbs`, `wnt`, etc. in order to run a setup acquisition. When it is done, you want to reset the original values. The `fread` command can be used to read the parameters back into an appropriate parameter tree.

Examples:
- `writeparam(curexp+''/mypar','in')`
 writes the parameter in into the file `mypar` in the current experiment directory.
- `writeparam(curexp+''/mypar','sw ct np','processed')`
 writes the parameters `sw`, `ct`, and `np` from the processed tree into the file `mypar` in the current experiment directory.

writesspectrum

Write a spectrum to a binary file (C)

Description: Writes out the current spectrum as a binary file. The file has no header information and is written in the native format (little-endian on Linux; big-endian on Solaris).
writespectrum scales the data by vs, determines the mode selected, ph, av, or pwr, and writes whatever is displayed by ds. The file is written in the current experiment as specN, where N is the element number.

Examples: Write files spec1, spec2, spec3 ... spec{arraydim} in the current experiment directory:

```
wft $i=0 while ($i < arraydim) do $i = $i + 1
    select($i) writespectrum endwhile
```

Write the real and imaginary components if phase mode is selected.

```
wft
    ph $i=0
    $index=''
    while ($i < arraydim) do
        $i = $i + 1
        format($i,0,0):$index
        select($i)
        writespectrum
        mv(curexp+'/spec'+$index, curexp+'/spec'+$index+'.re')
        $rp = $rp + 90
        writespectrum
        mv(curexp+'/spec'+$index, curexp+'/spec'+$index+'.im')
        $rp = $rp - 90
    endwhile
```

```
wrtp
```

Command string executed after rtp command (P)

Description: Holds the command string that is executed after an rtp command finishes. It is mostly used to set frequency-dependent parameter values, such as sw, so that one parameter set can be used on all spectrometers.

Examples: `wrtp='setsw(13p,-2p)'`

```
wsram
```

Send hardware configuration to acquisition console (C)

Syntax: `wsram<:$success>`

Description: Sends new hardware configuration information to the acquisition console when `config` is used (e.g., to set `lockfreq`). `wsram` (write to static RAM) is not normally entered directly by the user.

Arguments: `success` returns 1 if `wsram` is successful, or 0 otherwise.

See also: `VnmrJ Installation and Administration`.

Related: `config` Display current configuration and possibly change it (M) `lockfreq` Lock frequency (P)

```
wshim
```

Conditions when shimming is performed (P)

Description: Specifies when automatic shimming is to be used, according to the method specified by the parameter `method`.

Values: `'n'` sets that no automatic shimming is performed. Even with `wshim` set to this value, the shimming procedure specified by the parameter `method` can be activated by using the `shim` command.
'e' or 'exp' sets that automatic shimming is done before data acquisition.
's' or 'samp' sets that automatic shimming is done only at the beginning of
the first experiment, following the change of a sample using the automatic
sample changer.
'g' sets that automatic shimming using gradient shimming is done only at the
beginning of the first experiment, following the change of a sample using the
automatic sample changer. The parameter method is ignored. This option is
only available in automation and is not used with the go, ga, or au commands.
'f' or 'fid' set automatic shimming is done prior to the data collection of
each new array member in a multi-FID experiment.
'fn', where n is an integer, sets shimming is done prior to data collection of
every nth FID (e.g., wshim='f16' shims prior to acquiring FIDs 1, 17, 33,
etc.). This method is only relevant to arrayed or 2D experiments.
See also: NMR Spectroscopy User Guide
Related: gf Prepare parameters for FID/spectrum display in acqi (M)
method Autoshim method (P)

wtfile

User-defined weighting in directly detected dimension (P)

Description: Set to name of the file containing the user-written weighting function along the
directly detected dimension. This dimension is referred to as the f2 dimension in 2D data sets, the f3 dimension in 3D data sets, etc. The shellscript wtm gen is
used to compile the user-written weighting module into an executable program.
The source file is stored in the directory vnmruser+/wtlib with a .c file
extension. The executable file is in the same directory and has the same name
as the source file but has no file extension.

Values: file is the name of the executable weighting function or the name of the
weighting function text file.
' ' (two single quotes with no space in between) indicates wtfile is inactive
and VnmrJ should not look for a user-written weighting function.

See also: NMR Spectroscopy User Guide; User Programming
Related: wtfile1 User-defined weighting in 1st indirectly detected dimension (P)
wtfile2 User-defined weighting in 2nd indirectly detected dimension (P)
wtgen Compile user-written weighting functions (C,U)

wtfile1

User-defined weighting in 1st indirectly detected dimension (P)

Description: Set to the name of the file containing the user-written weighting function for the
first indirectly detected dimension. This dimension is often referred to as the f1
dimension of a multidimensional data set. Otherwise, wtfile1 is analogous to
wtfile.

See also: NMR Spectroscopy User Guide; User Programming
Related: wtfile User-defined weighting in directly detected dimension (P)
wtfile2 User-defined weighting in 2nd indirectly detected dimension (P)

wtfile2

User-defined weighting in 2nd indirectly detected dimension (P)

Description: Set to the name of the file containing the user-written weighting function along
the second indirectly detected dimension. This dimension is often referred to as
the f2 dimension of a multidimensional data set. wtfile2 can be set with wti
on the 2D interferogram data. Otherwise, wtfile2 is analogous to wtfile.
wtgen Compile user-written weighting functions (M,U)

Syntax: (From VnmrJ) wtgen(file<.c>)
 (From UNIX) wtgen file<.c>

Description: Allows compilation of a user-written weighting function that subsequently can be executed from within VnmrJ. wtgen performs the following functions:
- Checks for the existence of the /vnmr/bin directory and aborts if the directory is not found.
- Checks for files usrwt.o and weight.h in the /vnmr/bin directory and aborts if either of these two files cannot be found there.
- Checks for the existence of the user's directory and creates this directory if it does not already exist.
- Establishes in the wtlib directory soft links to usrwt.o and weight.h in the /vnmr/bin directory.
- Compiles the user-written weighting function, which is stored in the wtlib directory, link loads it with usrwt.o, and places the executable program in the same directory; any compilation and/or link loading errors are placed in the file errmsg in wtlib.
- Removes the soft links to usrwt.o and weight.h in the /vnmr/bin directory.

The name of the executable program is the same as that for the source file without a file extension (e.g., testwt.c is the source file for the executable file testwt).

Examples: (From VnmrJ) wtgen('testwt')
 (From UNIX) wtgen testwt.c

See also: User Programming

Related: wtfile User-defined weighting in directly detected dimension (P)
 wtfile1 User-defined weighting in 1st indirectly detected dimension (P)
 wti Interactive weighting (C)

wti Interactive weighting (C)

Syntax: wti<(element_number) >

Description: Allows weighting parameters to be set interactively for both t2 FIDs and t1 interferograms. wti responds appropriately to phfid and lsfid for t2 FIDs and to phfid1 and lsfid1 for t1 interferograms. The following parameters can be interactively weighted:
- awc, awc1, and awc2 set the additive weighting constant; added in to the weighting function after the lb and sb (or sbs) contributions but before the gf (or gfs) contributions.
- gf, gf1, and gf2 set the Gaussian apodization constant, in seconds.
- gfs, gfs1, and gfs2 set the Gaussian function shift, in seconds; shifts the origin of the Gaussian function; active only if gf (or gf1) is active.
• $1b$, $1b1$, and $1b2$ set the line broadening factor, in Hz; a positive value gives sensitivity enhancement; a negative value gives resolution enhancement.

• sb, $sb1$, and $sb2$ set the sinebell time period, in seconds; a negative value gives a sine squared bell.

• sbs, $sbs1$, and $sbs2$ set the sinebell shift, in seconds; shifts the origin of the sine bell; active only if sb (or $sb1$) is active.

These parameters can be typed in or changed with the left mouse button in the proper field. The right mouse button turns off the spectrum for a faster response to changes in the weighting function.

Arguments: `element_number` specifies which FID element or interferogram trace is to be used in adjusting the weighting parameters. The default is the currently active element or trace.

Examples: `wti`

```plaintext
wti(3)
```

See also: *NMR Spectroscopy User Guide*

wtia

Interactive weighting for 2D absorptive data (M)

Syntax: `wtia<element_number>`

Description: Allows weighting parameters to be set interactively for both t_2 FIDs and t_1 interferograms in 2D absorptive data. Refer to the description of the `wti` command for further information.

Arguments: `element_number` specifies which FID element or interferogram trace is to be used in adjusting the weighting parameters. The default is the currently active trace.

See also: *NMR Spectroscopy User Guide*

Related:
- `lsfid` Number of complex points to left-shift n_p FID (P)
- `lsfid1` Number of complex points to left-shift n_i interferogram (P)
- `phfid` Zero-order phasing constant for n_p FID (P)
- `phfid1` Zero-order phasing constant for n_i interferogram (P)
- `wti` Interactive weighting (C)

wtune

Specify when to tune (P)

Applicability: Liquids, VnmrJ Walkup, Automation

Description: Specify when automatic probe tuning will happen.

Syntax: `wtune =value1<value2>...`

Values:
- `'s'` – when a new sample is inserted
- `'e'` – before each experiment
- `'o'` – change of operator
- `'v'` – change of solvent
- `'t'` – change of temperature
- `'1'` – change of high band frequency (tn or dn)
- `'2'` – change of low band frequency (dn or tn)
'n' – do not tune, if 'n' is included in argument list, no tuning will occur.

Examples:
\[
\text{wtune} = 'st12'
\]

The system will tune when a new sample is inserted (s) or the temperature changes for the current or new sample (t) or there is a change in the high band frequency (tn or dn) (1) or there is a change of low band frequency (dn or tn) (2).

See also: *NMR Spectroscopy User Guide* and *VnmrJ Walkup*

Related:
- **tunemethod** Method to use for tuning (P)
- **protune** Macro to start ProTune (M)
- **wtunedone** What to do after ProTune tuning is done (P)

wtunedone What to do after ProTune tuning is done (P)

Description: Specific what to do after ProTune tuning is done. This is a local string parameter that does not exist by default and must be created to specify a command to be executed after tuning is finished.

See also: *NMR Spectroscopy User Guide* and *VnmrJ Walkup*

Related:
- **protune** Macro to start ProTune (M)
- **create** Create new parameter in a parameter tree (C)
- **wtune** Specify when to tune (P)

wysiwyg Set plot display or full display (P)

Description: Sets whether the window display is the same as the plot ("what you see is what you get," or WYSIWYG) or is expanded to fill the window. This allows the user to scale the image to the full window, making it easier to view. This parameter is in the user’s global parameter file.

Values:
- 'y' makes the window picture size depend on the current plotter setting. Scaling the window does not change the ratio of the picture. This value is the default display condition.
- 'n' makes the window display expand, giving a full display.

See also: *NMR Spectroscopy User Guide*
x0 X-zero position of HP pen plotter or Postscript device (P)
x1 X1 shim gradient (P)
x2y2 X2Y2 shim gradient (P)
x3 X3 shim gradient (P)
x4 X4 shim gradient (P)
xDiag Threshold for excluding diagonal peaks when peak picking (P)
xGate Load time counter (M)
xML Utility macro for study queue experiment manager (M)
xMAction Perform study queue action (M)
xMActionW Perform study queue action for walkup (M)
xMAddReq Add a required protocol before the main protocol (M)
xMCheckReq Check required protocol name (M)
xMConvert Convert a temporarily stored study into a submitted study (M)
xMCopy Copy protocols in a study queue (M)
xMDelete Delete nodes in a study queue (M)
xMEnablePanel Enable or disable a parameter panel (M)
xMEndQ End a chained study queue (M)
xMGetAtts Get study queue attributes (M)
xMHPrescan Set up and process Proton prescans (M)
xMinit Initialize an imaging study queue (M)
xMLockup Move a study queue node up and lock it (M)
xMMakeNode Make a new study queue node (M)
xMNext Find next prescan or next experiment in study queue (M)
xMPrescan Run prescans in study queue (M)
xMReact Recover from error conditions during automation study (M)
xMReadNode Read attributes from a study queue node (M)
xMRTPar Retrieve parameters from a study queue node (M)
xMSample Write enterQ entry for a sample for study queue – automation (M)
xMSara Write sample enterQ entry for study queue – imaging (M)
xMSatFrfq Processing for Presat experiment (M)
xMSelect Action when study queue node is selected (M)
xMSetAttr Set an attribute for a study queue node (M)
xMSetAtts Set an attribute for a study queue node (M)
xMShowData Show data from a study queue node (M)
xMStartNightQ Start the night queue (M)
xMSubmit Submit sample(s) to the study queue (M)
xMTime Update the study queue time (M)
xMTime Check tune parameter during automation (M)
xMwErr Recover from acquisition error in study queue (M)
xMwExp Processing macro for end of acquisition in study queue (M)
xMWriteNode Write study queue node attributes (M)
xMWritesq Write study queue node order (M)
xPol Cross-polarization (P)
x0 **X-zero position of HP pen plotter or Postscript device (P)**

Applicability: Systems with a Hewlett-Packard pen plotter or a Postscript output device.

Description: Adjusts the x-zero position on the chart. Use hpa to adjust x0 (and y0) to place the numbers in a pleasing position when filled in on the blank lines. x0 is part of vnmrsys/global and hence common to all experiments.

Values: Number, in mm.

See also: *NMR Spectroscopy User Guide*

Related: hpa Plot parameters on special preprinted chart paper (C) y0 Y-zero position of HP plotter or Postscript device (P)

x1 **X1 shim gradient (P)**

Description: Holds current setting of the X1 radial shim gradient.

Values:
- If shimset is 1, 2, 8, 10: –2048 to +2047, steps of 1, 0 is no current.
- If shimset is 3 to 7, 9: –32768 to +32767, steps of 1, 0 is no current.

See also: *NMR Spectroscopy User Guide*

Related: shimset Type of shim set (P)

x2y2 **X2Y2 shim gradient (P)**

Description: Holds current setting of the X2Y2 radial shim gradient.

Values:
- If shimset is 1, 2, 8, 10: –2048 to +2047, steps of 1, 0 is no current.
- If shimset is 3 to 7, 9: –32768 to +32767, steps of 1, 0 is no current.

See also: *NMR Spectroscopy User Guide*

Related: shimset Type of shim set (P)

x3 **X3 shim gradient (P)**

Description: Holds current setting of the X3 radial shim gradient.

Values:
- If shimset is 1, 2, 10: –2048 to +2047, steps of 1, 0 is no current.
- If shimset is 3 to 7, 9: –32768 to +32767, steps of 1, 0 is no current.

See also: *NMR Spectroscopy User Guide*

Related: shimset Type of shim set (P)

x4 **X4 shim gradient (P)**

Description: Holds current setting of the X4 radial shim gradient.

Values: –32768 to +32767, steps of 1, 0 is no current.

See also: *NMR Spectroscopy User Guide*

Related: shimset Type of shim set (P)
xdiag

Threshold for excluding diagonal peaks when peak picking (P)

Description: Used by the `ll2d` program to exclude diagonal peaks when peak picking.

To create the 2D peak picking parameters `xdiag` and `th2d` in the current experiment, enter `addpar('ll2d')`.

Values: Peaks within `xdiag` Hz of the diagonal will not be picked by `ll2d`. Setting `xdiag` to 0.0 will cause `ll2d` to pick all peaks, including diagonal peaks.

See also: NMR Spectroscopy User Guide

Related: `addpar` - Add selected parameters to the current experiment (M), `ll2d` - Automatic and interactive 2D peak picking (C), `th2d` - Threshold for integrating peaks in 2D spectra (P)

xgate

Load time counter (M)

Applicability: Systems with a solids module.

Syntax: `xgate(counts)`

Description: Loads the (12-bit) time counter on the pulse programmer with the specified number of counts and switches the counter to the external time base (the external trigger). On each trigger, the counter counts one unit down, and the next pulse sequence event starts when the count reaches zero. Often that time count will be just 1 (1.0, as the argument must be a floating point number). If the final pulse is to be performed after a longer delay, two options are available:

- Perform a normal delay, followed by the `xgate(1.0)` call.
- Calculate how many rotor cycles that delay would be (calculation is typically done based on a parameter srate) and then perform `xgate` with that calculated number of rotor triggers. Be aware that the only number of rotor cycles that can be counted this way is 4096, because the pulse programmer uses a 12-bit counter. At typical rotor speeds of 5 to 10 kHz, the “counted” delay is limited to 0.8 to 0.4 seconds.

Arguments: `counts` is the number of counts to load into the time counter. The value must be a floating point number.

Examples: `xgate(5.0)`

See also: User Guide: Solid-State NMR; VNMR Pulse Sequences

Related: `srate` - Spinning rate for magic angle spinning (P)

xml

Utility macro for study queue experiment manager (M)

Description: A utility macro for setting study queue attributes and other study queue operations. Usually called from other macros, and not from the command line.

xmandation

Perform study queue action (M)

Applicability: VnmrJ Walkup, Imaging

Description: Perform an action on an experiment node in the study queue. Usually called from study queue actions, and not from the command line.

xmactionw

Perform study queue action for walkup (M)

Applicability: VnmrJ Walkup

Description: Perform an action on an experiment node in the study queue. Usually called from other macros, and not from the command line.
xmaddreq Add a required protocol before the main protocol (M)

Applicability: *VnmrJ Walkup, Imaging*

Description: Add a required protocol before the main protocol, when adding a protocol to the study queue. Usually called from other macros, and not from the command line.

See also: *VnmrJ Walkup, VnmrJ Imaging User’s Guide*

Related: *xmmakenode* Make a new study queue node (M)

xmcheckreq Check required protocol name (M)

Applicability: *VnmrJ Walkup, Imaging*

Description: Check if a required protocol exists in the study queue, and return the full path filename to data, if data has been acquired. Usually called from plotting macros, and not from the command line.

See also: *VnmrJ Walkup, VnmrJ Imaging User’s Guide*

Related: *cqplot* Macro to perform generic 2D plot (M)

plot2D Plot 2D spectra (M)

xmconvert Convert a temporarily stored study into a submitted study (M)

Applicability: *VnmrJ Walkup, Imaging*

Description: Convert a temporarily stored study into a submitted study. Usually only called from other macros.

See also: *VnmrJ Walkup, VnmrJ Imaging User’s Guide*

Related: *xmsubmit* Submit sample(s) to the study queue (M)

xmcopy Copy protocols in a study queue (M)

Applicability: *VnmrJ Walkup, Imaging*

Description: Copy protocols within a study queue. Usually only called from other macros.

See also: *VnmrJ Walkup, VnmrJ Imaging User’s Guide*

Related: *xmaction* Perform study queue action (M)

xmactionw Perform study queue action for walkup (M)

xmdelete Delete nodes in a study queue (M)

Applicability: *VnmrJ Walkup, Imaging*

Description: Delete nodes within a study queue. Usually only called from other macros.

See also: *VnmrJ Walkup, VnmrJ Imaging User’s Guide*

Related: *sqfilemenu* Study queue file menu commands (M)

xmaction Perform study queue action (M)

xmactionw Perform study queue action for walkup (M)

xmenablepanel Enable or disable a parameter panel (M)

Description: Enable or disable a parameter panel. Usually used to disable the Acquire panel for Imaging applications. Usually called only from a panel.

xmendq End a chained study queue (M)

Applicability: *VnmrJ Walkup*
Description: End a chained study queue in the Walkup interface. Usually called by other macros.
See also: VnmrJ Walkup
Related: xmnext Find next prescan or next experiment in study queue (M)

xmgetatts Get study queue attributes (M)
Applicability: VnmrJ Walkup, Imaging
Description: Get study queue attributes.
See also: VnmrJ Walkup, VnmrJ Imaging User’s Guide
Related: xmaction Perform study queue action (M)

dxHprescan Set up and process Proton prescans (M)
Applicability: VnmrJ Walkup
Description: A macro to set up and process prescans for Proton-type experiments (Proton, Presat, or Wet1d protocols). Usually called from other macros, and not from the command line.
See also: VnmrJ Walkup, VnmrJ Imaging User’s Guide
Related: Hprescan Proton prescan (P)
 std1d Apptype macro for Standard 1D experiments (M)

xminit Initialize an imaging study queue (M)
Applicability: Imaging
Description: Initialize an imaging study queue. Usually called from other macros, and not from the command line.
See also: VnmrJ Imaging User’s Guide
Related: sqfilemenu Study queue file menu commands (M)

xmlockup Move a study queue node up and lock it (M)
Applicability: VnmrJ Walkup, Imaging
Description: A macro to move a study queue node up above other completed nodes in the study queue, and lock it so it cannot be moved. This is usually done just prior to acquisition. Usually called from other macros, and not from the command line.
See also: VnmrJ Walkup, VnmrJ Imaging User’s Guide
Related: acquire Acquire data (M)

xmmakenode Make a new study queue node (M)
Applicability: VnmrJ Walkup, Imaging
Description: Create a new node in the study queue. Usually only called by other macros.
See also: VnmrJ Walkup, VnmrJ Imaging User’s Guide
Related: locaction Locator action (M)
 xmaddreq Add a required protocol before the main protocol (M)

xmnext Find next prescan or next experiment in study queue (M)
Applicability: VnmrJ Walkup
Description: Find the next prescan or next experiment in a study queue. It is used for chaining prescans and experiments. Usually only called by other macros.

See also: VnmrJ Walkup

Related: acquire Acquire data (M)
 startq Start a chained study queue (M)
 xmprescan Run prescans in study queue (M)
 xmnext Find next prescan or next experiment in study queue (M)

xmprescan Run prescans in study queue (M)

Applicability: VnmrJ Walkup

Description: Run prescans in a study queue. Usually only called by other macros.

See also: VnmrJ Walkup

Related: cqfindz0 Run an experiment to find the value of z0 (M)
 gmapshim Start gradient autoshimming (M)
 prescan Study queue prescan (P)
 xmnext Find next prescan or next experiment in study queue (M)

xmreact Recover from error conditions during automation study (M)

Applicability: VnmrJ Walkup

Description: A macro to recover from error conditions during a study queue automated acquisition. Usually only called by other macros.

See also: VnmrJ Walkup

Related: acquire Acquire data (M)
 react Recover from error conditions during werr processing (M)

xmreadnode Read attributes from a study queue node (M)

Applicability: VnmrJ Walkup, Imaging

Description: Read attributes from a study queue node. Usually only called by other macros.

See also: VnmrJ Walkup, VnmrJ Imaging User’s Guide.

Related: xmmakenode Make a new study queue node (M)
 xmmakeq Make a new study queue node (M)
 xmmakeqnode Make a new study queue node (M)
 xmlnode Action when study queue node is selected (M)

xmtparam Retrieve parameters from a study queue node (M)

Applicability: Imaging

Description: Retrieve parameters from a study queue node after its parameters have been customized. Usually only called by other macros.

See also: VnmrJ Imaging User’s Guide

Related: xmmakenode Make a new study queue node (M)
 xmmakeq Make a new study queue node (M)
 xmlnode Action when study queue node is selected (M)

xmsample Write enterQ entry for a sample for study queue – liquids (M)

Applicability: VnmrJ Walkup, systems with automation such as sample changer or LC-NMR.

Description: Write the information required for a sample in the study queue when the sample is submitted. Usually only called by other macros.
See also: VnmrJ Walkup
Related: loc Location of sample in tray (P)
 xmsubmit Submit sample(s) to the study queue (M)

xmsara Write enterQ entry for a sample for study queue – imaging (M)
Applicability: Imaging
Description: Halt or resume acquisition in the study queue, especially when using multiple
 viewports. Usually only called from interface panels.

xmsatfrq Processing for Presat experiment (M)
Applicability: VnmrJ Walkup
Description: A macro to handle processing steps for the Presat experiment. It is optimized for
 use with water. Usually only called from other macros.
See also: VnmrJ Walkup
Related: xmphrescan Set up and process Proton prescans (M)

xmselect Action when study queue node is selected (M)
Applicability: VnmrJ Walkup
Description: A macro to specify the action taken when a study queue node is selected by
double-clicking on it. The action depends on the node status, which is Ready for
acquisition, Executing, Completed, etc. The macro also runs the macros
associated with selecting a study queue node, and saves the parameters of the
current node before retrieving parameters of the selected node.
See also: VnmrJ Walkup
Related: xmaction Perform study queue action (M)
 xmactionw Perform study queue action for walkup (M)
 xmrtpar Retrieve parameters from a study queue node (M)

xmsetatts Set an attribute for a study queue node (M)
Applicability: VnmrJ Walkup, Imaging
Description: Set an attribute for a study queue node.
See also: VnmrJ Walkup, VnmrJ Imaging User’s Guide
Related: xmaction Load colors for graphics window and plotters (M)
 xmactionw Location of sample in tray (P)

xmsetattr Set an attribute for a study queue node (M)
Applicability: VnmrJ Walkup, Imaging
Description: Set an attribute for a study queue node.
See also: VnmrJ Walkup, VnmrJ Imaging User’s Guide
Related: xmaction Load colors for graphics window and plotters (M)
 xmactionw Location of sample in tray (P)

xmshowdata Show data from a study queue node (M)
Applicability: VnmrJ Walkup, Imaging
xmstartnightq Start the night queue (M)

Applicability: VnmrJ Walkup

Description: Start the night queue. It also is used to initialize the night queue settings in the Utilities menu.

Examples: xmstartnightq start the night queue
xmstartnightq('at') initialize the night queue settings.

See also: VnmrJ Walkup, VnmrJ Imaging User’s Guide

Related: walkup Walkup automation (M)

xmsubmit Submit sample(s) to the study queue (M)

Applicability: VnmrJ Walkup, systems with automation such as sample changer or LC-NMR.

Description: Submit the sample or samples selected in the study queue tray. If the Submit DayQ button below the study queue area is selected, samples are submitted to the DayQ. If the Submit NightQ button is selected, samples are submitted to the NightQ.

See also: VnmrJ Walkup

Related: xmsample Write enterQ entry for a sample for study queue – automation (M)

xmtime Update the study queue time (M)

Applicability: VnmrJ Walkup, systems with automation such as sample changer or LC-NMR.

Description: Update the study queue time for both DayQ and NightQ. Usually only called from panels or other macros.

See also: VnmrJ Walkup

Related: sqfilemenu Study queue file menu commands (M)
startq Start a chained study queue (M)
studytime Study time (P)
xmsubmit Submit sample(s) to the study queue (M)

xmtune Check tune parameter during automation (M)

Applicability: Automation

Syntax: xmtune

Description: Check tune parameters in the study queue during automation and determine if tuning will occur. Macro is usually called from within automation and not from the command line.

See also: NMR Spectroscopy User Guide and VnmrJ Walkup

Related: protune Macro to start ProTune (M)
tunemethod Method to use for tuning (P)
wtune Specify when to tune (P)
xmwerr Recover from acquisition error in study queue (M)
Applicability: VnmrJ Walkup, Imaging
Description: Recover from an acquisition error in a study queue when not running automation. Usually only called from other macros.
See also: VnmrJ Walkup, VnmrJ Imaging User’s Guide
Related: acquire Acquire data (M)
 xmreact Recover from error conditions during automation study (M)

xmwexp Processing macro for end of acquisition in study queue (M)
Applicability: VnmrJ Walkup, Imaging
Description: A processing macro; runs at the end of acquisition in the study queue and keeps track of study queue parameters and settings. Usually only called from other macros.
See also: VnmrJ Walkup, VnmrJ Imaging User’s Guide
Related: acquire Acquire data (M)
 xmreact Recover from error conditions during automation study (M)

xmwritenode Write study queue node attributes (M)
Applicability: VnmrJ Walkup, Imaging
Description: Write study queue node attributes. Usually only called from other macros.
See also: VnmrJ Walkup, VnmrJ Imaging User’s Guide
Related: xmaction Load colors for graphics window and plotters (M)
 xmactionw Location of sample in tray (P)
 xmsetattr Set an attribute for a study queue node (M)

xmwritesq Write study queue node order (M)
Applicability: VnmrJ Walkup, Imaging
Description: Write the study queue node order. Usually only called from other macros.
See also: VnmrJ Walkup, VnmrJ Imaging User’s Guide
Related: xmaction Load colors for graphics window and plotters (M)
 xmactionw Location of sample in tray (P)

xpol Cross-polarization (P)
Applicability: Systems with a solids module.
Description: Selects cross-polarization or direct polarization in solid-state NMR experiments such as XPOLAR1.
Values: 'n' sets the experiment for direct polarization.
 'y' sets the experiment for cross-polarization.
See also: User Guide: Solid-State NMR
Related: xpolar1 Set up parameters for XPOLAR1 pulse sequence (M)

xpolar1 Set up parameters for XPOLAR1 pulse sequence (M)
Applicability: Systems with solids modules.
Description: Sets up the solid-state NMR cross-polarization experiment XPOLAR using the parameters. Otherwise, \texttt{xpolar1} contains the same functionality as \texttt{xpolar}.

See also: \textit{User Guide: Solid-State NMR}

Related: \hsrotor Display rotor speed for solids operation (P)
 \rotsync Rotor synchronization (P)

\textbf{\textsc{xy}}

\textbf{XY shim gradient (P)}

Description: Holds current setting of the XY radial shim gradient.

Values: If \texttt{shimset} is 1, 2, 8, 10: –2048 to +2047, steps of 1, 0 is no current. If \texttt{shimset} is 3 to 7, 9: –32768 to +32767, steps of 1, 0 is no current.

See also: \textit{NMR Spectroscopy User Guide}

Related: \shimset Type of shim set (P)

\textbf{\textsc{xz}}

\textbf{XZ shim gradient (P)}

Description: Holds current setting of the XZ radial shim gradient.

Values: If \texttt{shimset} is 1, 2, 8, 10: –2048 to +2047, steps of 1, 0 is no current. If \texttt{shimset} is 3 to 7, 9: –32768 to +32767, steps of 1, 0 is no current.

See also: \textit{NMR Spectroscopy User Guide}

Related: \shimset Type of shim set (P)

\textbf{\textsc{xz2}}

\textbf{XZ2 shim gradient (P)}

Description: Holds current setting of XZ2 radial shim gradient.

Values: If \texttt{shimset} is 2, 8: –2048 to +2047, steps of 1, 0 is no current. If \texttt{shimset} is 3 to 7, 9: –32768 to +32767, steps of 1, 0 is no current.

See also: \textit{NMR Spectroscopy User Guide}

Related: \shimset Type of shim set (P)
y0

Y-zero position of HP pen plotter or Postscript device (P)

Applicability: Systems with a Hewlett-Packard pen plotter or a Postscript output device.

Description: Adjusts the y-zero position on the chart. Use `hpa` to adjust `y0` (and `x0`) to place numbers in a pleasing position when filled in on the blank lines. `y0` is part of `vnmrsys/global`; therefore, it is common to all experiments.

Values: Number, in mm.

See also: *NMR Spectroscopy User Guide*

Related: `hpa` Plot parameters on special preprinted chart paper (C)

y1

Y1 shim gradient (P)

Description: Holds current setting of the Y1 radial shim gradient.

Values:
- If `shimset` is 1, 2, 8, 10: –2048 to +2047, steps of 1, 0 is no current.
- If `shimset` is 3 to 7, 9: –32768 to +32767, steps of 1, 0 is no current.

See also: *NMR Spectroscopy User Guide*

Related: `shimset` Type of shim set (P)

y3

Y3 shim gradient (P)

Description: Holds current setting of the Y3 radial shim gradient.

Values:
- If `shimset` is 1, 2, 10: –2048 to +2047, steps of 1, 0 is no current.
- If `shimset` is 3 to 7, 9: –32768 to +32767, steps of 1, 0 is no current.

See also: *NMR Spectroscopy User Guide*

Related: `shimset` Type of shim set (P)

y4

Y4 shim gradient (P)

Description: Holds current setting of the Y4 radial shim gradient.

Values: –32768 to +32767, steps of 1, 0 is no current.

See also: *NMR Spectroscopy User Guide*

Related: `shimset` Type of shim set (P)

yz

YZ shim gradient (P)

Description: Holds current setting of the YZ radial shim gradient.
Values: If `shimset` is 1, 2, 8, 10: –2048 to +2047, steps of 1, 0 is no current. If `shimset` is 3 to 7, 9: –32768 to +32767, steps of 1, 0 is no current.

See also: *NMR Spectroscopy User Guide*

Related: `shimset` Type of shim set (P)

yz2

YZ2 shim gradient (P)

Description: Holds current setting of the YZ2 radial shim gradient.

Values: If `shimset` is 2, 8: –2048 to +2047, steps of 1, 0 is no current. If `shimset` is 3 to 7, 9: –32768 to +32767, steps of 1, 0 is no current.

See also: *NMR Spectroscopy User Guide*

Related: `shimset` Type of shim set (P)
Add integral reset point at cursor position (C)

Syntax: \texttt{z<\{reset1,reset2,...\}>}

Description: Resets the integral to zero at the point marked by the displayed cursor. The command \texttt{cz} removes all such integral resets and it should generally be used
before starting to enter a series of integral zeros (resets). The resets are stored as frequencies and do not change if fn is changed.

Arguments: reset1, reset2,... are reset points entered, in either Hz or ppm. The default is the cursor position. Reset points can be entered in any order.

Examples: z
 z(7.5*sfrq,5*sfrq,2.5*sfrq,0.1*sfrq)

See also: NMR Spectroscopy User Guide

Related:
 cz Clear integral reset points (C)
 dlni Display list of normalized integrals (C)
 ds Display a spectrum (C)
 fn Fourier number in directly detected dimension (P)
 nli Find integral values (C)

z0

Z0 field position (P)

Description: Holds current setting of the Z0 setting. The value of z0 can be set by su. lockfreq can be used to find the lock signal or resonance. To use the lock frequency, deactivate z0 by typing the statement z0='n'. To activate z0, enter z0='y'.

Values: If shimset is 1, 2, 8, 10: −2048 to +2047, steps of 1, 0 is no current.
 If shimset is 3 to 7, 9: −32768 to +32767, steps of 1, 0 is no current.

See also: NMR Spectroscopy User Guide

Related: lockfreq Lock frequency (P)
 su Submit a setup experiment to acquisition (M)

z1

Z1 shim gradient (P)

Description: Holds current setting of the Z1 axial shim gradient.

Values: If shimset is 1, 2, 8, 10: −2048 to +2047, steps of 1, 0 is no current.
 If shimset is 3 to 7, 9: −32768 to +32767, steps of 1, 0 is no current.

See also: NMR Spectroscopy User Guide

Related: shimset Type of shim set (P)

z1c

Z1C shim gradient (P)

Description: Holds current setting of the Z1C axial shim gradient.

Values: If shimset is 1, 2, 10: −2048 to +2047, steps of 1, 0 is no current.
 If shimset is 5 or 9: −32768 to +32767, steps of 1, 0 is no current.

See also: NMR Spectroscopy User Guide

Related: shimset Type of shim set (P)

z2

Z2 shim gradient (P)

Description: Holds current setting of the Z2 axial shim gradient.

Values: If shimset is 1, 2, 8, 10: −2048 to +2047, steps of 1, 0 is no current.
 If shimset is 3 to 7, 9: −32768 to +32767, steps of 1, 0 is no current.

See also: NMR Spectroscopy User Guide

Related: shimset Type of shim set (P)
z2c
Z2C shim gradient (P)
Description: Holds current setting of the Z2C axial shim gradient.
Values: If `shimset` is 1, 2, 10: –2048 to +2047, steps of 1, 0 is no current.
If `shimset` is 5 or 9: –32768 to +32767, steps of 1, 0 is no current.
See also: *NMR Spectroscopy User Guide*
Related: `shimset` Type of shim set (P)

z2x2y2
Z2X2Y2 shim gradient (P)
Description: Holds current setting of the Z2X2Y2 radial shim gradient.
Values: –32768 to +32767, steps of 1, 0 is no current.
See also: *NMR Spectroscopy User Guide*

z2x3
Z2X3 shim gradient (P)
Description: Holds current setting of the Z2X3 radial shim gradient.
Values: –32768 to +32767, steps of 1, 0 is no current.
See also: *NMR Spectroscopy User Guide*

z2xy
Z2XY shim gradient (P)
Description: Holds current setting of the Z2XY radial shim gradient.
Values: –32768 to +32767, steps of 1, 0 is no current.
See also: *NMR Spectroscopy User Guide*

z2y3
Z2Y3 shim gradient (P)
Description: Holds current setting of the Z2Y3 radial shim gradient.
Values: –32768 to +32767, steps of 1, 0 is no current.
See also: *NMR Spectroscopy User Guide*

z3
Z3 shim gradient (P)
Description: Holds current setting of the Z3 axial shim gradient.
Values: If `shimset` is 1, 2, 8, 10: –2048 to +2047, steps of 1, 0 is no current.
If `shimset` is 3 to 7, 9: –32768 to +32767, steps of 1, 0 is no current.
See also: *NMR Spectroscopy User Guide*
Related: `shimset` Type of shim set (P)

z3c
Z3C shim gradient (P)
Description: Holds current setting of the Z3C radial shim gradient.
Values: –32768 to +32767, steps of 1, 0 is no current.
See also: *NMR Spectroscopy User Guide*

z3x
Z3X shim gradient (P)
Description: Holds current setting of the Z3X radial shim gradient.
Values: –32768 to +32767, steps of 1, 0 is no current.
See also: *NMR Spectroscopy User Guide*

z3x2y2
Z3X2Y2 shim gradient (P)
Description: Holds current setting of the Z3X2Y2 radial shim gradient.
Values: -32768 to $+32767$, steps of 1, 0 is no current.
See also: *NMR Spectroscopy User Guide*

z3x3
Z3X3 shim gradient (P)
Description: Holds current setting of the Z2X3 radial shim gradient.
Values: -32768 to $+32767$, steps of 1, 0 is no current.
See also: *NMR Spectroscopy User Guide*

z3xy
Z3XY shim gradient (P)
Description: Holds current setting of the Z3XY radial shim gradient.
Values: -32768 to $+32767$, steps of 1, 0 is no current.
See also: *NMR Spectroscopy User Guide*

z3y
Z3Y shim gradient (P)
Description: Holds current setting of the Z3Y radial shim gradient.
Values: -32768 to $+32767$, steps of 1, 0 is no current.
See also: *NMR Spectroscopy User Guide*

z3y3
Z3Y3 shim gradient (P)
Description: Holds current setting of the Z3Y3 radial shim gradient.
Values: -32768 to $+32767$, steps of 1, 0 is no current.
See also: *NMR Spectroscopy User Guide*

z4
Z4 shim gradient (P)
Description: Holds current setting of the Z4 shim gradient.
Values: If `shimset` is 1, 2, 8, 10: -2048 to $+2047$, steps of 1, 0 is no current.
If `shimset` is 3 to 7, 9: -32768 to $+32767$, steps of 1, 0 is no current.
See also: *NMR Spectroscopy User Guide*

shimset
Type of shim set (P)

z4c
Z4C shim gradient (P)
Description: Holds current setting of the Z4C shim gradient.
Values: -32768 to $+32767$, steps of 1, 0 is no current.
See also: *NMR Spectroscopy User Guide*

z4x
Z4X shim gradient (P)
Description: Holds current setting of the Z4X shim gradient.
Values: -32768 to $+32767$, steps of 1, 0 is no current.
z4x2y2
Z4X2Y2 shim gradient (P)
Description: Holds current setting of the Z4X2Y2 radial shim gradient.
Values: \(-32768\) to \(+32767\), steps of 1, 0 is no current.
See also: *NMR Spectroscopy User Guide*

z4xy
Z4XY shim gradient (P)
Description: Holds current setting of the Z4XY radial shim gradient.
Values: \(-32768\) to \(+32767\), steps of 1, 0 is no current.
See also: *NMR Spectroscopy User Guide*

z4y
Z4Y shim gradient (P)
Description: Holds current setting of the Z4Y shim gradient.
Values: \(-32768\) to \(+32767\), steps of 1, 0 is no current.
See also: *NMR Spectroscopy User Guide*

z5
Z5 shim gradient (P)
Description: Holds current setting of the Z5 axial shim gradient.
Values: If \(\text{shimset}\) is 2, 10: \(-2048\) to \(+2047\), steps of 1, 0 is no current.
If \(\text{shimset}\) is 3 to 7, 9: \(-32768\) to \(+32767\), steps of 1, 0 is no current.
See also: *NMR Spectroscopy User Guide*
Related: \(\text{shimset}\) Type of shim set (P)

z5x
Z5X shim gradient (P)
Description: Holds current setting of the Z5X radial shim gradient.
Values: \(-32768\) to \(+32767\), steps of 1, 0 is no current.
See also: *NMR Spectroscopy User Guide*

z5y
Z5Y shim gradient (P)
Description: Holds current setting of the Z5Y radial shim gradient.
Values: \(-32768\) to \(+32767\), steps of 1, 0 is no current.
See also: *NMR Spectroscopy User Guide*

z6
Z6 shim gradient (P)
Description: Holds current setting of the Z6 axial shim gradient.
Values: \(-32768\) to \(+32767\), steps of 1, 0 is no current.
See also: *NMR Spectroscopy User Guide*

z7
Z7 shim gradient (P)
Description: Holds current setting of the Z7 axial shim gradient.
Values: \(-32768\) to \(+32767\), steps of 1, 0 is no current.
See also: *NMR Spectroscopy User Guide*

z8
Z8 shim gradient (P)
Description: Holds current setting of the Z8 shim gradient.
Values: –32768 to +32767, steps of 1, 0 is no current.
See also: *NMR Spectroscopy User Guide*

zeroneg
Set all negative intensities of 2D spectra to zero (C)
Description: Sets to zero all negative intensities of 2D-J spectra.
See also: *NMR Spectroscopy User Guide*

** Related:**
foldj Fold J-resolved 2D spectrum about f1=0 axis (C)
rotate Rotate 2D data (C)

zoom
Adjust display to given width (M)
Syntax: zoom(width)
Description: Adjusts the display limits. It is useful in the display of powder patterns after split has been used. zoom both zooms in and out from the current display.
Arguments: width is the total display width, in Hz. Display limits are set to ±width/2.
See also: *NMR Spectroscopy User Guide*

** Related:**
split Split the difference between two cursors (M)

zx2y2
ZX2Y2 shim gradient (P)
Description: Holds current setting of the ZX2Y2 shim gradient.
Values: If shimset is 2, 8: –2048 to +2047, steps of 1, 0 is no current.
If shimset is 3 to 7, 9: –32768 to +32767, steps of 1, 0 is no current.
See also: *NMR Spectroscopy User Guide*

** Related:**
shimset Type of shim set (P)

zx3
ZX3 shim gradient (P)
Description: Holds current setting of the ZX3 shim gradient.
Values: –32768 to +32767, steps of 1, 0 is no current.
See also: *NMR Spectroscopy User Guide*

zxy
ZXY shim gradient (P)
Description: Holds current setting of the ZXY shim gradient.
Values: If shimset is 2, 8: –2048 to +2047, steps of 1, 0 is no current.
If shimset is 3 to 7, 9: –32768 to +32767, steps of 1, 0 is no current.
See also: *NMR Spectroscopy User Guide*

** Related:**
shimset Type of shim set (P)

zy3
ZY3 shim gradient (P)
Description: Holds current setting of the ZY3 shim gradient.
Values: –32768 to +32767, steps of 1, 0 as no current.
See also: *NMR Spectroscopy User Guide*
Index

Symbols

& (ampersand) character, 544
.talk file, 323
/ (slash) character, 322
? (question mark) character, 468
@ (at) character, 322

Numerics

13C gHSQC exp, setting up parameters for, 261
13C HMQC exp, changing parameters for, 286
13C HSQCTOXY exp, changing parameters for, 291
13C HSQC exp, changing parameters for, 291
15N gHMQC exp, setting up parameters for, 261
15N gHSQC exp, setting up parameters for, 291
15N HMQC exp, changing parameters for, 285, 286
15N HMQCTOXY exp, changing parameters for, 286
15N HSQC exp, changing parameters for, 291
15N HSQCTOXY exp, changing parameters for, 291
16-bit integer precision, 170
18, 603
18 shim configuration, 603
1st indirectly detected dimension
 absolute value display mode, 77
 additive weighting constant, 78
 clear reference line, 116
 cursor difference, 141
 cursor position, 96, 113
 data display mode, 161
 first-order phase, 335
 Fourier number, 229
 Gaussian function, 259
 Gaussian shift constant, 260
 incremented delay, 126
 line broadening, 319
 number of increments of evolution time, 373
 phased spectra display mode, 395, 417
 power display mode, 461
 reference line frequency, 494
 reference line position, 493
 scale spectral width, 515
 set frequency referencing, 536
 set reference line, 497
 sinebell constant, 512
 sinebell shift constant, 513
 spectra width, 581
 start of plot, 553
 user-defined weighting, 642
 width of plot, 637
 zero-order phase, 501
200-kHz receiver option, 170
2D display, showing, 246
2D DOSY display
 building up, 229
2D experiments
 acquire and Fourier transform, 249
 axis labels, 79
 baseline correction, 82
 color intensity map, 131
 combine arrayed FID matrices, 238, 242
 control dconi display, 133
 convert compressed data to standard format, 227
 copy peak picking file to another file, 327
 create experiment, 96
 create new parameters, 521
 create parameters, 399
 create peak picking parameters, 403
 cross-relaxation experiment, 595
 data display, 131
 display a spectrum, 182
 display FIDs, 143
 display resolution, 62
 display spectra in whitewash mode, 183
 draw grid on 2D display, 270
 f2 ridges, 232
 find and integrate peaks, 324
 first point multiplier, 97, 233
 first-order phase set to zero, 92
 fold J-resolved spectrum, 230
 Fourier transform 2D data, 238
 Fourier transform arrayed 2D FID data, 238
 general setup, 521
 heteronuclear 2D-J, 284
 heteronuclear chemical shift correlation, 284
 homonuclear J-resolved 2D, 286
 horizontal axis selection, 598
 INADEQUATE pulse sequence, 300
 incremented delay, 126
 intensity of spectrum at a point, 356
 interactive weighting, 643, 644
 interleaving control, 298
 J-correlation experiment, 595
 LC-NMR acquisition parameters, 320
 normalization, 376
 number of increments of evolution time, 373
 parameter creation, 49
 peak integration threshold, 592
 peak picking display control, 327
 peak picking parameters, 49
 phase selection, 418
 plot 2D peak picking results, 431
 plot grid over 2D plot, 428
 plot heteronuclear J-resolved 2D spectra, 429
 plot homonuclear J-resolved 2D spectra, 429
 plot X,H-correlation 2D spectrum, 430
 plotter units conversion, 294
 processing mode for 2D data, 438
 processing parameter group, 147
 project 2D data onto axis, 450
 pseudo-echo weighting parameters, 453
 rotate 2D data, 500
 search data set for maximum intensity, 412
 select for processing, 253
 set scaling factor, 515
 sinebell weighting, 549
 spectra plotting, 423
 spectra plotting in whitewash mode, 424
 spectra processing, 448
 spectral drift correction, 130
 stacked spectra display, 191, 193, 195
 start of chart in second direction, 514
 submit to acquisition, 266
 symmetrize INADEQUATE data, 230
 t1 dimension, 342
Index

type of data processing, 447
vertical offset of traces, 618
volume value, 302
weight and Fourier transform, 633
weight and Fourier transform 2D data, 634
weight and Fourier transform phase-sensitive data, 634, 635

2D experiments setup, 520
2D spectra, plotting, 433
2D spectra, setting negative intensities of, 664

2H chemical shift, 552

2nd evolution dimension
set spectral width, 538

2nd indirectly detected dimension
absolute value display mode, 77
additive weighting constant, 78
clear reference line, 116
cursor difference, 141
cursor position, 96, 114
data display mode, 161
first-order phase, 335
Fourier number, 229
Gaussian function, 259
Gaussian shift constant, 260
incremented delay, 126
line broadening, 320
number of increments of evolution time, 373
phased spectra display mode, 417
power mode processing, 462
reference line frequency, 494
reference line position, 493
right phase, 501
scale spectral width, 515
set frequency referencing, 537
set reference line, 498
sinebell constant, 512
sinebell shift constant, 513
spectral width, 581
start of plot, 553
user-defined weighting, 642
width of plot, 638

32-bit integer precision, 170

3D experiments
3D plane index selected, 301
3D plane projection selected, 301
3D plane type currently displayed, 424
axis labels, 79
create experiment, 96
create parameters, 399
display 2D color map of plane from 3D data, 174
display 2D projection plane from 3D data, 175
display group of parameters, 148
display next 3D plane, 373
display previous 3D plane, 443
display series of 3D planes, 191
extract planes from 3D spectral data, 255
f3 ridges, 232
find and integrate peaks on 2D plane, 324
first point multiplier, 233
Fourier transform 3D FID into 3D data, 242
Fourier transform arrayed 3D data sets, 238
horizontal axis selection, 598
incremented delay, 126
N-type display, 380
number of increments of evolution time, 373

3rd indirectly detected dimension
incremented delay, 127
number of increments of evolution time, 374
spectral width, 581

3rd rf channel
create parameters, 226
display group of parameters, 148
display template for parameters, 399
parameter retrieval, 49

4D experiments
create acquisition parameters, 399
incremented delay, 127
number of increments of evolution time, 374
parameter creation, 49
phase cycling type, 419

4th rf channel
create parameters, 226
display group of parameters, 148

5th rf channel
create parameters, 227

90-degree pulse, 393
90-degree pulse width, 460

A
aborting acquisition
with error, 37
with no error, 278

absolute intensity display mode, 52
absolute intensity group, 52
absolute-value 2D experiment, 418
absolute-value COSY pulse sequence, 485
absolute-value data display mode, 160, 161
absolute-value display mode, 76
absolute-value MQF COSY parameter set, 266
absolute-value ROESY parameter set, 272
accounting program, 616
acq_errors file, 44
acqaddr parameter, 233
acqad parameter, 519
acqfil directory, 214, 586
Acqmeter window, 42
acquisition
abort with error, 37
abort with no error, 278
acquire FID with no processing, 266
acquisition parameter arrays, 127
action when bs transients accumulate, 627
action when error occurs, 629
action when specified transients accumulate, 636
automated proton and carbon, 278
automated proton and COSY, 280
automated proton, carbon, DEPT, 279
automated proton, carbon, HETCOR, 279
carbon, 91
carbon and APT automatically, 93
carbon and DEPT automatically, 94
create 2D parameters, 399
create 3D acquisition parameters, 399
create 4D acquisition parameters, 399
data points to acquire, 63
data points to be acquired, 379
date data is acquired, 128
delay before acquisition, 53
determine if active for experiment, 210
display status information, 548
DSP type, 190
estimate acquisition time, 593
fluorine, 216
hardware values, 527
interactive display, 40
LC-NMR 2D parameters, 320
make equal to time requested, 593
number of scans, 379
number of transients, 379
oversampling factor, 387
perform Autoshim experiment, 544
perform experiment, 65
phosphorus, 394
read hardware values, 474, 546
recover from error, 472
resume paused queue, 488
resume stopped acquisition, 471
stop acquisition, 510
stopped by temperature interlock, 594
submit Autolock experiment, 329
submit change sample, Autoshim experiment, 510
submit setup experiment, 573
submit spin setup experiment, 555
time to acquire FID, 63
trigger signals to wait, 380
acquisition bus trap, 46
acquisition computer
block size, 86
resetting, 38
Acquisition Controller board, 500
acquisition parameters group, 147
acquisition queue, resume after pause, 488
acquisition status, 44
acquisition status line, 40
Acquisition Status window, 43
activating current window activity, 312
active parameter, 383
Active study name (P), 47
activity in current window, 312
ADC overflow warning, 45
Add required protocol before the main protocol, 650
add/subtract experiment, 560
add current FID, 47
add current spectrum, 554
clear experiment, 100
delete experiment, 100
interactive mode, 48
subtract FID, 573
subtract spectrum, 561
additive weighting constant, 78, 643
allocateWithId procedure, 368
AM data conversion, 106
amplifier mode control, 54
amplifier type, 54
AMX data conversion, 106
AnalogPlus digital filter, 138
analyze.inp file, 55, 211, 213
analyze.list file, 56, 105, 584, 585
analyze.out file, 56, 105, 213, 413
AP Interface Type label, 103
application mode, 60
Apptype macro for dosy 2D experiments, 168
Apptype macro for Standard 1D experiments, 569
AFT acquisition, 279
AFT spectra
plot automatically, 425
process automatically, 60
arc cosine calculation, 39
arc sine of number, 62
arc tangent calculation, 63
arc tangent of two numbers (Y,X), 63
argument, type, return identifier for, 602
arrayed 1D spectra, 568
processing, 449
processing and plotting, 75
arrayed 2D FID matrices, 634, 635
arrayed experiment
control interleaving, 298
arrayed parameter, returning number of elements in an, 550
arrayed parameters
enter as linearly spaced, 60
order and precedence, 61
arraying LP parameters, 339
assign sysgcoil, 526
asynchronous decoupler mode, 156
attached proton test, 60
attenuator
crude type, 93
control, 178
fine, 218
upper safety limit, 176
attributes of parameters, 153
audio filter board, 67
Audio Filter Type label, 67, 103
audio filters bandwidth, 218
auto lk gradient map generation, 69
auto.conf file, 204
tauto_dir macro, 552
autocalibration, 39
getting with CH3I sample, 66
routines, 67, 68
setting up with CH#I sample, 66
with autotest sample, getting, 66
with autotest sample, setting up, 66
Autogain, see automatic gain
Autolock, see automatic lock
Automake Shimmap button, 264
automated
Index

analysis of DEPT data, 70
carbon acquisition, 91
carbon and APT acquisition, 93
carbon and DEPT acquisition, 94
fluorine acquisition, 216
phosphorus acquisition, 394
proton acquisition, 276
proton and carbon acquisition, 278
proton and COSY acquisition, 280
proton, carbon, APT acquisition, 279
proton, carbon, DEPT acquisition, 279
proton, carbon, HETCOR acquisition, 279
automated gradient map generation macros, 68
automatic
2D normalization, 376
2D peak picking, 324
2D processing, 378
analysis of COSY data, 40
APT spectra processing, 60
calibration, 39
COSY- and NOESY-type spectra plot, 426
generic processing, 449
heteronuclear J-resolved 2D spectra plot, 429
homonuclear J-resolved 2D spectra plot, 429
integral scale adjustment, 304, 305
macro execution, 534
plot APT-type spectra, 425
process FIDs, 449
spectra plotting, 432
vertical scale adjustment, 620, 621
X,H-correlation 2D spectrum plot, 430
automatic gain
enable Autogain, 249, 250
errors, 46
automatic lock
errors, 46
status, 53
submit Autolock experiment to acquisition, 329
automatic phasing, 58
optimized, 59
zero-order term, 58
automatic shimming, 641
create shim method string, 372
method selection, 359
submit Autoshim experiment to acquisition, 510, 544
automatic stacking for arrays, 75
automatic vertical scale adjustment, 620, 621
automation data file prefix, 74
automation directory
absolute path, 71
check for enter queue, 71
preparation for run, 69
automation directory name, 262
automation mode, 71
check if active, 69, 210
automation parameter group, 150
automation run
controlling macro, 70
enter sample information, 204
prepare automation directory, 69
resume suspended run, 75
starting, 71
suspend current run, 75
autoscaling resumes, 75
Autoshim on Z button, 264
Autoshim, see automatic shimming
autoshimming, 569
gradient, 263
autotest
application mode, 60
average value of input, 77
axis gradients, 104
axis labels, 78
FID displays and plots, 80
units, 79
B
background execution, 544
background VNMR processing, 611
backup current probe file, 39
bandpass filter offset for downsampling, 187
bandwidth for shaped pulse, 458
bandwidth of audio filters, 218
bandwidth of digital filter, 186
baseline correction, 82, 594
linear, 130
sensitivity adjustment, 345
draw on plotter or display, 84
zero-order, 344
baseline flatness, 290
beeper sound, 83
Bessel filters, 53
BINOM pulse sequence, 84
binomial water suppression, 84
blanked amplifiers, 499
block size action, 627
block size storage, 86
block size transients, 627
boxes
draw on plotter or display, 84
selected by mark command, 85
BR24 pulse sequence, 86, 119
Brickwall digital filter, 138
broadband channel tuning, 86
Bruker data files, 565
convert to VNMR, 106
read files from 9-track tape, 473
Bruker data, phasing, 58
bruker.par file, 565
Butterworth filter, 53, 67
button labels, 364
C
C13.par file, 540
calculated spectrum display, 189
calibration
decoupler pulse, 463
gradient strength, 450
shaped pulses, 81
calibration file, printing, 70
carbon
decoupler calibration macros, 67
carbon gradient ratio calibration macros, 67
carbon observe calibration macros, 67
carbon-enriched molecules, 279
Index

Carr-Purcell Meiboom-Gill T2, 110

cartridge tape, 587
center frequencies of nD experiments, 483, 484
center of screen display limits, 95
chained acquisition, 71
chained experiments, 99
chained study queue, 568
CHAN readout, 599
change sample experiment, 97
changing working directory, 94
channels
assign frequencies for probe tuning, 599
available for use, 381
rf frequencies, 554
rf generation on each channel, 495
set frequency of rf channels, 524
waveform generator on channel, 496
characters in a string, 322
chart
maximum width, 628
maximum width in second direction, 628
starting position, 513
starting position in second direction, 514
width, 627
width in second direction, 627
chart paper
preprinted paper for HP plotters, 290
chemical shift offset frequency, 532
chemical shifts list, storing, 167, 411
chemist-style parameters, 86
class C amplifiers, 54, 93, 104
decoupler high-power control, 151
decoupler low-power control, 156
clearing
experiment text, 117
integral reset points, 119
cmd parameter, 394
Coarse Attenuator label, 93, 104
course attenuator type, 93
coe file, 521, 555
coefficient to construct interferogram, 217, 218
coefficients for digital filtering, 184, 567
Cold Probes, 117
COLOC sequence, 430
color intensity map, 300
display, 130
without screen erase, 134
color selection for drawing, 412
colors for plotting, 100, 533
combining arrayed 2D FID matrices, 238, 242
comm port for sample changer, 102
command execution, 206
commands
dbsetup remove, 129
dbupdate, 129
display which command or macro is used, 636
edit online description, 355
online description, 354
rename, 285
comparing shim sets, 152
compiling
user PSG object library, 454
user pulse sequences, 519
user-written weighting functions, 643
compiling pulse sequence, 519
completed FIDs in experiment, 95
completed transients, 117
complex Fourier transform, 447, 448
complex points to left-shift ni interferogram, 342
complex points to left-shift ni2 interferogram, 343
complex points to left-shift np FID, 342
complex time-domain data points, 338
compressed 2D data conversion, 227
correlation information, 641
configuration parameters
display and possibly change, 101
Configure label, 103
copar file, 102, 115
console hardware status, 298
Console label, 102
console parameter, 105
console type, 105
contact time, 105
continuous wave (CW) modulation, 162
contour display
display control, 133
contour plot, 130, 410
display, 170
width of plotting area, 627
without screen erase, 134
contour plot display, 171
correlation information, 641
coversion units for parameters, 604
copy temporary stored study into a submitted study, 650
copying
experiment data to subfile, 111
files, 109, 110
local file to remote host, 206
one parameter tree to another, 271
peak file to another file, 327
remote file to local host, 204
system macro to become user macro, 350
user macro files, 348
CORBA client, 117
CORBA server, 117
corrected difference between successive spectra, 221
cosine value, 109
cosine-squared window function, 562
cost accounting, 616
COSY
acquisition, 280
automatic analysis and plot, 396
automatic analysis of data, 40
phase-sensitive, 109
plotting, 426
COSY-like correlation spectra, 230
CPMGT2 pulse sequence, 110
create protocols macro, 564
Create study queue parameters for imaging, 564
Create study queue parameters for liquids, 112
creating
FID display parameters, 223
LC-NMR parameters, 402
Index

parameters in a parameter tree, 114
UNIX directory, 363
cross-polarization, 655
cross-relaxation, 595
CryoBay Monitor software, 117
cubic curve fitting, 56, 212
curecc file, 525
curpar file, 115
current experiment
correct parameter characteristics, 226
determine if acquisition active, 210
current FID data block, 96
current gradient coil, 251
Current study queue node id, 46
current window, 118
current working directory, 460
current-type parameter tree, 115
cursor
adjust tau2 to start of acquisition, 599
difference of two frequency cursors, 140, 141
difference of two time-domain cursors, 141
mode, 356
move cursor to center spectrum, 95
move cursor to nearest line, 374
move spectral window according to cursors, 365
reset integral to zero at cursor, 659
set decoupler frequency to cursor position, 515, 516
split difference of two cursors, 560
state in df, ds, or dconi programs, 116
cursor position, 113, 114
time domain, 115
curve fitting, 55, 211
cutoff point for VT regulation, 623
CW amplifier mode, 54
cycle phase, 110
cycled BR24 pulse sequence, 119
cycled MREV8 pulse sequence, 119
CYCLENOE sequence, 119

d2pul pulse sequence, 126
DAC, converting gauss/cm value to, 226
data conversion to linear order, 585
data display mode, 160, 161
data file display in current experiment, 134
data point, determining size of a, 58
data points to be acquired, 379
data processing type on FID, 446, 447, 448
data set conversion from VXR-style to VNMR, 106, 110
data station system configuration, 582
data truncation limit, 118
data.fdf file, 243, 245
database for VnmrJ, 129
datarid directory, 636
date of data acquisition, 128
dbsetup remove command, 129
dbupdate command, 129
dc correction, 220
dc offsets removed from FIDs, 134
dconi.out file, 356
decay curves, 415
deconvolution, 220, 225
display numerical results, 547
plotting, 428
starting point, 607
decoupler
adjust tip-angle resolution time, 159
decoupling sequence, 185, 186
field strength, 157
field strength calculation, 277
fine power attenuator, 178
frequency, 144
frequency offset array, 516
frequency offset control, 166
high-power control, 151
linear modulator power, 179
low-power mode, 156
mode during status periods, 156, 157
modulation frequency, 103, 157, 158
modulation mode, 162, 163
nucleus lookup, 163
power level with linear amplifier, 176
power to switchable probe caution, 176, 177, 178
proton decoupler pulse calibration, 440
pulse calibration, 463
pulse length, 439
pulse sequence diagram, 175
set frequency to cursor position, 515
tip-angle resolution, 180
used as transmitter, 126
used for pulsing, 162
WALTZ decoupling present, 626
decoupler 2 parameter values
set from probe file, 523
decoupler modulation frequency, 158
decoupler parameter values
set from probe file, 523
def file, 166
Default button, 139
default directory for Files menu system, 139
defauldomain file, 524, 532
defaultrouter file, 524, 532
Define excitation band, 407, 518
Define excitation band for solvent suppression, 407
delay
first, 126
incremented delay for pulse sequence, 126, 127
overhead delay between FIDs, 125
preacquisition, 53, 396
wait for another trigger, 199
wait to acquire a spectrum, 199
delay-type parameter, 114
deleting
experiments, 139
file, parameter, or FID directory, 139
files, 498
spectra from analysis, 140
user macro, 139
DEPT
acquisition, 279
analysis and plot, 397
automated complete analysis, 70
automatic analysis and spectrum editing, 51
plotting data, 427
spectra array processing, 142
dept.out file, 51
DEPTGL pulse sequence, 141
destroying
parameters, 142
parameters of a group, 142
devicenames file, 533
devicetable file, 533
dg window, 588
dg2 parameter, 149
dgcstecosy pulse sequence, 149
dgcstehmqc pulse sequence, 149
dgcsteSL pulse sequence, 149
dglc parameter group, 150
dgroup of a parameter, 523
diagonal parameter arrays, 61
diagonal peaks threshold during peak picking, 649
dialog box, 105
dialog box from a macro, 151
dialog, starting a, 166, 167, 204
dialoglib directory, 166
difference between cursors in Hz, 140
difference between cursors in seconds, 141
difference NOE experiment, 119
diffusion analysis, 212
add to current display, 213
add to current plot, 413
display, 212
diffusion constant, 415
calculation, 415
diffusion experiment analysis, 56
diffusion gradient level, 252
Diffusion Ordered Spectroscopy (DOSY), 168
digital filter type, 138
digital filtering
bandwidth, 186, 566
bandwidth for oversampling, 385
coefficients for oversampling, 385
create downsampling parameters, 401
create parameters for oversampling, 404
downsampling factor, 170
file of FIR digital filter coefficients, 224
inline type, 190
number of coefficients, 184, 567
parameter creation, 49
digital lock display, 476
digital resolution measurement, 180
digitally filtered FIDs, 152, 567
dimension of experiment, 61, 91
dimensionality of experiment, 253
direct polarization, 655
directly detected dimension
absolute value display mode, 76
additive weighting constant, 78
data display mode, 160
first-order phase, 334
Fourier number, 229
Gaussian function, 259
Gaussian shift constant, 259
line broadening, 319
phase angle display mode, 395
phased spectra display mode, 416
power display mode, 461
reference line frequency, 494
reference line position, 493
scale spectral width, 514
set reference line, 497
sinebell constant, 512
sinebell shift constant, 513
spectral width, 532, 580
start of plot, 553
user-defined weighting, 642
width of plot, 637
zero-order phase, 500
directories
change working directory, 94
create new UNIX directory, 363
default for Files menu system, 139
delete, 139
display current working directory, 460
get information about files, 253
list files, 152
list files in directory, 322, 341
move directory, 369, 485
path to current experiment, 118
remote VXR-style system, 203
remove empty directories, 498
remove from experiment, 99
rename directory, 369, 485
stored queue experiments, 71
user’s manual directory, 355
user’s private VNMR files, 607
VNMR system, 582
disk file errors, 46
display
acquisition information, 43
lock level, 42
spinner speed, 42
temperature, 42
Display integral values, 172
display limits
set for full screen, 246
set for full screen with room for traces, 246
set for left half of screen, 321
set for right half of screen, 496
display mode for plotter, 436
Display normalized integral values, 173
display parameters
create 3D display parameters, 399
full recall of set, 233
move between experiments, 358
recall set, 470
save as a set, 509
set to full spectrum, 216
display parameters group, 148
display templates for 3rd rf channel parameters, 399
display templates for pulse sequence, 539
displaying
2D color map of 3D plane, 174
2D data interactively, 131
2D spectra in whitewash mode, 183
2D spectra in whitewash mode with no screen erase, 183
3D parameter group, 148
3D plane projection, 175
3D planes, 191
3rd/4th rf channel parameter group, 148
acquisition information, 43
acquisition parameter group, 147, 150
acquisition status information, 548
acquisition time, 214
add another diffusion analysis, 213, 413
arrayed acquisition parameters, 127
automation parameters, 150
color intensity map, 130
Index

contour plot, 130
contour plot with screen erase, 171
contour plots, 170
create 2D parameters, 399
current working directory, 460
data file in current experiment, 134
dialog box from a macro, 151
display parameter group, 148
error messages, 205
Ethernet address, 202
experiment library, 214
experiment time, 214
exponential curves, 212
FID, 143, 144
FID as connected dots, 169
FID file in current experiment, 134
FIDs in whitewash mode, 147
FIDs of 2D experiment, 143
files in directory, 152
formatted text, 638
full window display, 645
grid on 2D display, 270
horizontal LC axis, 128
inset spectrum, 303
integral amplitudes, 172
integral with a spectrum, 182
integrals at reset points, 154
LC-NMR parameters, 150
limNET nodes, 166
line frequencies above threshold, 155
lock level, 42
log file for experiment, 214
message on acquisition status line, 40
next 3D plane, 373
normalized integral amplitudes, 172
normalized integrals, 155
parameter value, 468
parameters and their attributes, 153
peak frequencies, 171
phase file in current experiment, 135
plot is same as display, 645
plotted contours, 170
polynomial curves, 212
previous 3D plane, 443
processing parameter group, 147, 150
pulse sequence diagram, 175
pulse sequence generation errors, 454
recalculated simulated spectrum, 189
remote VXR-style directory, 203
scale under spectrum or FID, 184
set for center of screen, 95
set full screen with room for traces, 246
set limits for full screen, 246
shim method string, 187
shim parameter group, 150
spectra in whitewash mode, 198
spectra, 182
spin simulation parameter arrays, 153
spin simulation parameter group, 149
spinner speed, 42
stacked FIDs, 145, 146, 147
stacked spectra, 191
stacked spectra automatically, 193
stacked spectra automatically with no screen erase, 194
stacked spectra horizontally with no screen erase, 196
stacked spectra with no screen erase, 197
strings in text window, 202
system macro file, 350
temperature, 42
text file for current experiment, 591
text files, 93
time of acquisition, 214
user macro files, 348
which command or macro is used, 636
width adjustment, 664
done codes, 44
DOSY (Diffusion Ordered Spectroscopy) experiment, 168
dosyfit program, 168
dosyfrq, 168
dosygamma, 169
double-precision data acquisition, 170
double-precision VNMR FID data, 101
double-quantum filtered COSY pulse sequence, 179
down sampling
 bandpass filter offset, 187
 bandwidth of digital filtering, 186
 creating parameters, 401
 digital filter coefficients, 184
 factor, 170
 inline type, 190
 parameter creation, 49
 setting parameters, 364
dpiv, 172
dpvyn, 173
dprofile, 174
DQCOSY, 179
DQCOSY experiment, 179
drawing a line between points, 179
drift correction
 2D spectra traces, 130
 activity flag, 130
 calculation, 130
 cancel, 94
 group, 130
ds, 132
ds.out file, 356
DSP parameter creation, 49
DSP type (see digital filtering), 190
DSP, type of, 191
dummy scans, 566
Dynamic Angle Spinning (DAS), 128
dynamic binding, 520

E

echo command (UNIX), 202
eddy current testing, 270
eddy current compensation off, 202
 on, 202
editing
 files, 202
 macros, 349
 menu file, 359
 parameter file with user-selected editor, 400
 parameter file with vi editor, 400
UNIX text files, 612
user macro, 351
ejection of sample, 201, 203
elements, returning number of, 550
eLLiptical filters, 53, 67
Email address, 203
End a study queue, 562
enter.conf file, 204
enterexp file, 204
enumerated values, 114
remove from a variable, 524
Ernst angle pulse calculation, 205
ermsg file, 643
error codes, 44
error conditions recovery, 472
error during acquisition, 45, 629
error handling control, 300
error message display, 205
errors in pulse sequence generation, 454
Ethernet
address display, 202
disconnect host computer, 532
host computer connection, 524
evolution dimension
set spectral width, 583
evolution time increments, 373, 374
excitation pulse, 393
Execute a protocol from the locator, 334
Execute processing macro, 207
executing VNMR command, 206
exiting from VNMR, 210, 617
exp5 (add/subtract experiment), 48, 100
experiment data retrieval, 503
experiment directory path, 118
experiment numbers list, 355
experiment parameters, restoring, 311
experiment text file
append string, 64
clear text, 117
experiment time display, 214
experimental frequency of transition, 100
experimental lines, assigning transitions, 62
experiments
abort acquisition with no error, 278
acquire and Fourier transform, 249
acquisition time estimate, 593
action when bs transients accumulate, 627
action when error occurs, 629
action when experiment completes, 631, 632
action when nt transients accumulate, 636
add parameters, 49
add parameters for FID display, 223
append string to text file, 64
calculate dimension, 91
clear text file, 117
completed transients, 117
correct parameter characteristics, 226
correct parameter limits and step sizes, 402
create workspace, 96
delete an experiment, 139
determine if acquisition active, 210
dimension, 61
dimensionality, 253
display acquisition time, 214
display data file, 134
display FID file, 134
display log file, 214
display phase file, 135
display text file, 592
experiment library display, 214
fit data to lineshapes, 225
get text from data file, 257
join existing experiment, 309, 310
make FID element using numeric text input, 353
move display parameters between experiments, 358
move FIDs between experiments, 360
move parameters between experiments, 365
nucleus selection, 540
number of completed FIDs, 95
parameters for basic experiment, 540
pulse sequence setup, 267
recalculate number of transients, 593
remove inactive lock and join experiment, 605
remove old files and directories, 99
replace text file, 591
resume a stopped acquisition, 471
retrieve FIDs from a file, 501
retrieve parameters from file, 502
retrieve shim coil settings, 502
save FIDs, 576
save parameters, 579
save text to a data file, 459
select 1D experiment for processing, 252
select 2D experiment for processing, 253
set up T_1 experiment, 169
setup macro, 607
setup macros, 227
shim values to use, 328
shimming conditions, 641
solvent selection, 540
stop acquisition, 510
string parameters for storage, 371
submit Autolock experiment to acquisition, 329
submit Autoshim experiment to acquisition, 544
submit change sample, Autoshim to acquisition, 510
submit setup experiment to acquisition, 65, 266
text file display, 591
expfit.out file, 413
exponential analysis, 584, 585
exponential curve, 211
exponential curve fitting, 56, 105, 212
exponential curves display, 212
exponential curves plot, 413
exponential value of number, 210
exponential weighting, 319, 320
external time base, 649
extract entries in VXR-style directory, 138
extrapolated dispersion mode, 221

F
F1 linear prediction parameters, setting, 531
f1 scaling factor for 2D multipulse sequences, 515
f2, f3 display, 380
f2 ridges, 97
f3 processing of 3D data, 636
FDF files, 243, 244, 576
Index

FDM program, running, 219
FID block, move, 360
FID block, reverse, 489
FID button, 266
FID data, move, 361
FID data, reverse, 492
fid file, 586
FID file, memory map open, 362
FID trace, move, 362
FID trace, reverse, 494
FID, memory map close, 361
fid.orig file, 586
FIDs
 absolute-value mode data display, 161
 acquisition time, 63
 action after FID finishes, 637
 action after last FID, 632
 add to add/subtract experiment, 47
 arrayed 2D FID matrices, 634, 635
 automatic processing, 449
 axis label units, 80
 combine arrayed 2D FID matrices, 238, 242
 complex points to left-shift np FID, 342
 compress double-precision FID data, 101
 copy FIDs into exp5 as array, 263
 create display parameters, 49, 223
 current data block, 96
 cursor difference, 141
 delete FID directory, 139
 digitally filtered FID, 567
 display as connected dots, 169
 display FID files in current experiment, 134
 display FID of 2D experiment, 143
 display scale, 184
 display single FID, 143, 144
 display stacked FIDs, 145, 146, 147
 display whitewashed FIDs, 147
 filtered, 566
 first point multiplier, 232
 Fourier transform 1D FIDs, 235
 Fourier transform 2D data, 238
 Fourier transform 3D FID into 3D data, 242
 hypercomplex 2D Fourier transform, 241
 imaginary part display, 144
 interactive display, 40
 interleave FIDs during processing, 298
 left-shift FID to time-domain cursor, 594
 make FID element using numeric text input, 353
 maximum point in an FID, 222
 move FIDs between experiments, 360
 noise level measurement, 377
 number of completed FIDs, 95
 overhead delay between, 125
 plot a scale under a FID, 453
 plot in whitewash mode, 414
 plot one or more FIDs, 427
 prepare parameters for acqi display, 258
 pulse breakthrough effects, 499
 remove dc offsets, 134
 retrieve from a file, 501
 retrieve from experiment subfile, 503
 save FID data in FDF format, 576
 save in current experiment, 576
 solvent subtraction, 401
 start of FID display, 542
 subtract FID from add/subtract experiment, 573
 TPPI 2D Fourier transformation, 241
 type of data processing, 446
 vertical position, 618
 vertical position of imaginary FID, 619
 vertical scale, 612
 weight and Fourier transform 1D FIDs, 633
 weighting interactively, 643
 width of FID display, 632
 write numeric text file using a FID element, 640
 zero-order phasing constant, 419
field position, 660
FIFO loop size, 223
Fifo Loop Size label, 103, 223
FIFO underflow error, 46
files
 append data to file, 639
 automation data file name prefix, 74
 Bruker data files for conversion, 565
 check for existence, 207
 clear a file, 638
 delete, 139
 delete one or more files, 498
 display experiment library, 214
 display in text window, 93
 edit with user-selectable editor, 202
 file name extension information, 254
 find number of files in directory, 253
 find words and lines in text file, 332
 get text from data file, 257
 handle interactively, 223
 lines or records in file, 379
 links to files, 322
 list files in directory, 152, 322, 341
 load parameters from file into a tree, 233
 make a copy, 109
 make FID files using numeric text input, 353
 making a copy, 110
 move a file, 485
 move file, 369
 plot files, 617
 plot text file, 436
 print or plot to a file, 444
 print text files, 457, 617
 put text file into another file, 459
 read 32-bit data files into VNMR, 565
 read Bruker data files from tape, 473
 remove old files from experiment, 99
 rename a file, 485
 rename file, 369
 retrieve FIDs from file, 501
 retrieve parameters from file, 502
 retrieve shim coil settings from file, 502
 return information from files display, 224
 save FIDs in experiment, 576
 save parameters from experiment, 579
 save parameters from tree to a file, 234
 save shim coil settings to a file, 579
 text files display in graphics window, 198
 transfer file from remote source, 204
 transfer files to remote destination, 206
 write formatted text to a file, 638
Files menu system
 default directory, 139
 filter bandwidth, 218
 filter delays, 53
filter diagonalization method (FDM), 219
filtlib directory, 224
Find an xml menu, 225
Find gzvl1/gzwin button, 273
Find gzwin button, 273
fine attenuator, 597
fine attenuator configuration, 218
Fine Attenuator label, 104, 178, 218, 597
fine power attenuator, 178
finite impulse response (FIR) coefficients, 224
first delay in pulse sequence, 126
first point multiplier, 232, 233
first pulse width, 393
first-order baseline correction, 594
first-order phase correction, 128
first-point multiplier, 97
fitspec.data file, 225
fitspec.inpar file, 225, 525
fitspec.outpar file, 225, 525, 547
flag-type parameter, 114
flashc command, 227
flip time, 393, 460
FLIPFLOP pulse sequence, 228
flow encoding gradient level, 259
fluorine
automated acquisition, 216
process 1D spectra, 217
fm-fm mode decoupling, 157
fm-fm modulation (swept-square wave), 162
folding-in problem, 218
gain of receiver, 249
gap between lines in spectrum, 250
GARP decoupling sequence, 157, 159, 162
gating time for receiver, 117, 499, 500
gauss/cm, converting to DAC value, 226
Gaussian apodization constant, 643
Gaussian fraction, 189
Gaussian function for lineshape, 525
Gaussian function shift, 643
Gaussian function value, 458
gaussian independent phase, 418
gaussian independent term, 58
gaussian shifted quadrature detection, 234
gaussian-type parameter, 114
gfr3d call name, 313
full display, 645
full screen display limits, 246
full-band amplifier, 54
full-width at half-height (FWHH), 324

G

gain of receiver, 249
gap between lines in spectrum, 250
GARP decoupling sequence, 157, 159, 162
gating time for receiver, 117, 499, 500
gauss/cm, converting to DAC value, 226
Gaussian apodization constant, 643
Gaussian fraction, 189
Gaussian function for lineshape, 525
Gaussian function shift, 643
Gaussian function value, 458
gaussian independent phase, 418
gaussian independent term, 58
gaussian shifted quadrature detection, 234
gaussian-type parameter, 114
gfr3d call name, 313
full display, 645
full screen display limits, 246
full-band amplifier, 54
full-width at half-height (FWHH), 324

G

gain of receiver, 249
gap between lines in spectrum, 250
GARP decoupling sequence, 157, 159, 162
gating time for receiver, 117, 499, 500
gauss/cm, converting to DAC value, 226
Gaussian apodization constant, 643
Gaussian fraction, 189
Gaussian function for lineshape, 525
Gaussian function shift, 643
Gaussian function value, 458
gaussian independent phase, 418
gaussian independent term, 58
gaussian shifted quadrature detection, 234
gaussian-type parameter, 114
gfr3d call name, 313
full display, 645
full screen display limits, 246
full-band amplifier, 54
full-width at half-height (FWHH), 324
Index

gradient calibration pulse sequence, 450
gradient coil configuration, 582
gradient coil configuration file, 104
gradient coil updating, 606
gradient COSY pulse sequence, 252
gradient level trim, 272
gradient map generation, 68, 69
gradient map generation, automatic, 68
gradient shape, 268
gradient shimming
display menu, 264
map shims, 264
pulsed field gradient strength, 272
set parameters, 264
spectral width percentage, 273
start acquisition, 263
start gradient autoshimming, 263
z-axis shims number, 272
Gradient Shimming System menu, 264
gradient step size, 268
maximum value, 266
gradient strength for each axis, 272
gradient strengths calibration for PGE, 414
gradient total limit, 272
generators for X, Y, and Z axes, 269
Gradients label, 103
gradients directory, 526
graphics window
display message with large characters, 81
display status, 269
display text file, 198
draw box, 84
write formatted text to screen, 638
Graphics Window colors, 522
graphics window, dividing into rows and columns, 526
GraphOn terminal window clearing, 99
gray scale contrast adjustment, 270
gray scale display adjustment, 270
gray scale image plot, 300
grid lines over 2D plot, 428
grid on a 2D display, 270
gripper abort, 45
Group A parameters, 149
group of parameters in tree, 526

H
H1.par file, 540
Hadamard
tcosy experiment, 596
Hadamard transform processing, 447
Hadamard waveforms, 293
hardware Ethernet address display, 202
hardware shimming
list of shims, 283
hardware shims, 473, 521
hardware status of console, 298
hardware values in acquisition system, 527
hardware Z1 shimming, 283
HCHTOCSY sequence, 279
height of peak, 232
HET2DJ pulse sequence, 284
HETCOR acquisition, 279
HETCOR experiment, changing parameters for, 284
HETCOR pulse sequence, 284, 430
HETCORCP1 pulse sequence, 284
HETCORPS pulse sequence, 284
hetero2d, 284
heteronuclear 2D-J experiment, 284
heteronuclear chemical shift correlation, 284
heteronuclear J-resolved 2D spectra, 429
heteronuclear multiple-quantum coherence, 286
Hewlett-Packard plotter pens, 533
Hewlett-Packard plotters, 290, 648, 657
hiding a command, 285
High Power Amplifier Enable, 285
high-power pulse widths, calibrating, 67
Hilbert transform algorithm, 221
HMBC sequence, 430
HMQC phase-sensitive PFG pulse sequence, 261
HMQC pulse sequence, 430
HMQCR pulse sequence, 286
HMQCTOCSY 3D pulse sequence, 286
HOM2DJ pulse sequence, 286
homo2d, 288
HOMODEC experiment, changing parameters for, 288
homodecoupling control, 287, 288
homonuclear correlation, 109, 595
homonuclear J-resolved 2D experiment, 286
homonuclear J-resolved 2D spectra, 429
homoro1, 288
homoro2, 289
homoro3, 289
homospoil, 290
horizontal LC axis, 128, 405
horizontal offset, 286
horizontal projection of trace, 132
horizontally stacked spectra, 194
host computer
serial port connection to changer, 551
host computer connection to Ethernet, 524
host computer disconnect from Ethernet, 532
host disk errors, 46
hostname.le0 file, 524
hosts.3D file, 243
Hoult setting for final pulse times, 290
HSQC experiment, 291
HSQC pulse sequence, 261
HsqHT experiment, 291
HSQC-TORSE 3D pulse sequence, 292
Hsqctoxy, gradient, 261
htbw1, 292
htrf1, 293
hypercomplex points to left-shift interferogram, 342

I
I1 and I2 values, 205
identifier. return for argument type, 602
idle mode for amplifiers, 54
IF Frequency label, 103
imaginary part of FID, 144
imaging
application mode, 60
attenuator, 94
macros and menus, 60
Imaging Gradient Coil label, 104
imconi macro, 300
inactive parameter, 383
INADEQUATE data about 2-quantum axis, 230
INADEQUATE pulse sequence, 300
Incredible Natural Abundance Double-Quantum Transfer Experiment, 300
incremented delay for pulse sequence, 126, 127
index of experimental frequency of transition, 100
indirectly detected axis, 79
INEPT pulse sequence, 301
info directory, 521
info_# file, 415
Initialize liquids study queue, 112
inline DSP, 190
Insensitive Nuclei Enhanced by Polarization Transfer, 301
inserting a sample, 297, 302
inset spectrum, 303
integer-type parameter, 115
integral display, 182
integral mode, 304
integral value, 301
largest value in region, 303
normalization scale, 301, 302
offset, 304
regions, 290
reset points, 659
scale, 304
set value, 529
integral amplitudes display, 172
integral amplitudes plot, 422
integral scale adjustment, 304, 305
integrals
 clear reset points, 119
data truncation limit, 118
display in normalized format, 155
display list, 154
find integral values, 374
reset point amplitudes, 322
reset point frequencies, 323
integration, 1D spectrum, 303
intensity of spectrum at a point, 355
intensity threshold, 570
interactive acquisition display, 40
interactive phasing, 182
interactive UNIX shell, 544
interferogram coefficients, 217, 218
interferograms
 first-point multiplier, 233
 start of display, 542
type of data processing, 447, 448
weighting interactively, 643
width of display, 633
zero-order phasing constant, 420
interlock to control lock level and spin speed, 300
Internet address, 42, 43, 44
inverse cosine calculation, 39
inverse Fourier transform, 235, 236
inverse sine, 62
inverse tangent, 63
isreal, 305
isstring, 306
iterated parameters list, 307
iterations in an iterative simulation, 374
J
J-correlation experiment, 595
Join a work space from the locator, 165
joining
 an existing experiment, 309, 310
 joint arrays, 61
 J-resolved 2D spectrum, 230
jump-and-return sequence, 311
JUMPRET sequence, 311
K
keyboard entries record, 480
keyboard focus to input window, 230
keyboard input into variables, 301
kinetics analysis, 56, 212, 314, 315, 413
L
label a stacked spectra display, 196
lastlk file, 318
latching capabilities of frequency synthesizer, 319
Latching label, 103, 319
LC axis, 128, 405
LC-NMR
 2D acquisition parameters, 320
 create parameters, 402
 create pseudo-2D dataset, 263
delay for trigger, 199
display horizontal LC axis, 128
display LC-NMR parameters, 150
general 2D experiment setup, 321
set up parameters for LC-NMR sequences, 321
set up pulse sequence for LC-NMR run, 320
set up scout run, 537
TOCSY sequence, 321
least-squares curve fitting, 55, 211
left half of screen display limits, 321
left-shift FID to time-domain cursor, 594
left-shift ni interferogram, 342
left-shift ni2 interferogram, 343
left-shift np FID, 342
leg relay control, 322
lfs (low-frequency suppression) option, 401
limits for scales in regression, 514
limits of parameter in a tree, 529
limNET nodes database, 166
line amplitudes list, 327
line assignments for spin simulation, 98, 153
line broadening, 319, 320
line broadening factor, 644
line drawing between points, 179
line drawing capability, 364, 412
line frequencies, 327, 550
line frequencies and intensities display list, 155
find values, 375
line list plotting, 431
line listing intensity and frequency, 254
line narrowing sequence, 367
line narrowing, 367
linear amplifiers, 55, 104
decoupler power level, 176, 177
power level, 597
linear curve fitting, 56
linear fitting to data, 212
Index

linear modulator power, 179, 598
linear monotonic order data, 585
linear prediction
 algorithm, 335, 336
 algorithm data extension, 338, 339
 arraying parameters, 339
 calculation start point, 531, 571
 coefficients to calculate, 337
 create parameters, 403
 data extension, 336, 337
 data extension start point, 570, 571
 multiple operations, 339
 number of data points, 338
 output spectrum, 341
 parameter creation, 49, 50
 print output, 340
 printout, 339
 type of data processing, 447, 448
linearly spaced array values, 60
line-narrowing multiple-pulse, 86
lines of text, look up from a text file, 332
lineshape modification, 525
linewidth for spin simulation, 550
linewidth measurement, 180
Load experiment from protocol, 562
Load experiment from protocol (M), 111
load time counter, 649
local file transfer to remote host, 206
local host name display, 202
local oscillator (L.O.), 331
location of sample in tray, 329
location to start a line, 364
Locator action, 329
lock
 acquisition time constant, 329
 automatic control, 53
 automatic phase adjustment, 329
 capture, 53
 digital lock display, 476
 frequency, 531
 gain value, 331
 interactive, 40
 lock frequency adjustment, 330
 lock parameters setup, 530
 loop time constant, 331
 phase value, 331
 power value, 331
 read current lock level, 476
 remove inactive lock, 605
 solvent selection, 552
 solvent used, 318
 time constant, 331
lock file, 611
lock frequency
 track changes, 323
Lock Frequency label, 103, 330
lock level display, 42
lock level interlock, 300
log file, 214
log file for experiment, 214
logarithm of a number, 327
login macro, 84
loop size of fifo, 223
Lorentzian lineshape, 225, 525
low-band amplifier, 54
low-pass digital filter, 401
lpanalyz.out.# file, 339, 340

M
maclib directory, 84, 114, 139, 350, 480
Macro to create protocols, 112
Macro to perform generic 2D plot, 112
Macro to save study queue parameters, 113
Macro to set weighting functions from a panel, 113
macros
 activated by VNMR bootup, 84
 automatic execution, 534
 before experiment starts, 249
 change action of abort command, 38
 check for existence, 207
 copy system macro to become user macro, 350
 copy user macro file, 348
 create without text editor, 114
 delete user macro, 139
 display dialog box, 151
 display system macro, 350
 display user macro in text window, 348
 display which macro is used, 636
 edit online description, 355
 edit user macro with vi editor, 351
 edit with macro editor, 349
 hide command with same name, 285
 keyboard entries, 480
 list system macros, 351
 list user macro file names, 349
 load macro into memory, 349
 name of invoking macro, 348
 name storage for macros, 371
 online description, 354
 real-value storage parameters, 471
 remove macro from memory, 459
 remove system macro, 351
 remove user macro from directory, 350
 restore normal abort function, 38
 return values to calling macro, 489
 terminate calling macro, 37
 terminate execution, 489
 magic angle spinning, see MAS
 magnet leg relay control, 322
 magnetization recovery, 126
 Make Shimmap button, 264
 makeuser command, 606
 manual directory, 355
 map shims, 264
 MARK button, 356, 357
 mark output, 607
 mark1d.out file, 62, 356, 557, 607
 mark2d.out file, 85, 356
 MAS cross-polarization spin-lock contact time, 105
 MAS spinning speed, 565
 Max. Narrowband Width label, 170
 Max. Spectral Width label, 103
 Maximum DMF label, 103
 maximum frequency of any transition, 551
 Maximum gradient DAC value, 268
 maximum gradient strength for each axis, 272
 maximum of two spectra, 560
 maximum parameter value array, 403
 maximum transients accumulated, 369
 mean of the data in regression.inp file, 439
 measured line frequencies, 550
measured line frequencies array, 557
memory buffers, write to disk, 228
memory increased by removing macros, 459
memory map FID file, close, 361
memory map open FID file, 362
memory usage statistics, 368
Menu On button, 359
menulib directory, 224, 359
menus
button command string, 368
change status of menu system, 359
edit menu with vi editor, 359
label for button, 364
menu displayed by Return button, 319
return currently active menu, 372
select menu without activation, 372
MERCURY
broadband channel tuning, 86
probe tuning mode, 601
MERCURY series
broadband channel tuning, 86
MERCURY-VX
probe tuning mode, 601
message
confirm using mouse, 105
display with large characters, 81
messages from send2Vnmr, 323
method string, 569
microimaging
gradient calibration constant, 525
refocusing pulse shape, 461
shape of excitation pulse, 394
minimum frequency of any transition, 551
minimum intensity threshold, 570
minimum of two spectra, 560
minimum parameter value array, 404
MLEV-16 decoupling sequence, 157, 159, 162
mode for n-dimensional data display, 598
modulation frequency of decoupler, 157, 158
modulation mode for decoupler, 162, 163
mouse
confirming a message, 105
moving
files, 369, 485
parameters between experiments, 365
spectral window according to cursors, 365
transmitter offset, 365
MQCOSY pulse sequence, 366
MREV8 pulse sequence, 119, 367
multidimensional data display mode, 598
multihost processing, 244, 245
multiple receivers
add transformed data files with weighting, 499
number of receivers, 380
set filter bandwidth, 367
set gain, 368
weighting for different receivers, 472
multiple-pulse line narrowing, 86, 367
multiple-quantum filtered COSY, 366, 595
multipulse experiments
I_1 scaling factor, 515
scaling factor, 514

N
name of pulse sequence, 519
name storage for macros, 371
natural logarithm of number, 327
negative intensities, setting 2D, 664
ni interferogram
number of complex point to left shift, 342
type of data processing, 447
ni2 interferogram
type of data processing, 448
zero-order phasing constant, 420
node files, 205, 206
nodes file, 205, 206
NOE experiment, 119
NOESY
parameter set, 266
plotting spectra, 426
NOESY 1D experiment, 377
NOESY experiment, 377
noise level estimate, 256
noise level in spectrum, 378
noise level of FID, 377
noise modulation, 162
noise multiplier, 378
normalized integral amplitudes, 172
normalized integral amplitudes plot, 422
normalized integrals display list, 155
normalized intensity mode, 376
nt array, 416
N-type display, 380
nucleus for decoupler, 163, 164
nucleus for observe transmitter, 595
nucleus selection, 540
nucleus to add to probe file, 49
nuctables directory, 163
number of increments of evolution time, 373, 374
Number of RF Channels label, 103, 381
Nyquist frequency, 298

O
object library for PSG, 454
observe nucleus transmitter frequency, 543
offset
horizontal, 286
integral, 304
vertical, 618
offset frequency
calculate for nucleus and ppm, 532
online description of command or macro, 354
edit description, 355
open reel tape, 587
Operating system account owner, 388
Operator name, 384
oph real-time variable, 110
order of parameter array, 61
out.c file, 108
overhead delay between FIDs, 125
overrange of frequency synthesizer, 386
oversampling
bandwidth, 385
factor for acquisition, 387
filter type, 386
number of coefficients, 385
parameter creation, 49, 404
setting parameters, 364
Oxford shim supply, 545
Oxford VT controller, 357
Index

Oxford-Sorenson VT controller, 357

P

copy parameters of group, 271
correct saved parameter sets, 605
correct parameter characteristics, 226
correct limits and step sizes, 228
correct parameter display group, 148
correct parameter names and values, 398
correct parameter values, 12

parameter directory

delete, 139

delete parameter directory, 126

parameter list

parameter names and values, 398
plotting, 440

parameter panel

equal or disable, 650

parameter sets

file name of retrieved set, 223
update all sets in directory, 605

parameter tree

set Dgroup of a parameter, 523
set group of parameter, 526
set values of string parameter, 524

parameter types, 115

value of parameter, 541

write parameters to file, 234

parameters

3rd rf/3D parameter group, 148
4th rf channel parameter display group, 148
acquisition/processing group, 147
add for FID display, 223
add parameter to probe file, 50
add to current experiment, 49
adjust values from setup macros, 227
adjusting, 311
adjusting plot, 310
arrayed for acquisition, 127
arraying order and precedence, 61
automation parameter group, 150
basic experiment setup, 540
boxed for plotting, 86
change type, 540
check existence, 207
chemist-style, 86
convert to PGE, 414
copy between trees, 271
correct limits and step sizes, 402
correct parameter characteristics, 226
create 2D parameters, 399
create 3D parameters, 399
create 4D acquisition parameters, 399
create for fourth channel, 226, 227
create for linear prediction, 403
create for third rf channel, 226
create LC-NMR parameters, 402
create new parameter in tree, 114
create oversampling parameters, 404
create parameters for 2D peak picking, 403
create solvent subtractions parameters, 401
customize parameter sets, 607
destroy a parameter, 142
destroy parameters of a group, 142
display control, 57
display from tree with attributes, 153
display parameters group, 148
display templates for third rf channel, 399
display values in text window, 202
displaying value, 468
downsampling, 401
edit parameter and its attributes, 400
full recall of display parameters, 233
full spectrum display, 216
get value, 258
gradient shimming, 264
linearly spaced steps, 61
list to be iterated, 307
lock parameters setup, 530
make parameter active, 383
make parameter inactive, 383
make parameter, 532
parameter display group, 148
parameter names and values, 398
plotting, 440
plot list automatically, 57
plot on special chart paper, 290
prepare for acqu, 258
print all, 57
protocol mode, 534
prune extra parameters, 452
prune parameters from tree, 452
prune parameters from group, 142
prune parameters from tree, 452
pseudo-echo weighting, 453
read from file and load into tree, 233
recall display parameter set, 470
reset after partial 3D FT, 487
resolution enhancement, 488
restoring current experiment, 311
retrieve from experiment subfile, 503
retrieve display parameter, 470
retrieve from file, 502
retrieve individual parameters from file, 503
retrieve parameter from probe file, 255
save display parameters as set, 509
save from experiment, 579
save from tree, 234
save parameters from global tree, 511
save parameters from global experiment, 511
set group of parameter in tree, 526
set up for pulse sequences, 454
set up standard two-pulse sequence, 510
shims parameter group, 150
sine window function, 549
sinebell weighting, 549
sine-squared window function parameter values, 549
spin simulation parameter arrays, 153
spin simulation parameter group, 149
spin system parameters to iterate, 301
step size values, 404
system configuration, 101
test state of parameter, 383
turn off active parameter, 383
types of values, 114
unit conversion, 604
update after new VNMR install, 606
value of parameter in tree, 541
Index

VAST experiment parameter setup, 610
version of parameter set, 405
parlib file, 454
paths
2D planes from a 3D data set, 405
current working directory, 460
VNMR system directory, 582
VNMR user directory, 607
Pbox
add parameter definition to pbox.inp file, 410
assign Pbox calibration data, 463
convert to Pbox default units, 410
converts to default units, 410
create Pbox shape file, 111
create shape definition, 465
define excitation band, 407, 518
define excitation band for solvent suppression, 407
display interactive modulation pattern, 187
display interactive pulse shape, 187
display last generated pulse shape, 186
display modulation pattern, 186
display pulse shape, 186
extract dmf value, 407
extract dres value, 407
extract fine power level, 409
extract name of last shape, 408
extract power level, 408
extract pulse length, 408
generate a single-band shapefile, 464
generate a single-band shapefile, 464
open shape definition file, 384
plot modulation pattern, 455
plot pulse excitation profile, 441
plot pulse shape, 455
plot the last created pulse shape, 455
print pulse header, 441
reset temporary pbox/Vnmr variables, 410
simulate Bloch profile for a shaped pulse, 464
write a wave into file, 459
write wave definition string, 541
pbox
write wave definition string, 541, 543
pbox shape file, 111
pcss.outpar storage file, 167, 411
peak frequencies display, 171
peak frequencies plot, 440
peak frequencies threshold, 592
peak height or phase measurement, 232
peak heights comparison, 52
peak noise, 256
peak number, 321
peak picking, 324
diagonal peak threshold, 649
parameters creation, 403
plot results, 431
peak printout threshold, 593
peak search range of data points, 379
peak truncation in spectra plot, 423
peak width of solvent resonances, 552
peak, selecting, 575
peaks.bin file, 327
peak-to-peak noise, 378
pens
maximum number to use, 358
on HP plotter, 533
selection for drawing, 412
Perform gradient shimming utility functions (M), 112
Performa I, II, III, 104
Performa modules, 269
PFG
absolute-value MQF COSY pulse sequence, 266
absolute-value ROESY pulse sequence, 272
amplifiers on/off control, 413
eddy current testing, 270
gradient calibration constant, 525
HMQC phase-sensitive pulse sequence, 261
HMQC pulse sequence, 260
HSQC pulse sequence, 261
NOESY parameter set, 266
selective excitation pulse sequence, 518
sequence for PFG testing, 394
TNNOESY pulse sequence, 271
pge file, 414
PGE pulse sequence
calibrate gradient strengths, 414, 416
extact data, 415
parameter conversion, 414
plot results, 415
print results, 415
processing of data, 415
phantom for gradient calibration, 525
phase angle display mode, 160, 395
phase correction applied to interferogram, 128
phase cycling type, 418, 419
phase file
display in experiment, 135
phase of first pulse, 418
phase of peaks, 232, 418
phase parameters
automatic calculation of, 58
phase-correction angles, 334, 500, 501
phased data display mode, 160
phased spectra display mode, 395, 416, 417
phase-sensitive 2D transformation, 335
phase-sensitive COSY pulse sequence, 109
phase-sensitive data, 237, 241, 634, 635
phasing
automatic, 58
control update region, 419
phosphorus
acquisition, 394
processing, 394
spectrum plotting, 436
pi/3 shifted sinebell squared window function, 420
pi/4 shifted sinebell squared window function, 421
pi2dj macro, 432
planes
extract from 3D spectral data, 255
Plot 2D arguments, 436
Plot Design, joining, 309, 310
plot parameters
adjusting, 310
plot queue
show jobs in queue, 547
stop jobs and remove from queue, 313
plots, 415
plotter
characteristics, 533
device setup, 434
display mode, 436
Index

Hewlett-Packard, 648
maximum number of pens, 358, 533
maximum width of plotting area, 628
plot contours, 410
reinitializing, 313
resolution of points drawn, 441
show plot queue, 547
stopping plot jobs, 313
submit plot and change plotter page, 397
write formatted text to plotter, 638

plotter units
converted from Hz or ppm, 294
Plotters color, 522
plotting
2D contour plots for 3D planes, 435
2D displayed resolution, 62
2D peak picking results, 431
2D spectra in whitewash mode, 424
arrayed 1D spectra, 425
ATP-type spectra, 425
axis label units, 79
boxed parameters, 86
carbon spectrum, 426
color assignments, 100, 533
contour plot with colors, 410
counters display, 170, 171
COSY data set automatically, 396
COSY spectra, 426
deconvolution analysis, 428
DEPT analysis, 397
DEPT data, 427
display same as plot, 645
draw box, 84
exponential curves, 413
FIDs, 427
FIDs in whitewash mode, 414
files, 617
formatted text, 638
grid on 2D plot, 428
heteronuclear J-resolved 2D spectra, 429
homonuclear J-resolved 2D spectra, 429
horizontal LC axis, 405
limit to center of page, 95
line list, 431
NOESY spectra, 426
non-arrayed 1D spectra, 432
noninteractive gray scale image, 300
parameter list, 398, 440
parameter list on special paper, 290
parameters automatically, 57
peak frequencies over spectrum, 440
PGE calculated results, 415
phosphorus spectrum, 435
plotter characteristics, 533
polynomial curves, 413
proton spectrum, 428
pulse sequence, 442
scale below spectrum or FID, 453
set full page plot with room for traces, 246
set limits for full page plot, 246
spectra, 423
spectra automatically, 432
spectra in whitewash mode, 438
spectral expansion, 52
start of plotting position, 513
start of plotting position in second direction, 514
text file, 436
X,H-correlation 2D spectrum, 430
plotting area, see chart
plotting scaling factor, 294
point-by-point, 560
polarization transfer experiments, 141
polynomial curve, 211
polynomial curves display, 212
polynomial curves plot, 413
polynomial fitting of baseline, 82
Postscript printer, 648
powder pattern
finding the center, 560
power data display mode, 160
power level for decoupler with deuterium decoupler, 177
power level for decoupler with linear amplifier, 176, 177
power level of transmitter, 597
power spectra display mode, 461, 462
power, setting, 533
ppm calculations, 482
ppm of solvent resonances, 552
preacquisition delay, 396
precedence of parameter array, 61
presat 1H experiment, 443
Presat experiment processing, 653
print queue
show jobs in queue, 547
stop print jobs and remove from queue, 314
printcap entry, 617
printer
device setup, 444
linewidth resolution, 441
maximum width of chart, 628
resolution in dots/mm, 441
send text to printer, 444
start print operation, 444
stopping print jobs, 314
type, 617
write formatted text on printer, 639
printing
color assignments, 100, 533
parameters, 57
PGE calculated results, 415
probe file after autocalibration, 39
starting, 444
text file, 457
text files, 617
printing area, see chart
probe
phase glitch removal, 228
tuning, 369, 467, 588
tuning frequencies, 599
tuning mode on MERCURY, 601
type, 445
probe directory, create new, 51
probe file, 39, 49, 532
add parameter, 50
retrieve parameter, 255
set decoupler parameter values, 523
update, 606
probe file, copying, 70
probe file, create new, 51
probe file, make copy, 70
Index

probe gcal calibration macros, 68
probe protection control, 446
probe, copying, 70
probe, editing, 446
probeConnect, 445
procdat file, 521
processed-type parameter tree, 115
processing
 1D carbon spectra, 91
 2D spectra, 448
 3D data processing information, 521
 arrayed 1D spectra, 449, 568
 create 2D parameters, 399
 create 3D processing parameters, 399
 DEPT spectra array, 142
 FIDs automatically, 449
 fluorine 1D, 217
 generic automatic, 449
 interleave FIDs, 298
 phosphorus 1D spectra, 394
 proton 1D, 277
 select 1D experiment for processing, 252
 selected 2D experiment, 253
 simple 1D spectra, 447
 solvent subtraction events, 401
processing mode for 2D data, 438
processing on FID, 446
processing on the interferogram, 447, 448
processing parameters group, 147
procpar file, 101, 115, 605
procpar3d file, 521
procpar3d parameter set, 373, 521
programmable pulse modulation, 162
project 2D data onto axis, 450
projection plane, 175
protection mode of parameter, 534
proton
 acquisition, 278, 279
 automatic acquisition, 276
 spectra processing, 277
 spectra vertical scale adjustment, 621
 spectrum plotting, 428, 436
 proton acquisition, 279, 280
proton chemical shifts spectrum calculating, 167
 calculating and showing, 411
 reducing to a list, 167
proton decoupler
 pulse calibration, 440
 proton decoupler calibrations, 68
proton frequency configuration, 277
Proton Frequency label, 102, 277
proton gradient ratio calibration macros, 67
proton observe calibration macros, 69
proton parameter set, getting, 66
Proton prescan, 290
protune macro, 451
Protune shell script, 452
protunegui, 452
pseudo-2D, 610
pseudo-2D dataset, 263
pseudo-echo weighting, 453
psg directory, 520
PSG errors, 454
PSG message, 37
PSG object library compilation, 454
psg.error file, 454
psglib directory, 519
PTS frequency synthesizer, 103, 458
P-type diagonal, 230
P-type double-quantum axis, 230
pulse amplifier
 mode, 54
 phase glitch removal, 228
pulse breakthrough effects, 499
pulse interval time, 462
pulse length of decoupler, 439
pulse power for shaped pulse, 458
pulse sequence
 compiling, 519
 display diagram, 175
 initiate compilation, 519
 label for screen, 455
 name to be used, 519
 phase-sensitive COSY, 109
 plotting a picture of a sequence, 442
 setup parameters, 454
 setup macro, 267
Pulse Sequence Controller board, 500
pulse sequence generation, see PSG
pulse sequences
 display templates, 539
pulsed field gradient strength, 272
pulse-type parameter, 114
pulswidth, setting, 533
pure absorptive display, 241
pwwet pulse width, 631
pwx1 parameter, 463
Q
 quadratic fitting to data, 56, 212
quadrature detection
 frequency shifted, 234
quadrupole echo pulse sequence, 566
question mark (?) notation, 468
R
 real Fourier transform, 447, 448
real number formatted into string, 231
real number, returning square root of a, 564
real numbers, truncating, 598
real variable
 create real variable without value, 477
real-time digital filter, 386
real-time DSP (digital filtering), 190
real-type parameter, 114
real-value storage for macros, 471
receiver
 channel imbalance, 110
 gain, 249
 gating time, 117, 499, 500
 overflow warning, 45
receiver option, 200-kHz, 170
recon_all, 477
recording current window activity, 312
Index

recording keyboard entries, 480
Recover from acquisition error in study queue, 655
Recover from error conditions during automation study, 652
REDO1 pulse sequence, 480
reference deconvolution, 220
reference frequency
position, 483
reference line
clear referencing, 116
frequency, 494
position, 493
reference frequency, 482
set line, 497, 498
reference peak, see reference line
reference spectrum to TMS, 594
refocusing pulse shape, 461
regions
divide spectrum into regions, 484
find tallest peak, 411
frequency limits of specified region, 256
in spectrum, 381
plot expansions, 52
selection, 290
region-selective 3D processing, 457
regression analysis data input, 497
regression mode, 55, 56
regression mode curve fitting, 211
regression scale limits, 514
regression.inp file, 213, 439, 497
RELAY-COSY pulse sequence, 485
RELAYH pulse sequence, 485
release procedure, 368
remote file transfer to local host, 204
remote machine name, 42, 43, 44
removing
dc offsets, 134
directories, 498
files, 498
user macro, 350
renaming a command, 285
renaming files, 369, 485
reset points for integrals, 119
Reset study queue parameters, 113
resetting acquisition computer, 38
resolution enhancement function, 319, 320
resolution enhancement parameters, 488
resolution equalization, 62
resolution on printers and plotters, 441
restoreable, 488
Retrieve a parameter set from the locator, 165
Retrieve a shimset set from the locator, 165
Retrieve and process fid data from the locator, 165
retrieving
FIDs, 501
parameters, 502
Return button selection of menu, 319
rf band in use, 489
rf channel selection, 490
rf channel type, 491
rf channels available, 381
rf channels frequencies, 524, 554
rf generation type, 495
rf pulse shape analysis, 458
rf waveform generator, 496
ridges in FID display, 232
right half of screen display limits, 496
right phase parameter, 501
right phase-correction angles, 500
ROESY experiment, 499
ROESY parameter set, 272
Roess1D, 499
root-mean-square noise, 256, 378
rotating 2D data, 500
rotating frame NOE experiment, 596
rotating frame Overhauser experiment, 499
rotating frame Overhauser experiment, 1D, 499
rotational echo double-resonance, 480
rotor speed display, 292
rotor synchronization, 292
configuration parameter, 500
spinning rate, 565
Rotor Synchronization label, 103, 292, 500
RS-232 cable, 45
Run an experiment to find the value of z0 (M), 112
Run prepare acquisition macro, 442
running FDM program, 219
S
s2pul3rf parameter set, 399
sample
change for acquisition, 97
ejection from probe, 201, 203
insert in probe, 297, 302
location of samples in tray, 329
spin rate, 555
submit change sample experiment to acquisition, 510
temperature, 396, 589
sample changer
automation mode active, 69, 71
automation run preparation, 69
change sample experiment, 97
comm port, 102
controlling, 70
controlling macro for automation, 70
errors, 45
last lock solvent used, 318
resume suspended automation run, 75
serial port connection, 551
starting automation run, 71
status window, 568
suspend automation run, 75
tray size, 598
Sample Changer label, 102, 598
Sample Changer Serial Port label, 551
sample information for automation run, 204
Sample Management System serial port connection, 551
sample tray size, 102
sampleinfo file, 70
save study parameters for imaging, 564
saving
data, 575
digitally filtered FIDs, 152
display parameters, 509
experiment data to subfile, 580
FID data in FDF format, 576
FIDs in current experiment, 576
files using a base name, 511
parameters from current experiment, 579
Index

create parameters, 401
filter bandwidth for filtered FID, 566, 567
order of polynomial to fit digital filtered FID, 567
parameter creation, 50
solvent suppression, 239
number of peaks for wet, 631
solvent table information, 552
solvents file, 540, 552
solvent-suppressed region, 566
sparse FID data points, 169
Specify action when experiment is done command, 628
parameter, 628
spectra
3D dc correction, 555
absolute value display mode, 76
add spectrum to add/subtract experiment, 554
APT plotting, 425
automatic 1D integrate, 303
automatic phase, 58
automatic phase adjustment, 58
center cursor, 95
data truncation limit, 118
deconvolution, 225
delete spectra from T_1 or T_2 analysis, 140
display calculated spectrum, 189
display scale, 184
display single spectrum, 182
divide spectrum into regions, 484
drift correction calculation, 130
drift correction parameters, 94
extract planes from 3D spectral data, 255
find gap in spectrum, 250
find peak heights or phases, 232
find tallest peak in region, 411
fold COSY-like correlation spectra, 230
fold J-resolved 2D spectrum, 230
frequency shift of spectrum, 343, 344
frequency-independent phase, 418
full display, 216
horizontal offset of each spectrum, 286
inset spectrum display, 303
integral amplitudes display, 172
integral amplitudes plot, 422
integral regions, 290
intensity of a spectrum at a point, 355
interactive display, 41
move cursor to center, 95
move spectral window according to cursors, 365
noise limit, 378
normalized integral amplitudes display, 172
normalized integral amplitudes plot, 322
normalized intensity mode, 376
number of regions, 381
offset of integral, 304
peak frequencies display, 171
peak height comparison, 52
peak search range of data points, 379
phase adjustment, 58
phase angle display mode, 395
phased display mode, 395, 416, 417
phosphorus processing, 394
phosphorus spectrum plot, 435
plot a scale under a spectrum, 453
plot arrayed 1D, 425
plot COSY automatically, 426
plot NOESY automatically, 426
plot one or more spectra, 423
plot peak frequencies, 440
plot spectra in whitewash mode, 438
power spectra display mode, 461, 462
processing simple 1D, 447
proton spectrum plotting, 428
reduce spectral width to minimum, 363
reference line frequency, 494
reference line position, 493
reference to TMS, 594
rotate 2D spectrum, 500
select spectrum without displaying, 517
signal-to-noise estimate, 256
signal-to-noise test, 590
solvent-suppressed region, 566
spectral integral display and plot, 304
stacked spectra display, 191, 193, 194, 196, 197
subtract spectrum from add/subtract experiment, 561
threshold for integrating 2D peaks, 592
total width to be acquired, 580
update region during phasing, 419
vertical offset in stacked display, 618
vertical position, 618
vertical scale, 619
whitewash mode display, 198
spectra, taking maximum of two, 560
spectral expansion automatic plot, 52
spectral subtraction, 561
spectral width, 580, 581
percentage for gradient shimming, 273
reduce to minimum, 363
set for given spectral window, 538
set in 2nd evolution dimension, 538
set in evolution dimension, 538
spectrometer proton frequency, 277
spectrometer system configuration, 582
spectrum, plotting on side, 434
spectrum, plotting on top, 434
spectrum, plotting on top and side, 435
spin automation hardware, 558
spin rate of sample, 555
spin setup experiment, 555
spin simulation
clear line assignments, 98
deconvolution start point, 607
display group of parameters, 149
index of experimental frequency, 100
intensity threshold, 570
linewidth, 550
maximum frequency of any transition, 551
measured line frequencies, 550
measured line frequencies array, 557
minimum frequency of any transition, 551
number of iterations, 374
parameter arrays, 153
parameters to be iterated, 307
perform spin simulation, 558
set parameters to iterate, 301
spin system entry, 561
transition amplitude, 99
transition frequency, 100
Index

transition number, 98
using deconvolution as input, 225
vertical scale, 580
spin speed interlock, 300
spin system
enter values for spin simulation, 561
restoring to before last run, 603
spin.inpar file, 603
spin.la file, 153, 154
spin.savela file, 603
spin-lock contact time, 105
Spinner Control window, 557
spinner errors, 45
spinner speed display, 42
spinning speed for MAS, 565
spins.list file, 558
spins.outdata file, 189
spinthe data, 502
spinsys directory, 301
spline fitting of baseline, 82
split difference between two cursors, 560
spoiler gradient level, 271
square root, returning, 564
square wave mode decoupling, 157, 162
SSECHO pulse sequence, 566
SSECHO1 pulse sequence, 566
stacked display width, 627
stacked FIDs, 145, 146, 147
stacked plot of 2D spectra, 183, 424
stacked spectra display, 191, 193, 194, 196, 197
stacked spectra horizontal offset, 286
stacking control, 568
stacking mode, 568
standard 2-pulse sequence, 393, 510
standard application mode, 60
standard deviation of input, 77
start of FID display, 542
start of interferogram, 542, 543
start of plot, 553
Start the night queue, 654
starting
VNMR directly, 614
starting Plot Designer, 309
static binding, 520
stdpar directory, 540
steady state pulses, 566
Step Size label, 104, 596
step size parameter value array, 404
stopping acquisition, 510
stored data, style, 106
stored queue, 71
streaming tape, 587
strength of pulsed field gradient, 272
string
format for output, 231
length in characters, 322
select substring, 574
text window display, 202
string parameter values, 524
string variable creation, 570
string-type parameter, 114
Study identification, 572
Study parameters, 572
study queue
delete nodes, 650
experiment manager utility macro, 649
find next prescan or next experiment, 651
get attributes, 651
initialize imaging study, 651
make new node, 651
move node up and lock it, 651
perform action, 649
perform action for walkup, 649
read node attributes, 652
retrieve parameters, 652
run prescans, 652
show data from node, 653
submit sample(s) to, 654
update the time, 654
write node attributes, 655
write node order, 655
Study queue file menu commands, 563
Study queue mode, 563
Study queue prescan, 443
study queue, reset parameters for imaging, 564
Study status, 572
Study time, 572
subfile, 111
substring selected from a string, 574
subtracting zero-frequency components, 401
sum of input, 78
sum of squares of input, 78
sum/difference spectrum, 48
summing projection, 450
sum-to-memory error, 46
Sun display, clear window, 99
swept-tune graphical tool, 369, 467, 588
switchable probe caution, 151, 176, 177
synchronous decoupler mode, 156
Synthesizer label, 103, 458
synthesizer value, 458
sysheipath global parameter, 60
sysmacipath global parameter, 60
sysmenulipath global parameter, 60
system configuration parameters, 101
system console type, 105
system macros
copy system macro to become user macro, 350
display in text window, 350
list system macro names, 351
online description, 354
remove system macro, 351
system type configuration, 582
System Type label, 102, 105, 582
systemglobal directory, 115
systemglobal parameter tree, 102
systemglobal-type parameter tree, 115

T

T₁ analysis, 212
delete spectra, 140
plot curves, 413
set up parameters, 169
T₁ analysis, 56
T₁ analysis, 584
t₁ dimension, 342
T₂ analysis, 212
delete spectra, 140
plot curves, 413
T₂ analysis, 56
T₂ analysis, 585
Index

t2 dimension in, 343
tablil directory, 585
tangent value of angle, 586
tapes
 device selection, 587
 display contents, 586
 rewind tape, 587
 taps in digital filter, 567
 tau2 adjustment, 599
Tc script, 588
tdelta parameter, 252
tdiff parameter, 252
temperature calculation curve, 589
Temperature Control window, 588
temperature display, 42
temperature interlock, 594
temperature of sample, 589
temperature regulation, 624
terminating
 abort function in macro, 38
 calling macro, 37
Test acquire mode, 589
testing signal-to-noise of spectrum, 590
text file
 display for current experiment, 591
 edit file, 592
 edit with vi text editor, 612
 editor, 202, 612
 graphics window display, 198
 plotting, 436
 print text files, 457, 617
 put into another file, 459
 search for words and lines, 332
 write file using a FID element, 640
text output sent to printer, 444
text window
 display files, 93
 display status, 592
 display strings and parameter values, 202
 display user macro, 348
 list files, 152
tflow parameter, 259
third decoupler
 adjust tip-angle resolution time, 159
 decoupler mode, 157
 decoupling sequence, 185
 fine power attenuator, 178
 frequency, 144
 frequency offset array, 517
 frequency offset control, 167
 homodecoupling control, 287
 linear modulator power, 179
 modulation frequency, 158
 modulation mode, 163
 nucleus lookup, 164
 power level with linear amplifier, 177
 set frequency to cursor position, 516
 tip-angle resolution, 181
threshold for integrating peaks in 2D spectra, 592
threshold for peak printout, 593
threshold for printout of peak frequencies, 592
time constant for lock, 331
time constant for lock acquisition, 329
time counter, 649
time-domain cursor position, 115, 599
time-domain cursors, 141, 394
time-domain dc correction, 220
time-domain solvent subtraction, 401
time-shared decoupling, 287
tip-angle resolution for decoupler, 180, 181
tip-angle resolution time for decoupler, 159, 160
TMS reference, 594
TN COSYPS sequence, 595
TN DCOSY sequence, 595
TN MQCOSY sequence, 595
TN NOE sequence set, 271
TN NOE sequence, 595
TN ROE sequence, 596
TN TOCOSY sequence, 596
TOCOSY experiment, 596
tocys experiment, Hadamard encoded, 596
TOCYS pulse sequence, 238, 242, 634, 635
tof parameter, 324
total correlation (TOCSY) experiment, 596
traces
 find maximum intensity, 412
 select trace without displaying, 517
transients completed, 117
transients setpoint action, 636, 637
transients to be acquired, 379
transition amplitude, 99
transition calculation, 62
transition frequency, 100, 551
transition number calculation, 98
transitions frequency, 551
transmitter
 fine power, 597
 frequency of observe nucleus, 543
 frequency offset for observe transmitter, 265, 596
 linear modulator power, 598
 local oscillator (L.O.) gate, 331
 move transmitter offset, 365
 nucleus of observe transmitter, 595
 positioning, 596
 power level with linear amps, 597
 pulse sequence diagram, 175
 transmitter frequency, 144, 145
 transmitter frequency, 144
 tray size on sample changer, 598
 trigger signals to wait before acquisition, 380
 trim gradient level, 272
 triple-quantum filtered 2D MAS experiment, 128
 TROEYS pulse sequence, 598
 truncating real numbers, 598
 truncation limit, 118
 TUNE INTERFACE unit, 599
tunemethod, 601
tuning
 broadband channel on MERCURY, 86
 mode, 601
tuning the probe, 599
Type of Amplifier label, 54, 104
type of parameter, 540
Type of RF label, 103, 491, 495
U
U+ H1 Only decouplers, 491
Ultra 8 shim configuration, 603
Ultra nmr shim system, 477, 545
ultra18, 603
Ultra8, 603
unit conversion for parameters, 604
UNIX shell startup, 544
unlocked experiment, 605
unshifted cosine-squared window function, 562
unshifted Gaussian window function, 250
unshifted sinebell-squared window function, 565
update VnmrJ database, 129
upgrading
gradient coil, 606
updating revision global file and parameters, 606
Upper Limit label, 104, 597
Use Console Data button, 102
user macros
copy file, 348
copy system macro to become user macro, 350
create without text editor, 114
delete, 139
display in text window, 348
edit with vi text editor, 351
library, 114
list user macro file names, 349
remove user macro from directory, 350
user-defined weighting, 442
users currently on the system, 626
user-selectable editor, 349
user-supplied modulation, 162
user-written weighting functions, 643
usrtw.o file, 643
V
value of parameter in a tree, 258
variable temperature, see VT
Varian shim supply, 545
VAST accessory, 610
VAST data analysis, 100
VAST experiments, setting up initial parameters for, 610
VAST microtiter plate, 100
version of parameter set, 405
vertical offset, 618
vertical position, 618
FID, 618
imaginary FID, 619
vertical projection of trace, 132
vertical scale adjustment, 620, 621
vertical scale adjustment, automatic, 620
vertical scale for 2D displays, 620
vertical scale for projections and traces, 622
vertical scale for simulated spectrum, 580
vertical scale for spectrum, 619
vertical scale of FID, 612
vi command (UNIX), 202, 612
vi text editor, 351, 359, 612, 614
Viewport layout, 312
viewport, set state to three default viewports, 619
viewports, set new, 619
VnmrJ
background processing, 611
exiting, 210
exiting from system, 617
start VnmrJ application directly, 614
style of stored data, 110
system directory, 582
updating parameters and global file after install,
usrtw.o file, 643

W
weight and Fourier transform
1D data, 633
2D data, 634
along f2 for 2D data, 633
phase-sensitive data, 634, 635
weight.h file, 643
weighting
constant, 78
interactive weighting, 643
interactive weighting for 2D absorptive data,
user defined, 642
weighting function compilation, 643
wet 1H experiment, 630
WETDQCOSY pulse sequence, 630
WETGOSY pulse sequence, 630
WETGHMQCPS pulse sequence, 630
WETGHSCQ pulse sequence, 630
WETNOESY pulse sequence, 631
Index

WETPWXCAL pulse sequence, 631
WETTNTOCSY pulse sequence, 631
WFG (waveform generator), 269
WFG + GCU gradients, 104
what you see is what you get, 645
whitewash mode, 414, 424, 438
whitewash mode display, 147, 183, 198
who is using system, 626
wideline systems data precision, 170
width of chart, 627
 maximum width, 628
 maximum width in second direction, 628
 second direction, 627
width of FID, 632
width of interferogram, 633
width of plot, 637, 638
wildcard characters, 498
window
current, 118
window activity, 312
windows
 clearing a window, 99
word lookup in text file, 332
Work space
 labels for all viewport buttons, 311
 numbers of all viewports, 309
 numbers of the current viewports, 311
workspace for VNMR experiment, 96
write out memory buffers, 228
Write sample enterQ entry for study queue
 automation, 652
 imaging, 653
wtlib directory, 643
wtune, 644

X
X Axis, Y Axis, Z Axis label, 104, 269
X,H-correlation 2D spectrum, 430
X1 shim gradient, 648
X2Y2 shim gradient, 648
X3 shim gradient, 648
X4 shim gradient, 648
XL systems
 convert data to VNMR, 106
 convert files to UNIX format, 624
 decompose files to UNIX files, 138
 list contents of directory, 203
 read tape, 587
xmtune, 654
XPOLAR1 pulse sequence, 655
XY shim gradient, 656
XY32 decoupling sequence, 157, 162
XZ shim gradient, 656
XX2 shim gradient, 656
x-zero position of Hewlett-Packard plotter, 648

Y
Y1 shim gradient, 657
Y3 shim gradient, 657
Y4 shim gradient, 657
YZ shim gradient, 657
YZ2 shim gradient, 658
y-zero position of Hewlett-Packard plotter, 657

Z
z0 calibration, automatic, 66, 68
Z0 field position, 660
Z0, automatic adjustment, 68
Z1 shim gradient, 660
Z1C shim gradient, 660
Z2 shim gradient, 660
Z2C shim gradient, 661
Z2X2Y2 shim gradient, 661, 662
Z2X3 shim gradient, 661
Z2XY shim gradient, 661
Z3 shim gradient, 661
Z3C shim gradient, 661
Z3X shim gradient, 661
Z3X3 shim gradient, 662
Z3XY shim gradient, 662
Z3Y shim gradient, 662
Z3Y3 shim gradient, 662
Z4 shim gradient, 662
Z4C shim gradient, 662
Z4X shim gradient, 662
Z4X2Y2 shim gradient, 663
Z4X3 shim gradient, 663
Z4XY shim gradient, 663
Z4Y shim gradient, 663
Z5 shim gradient, 663
Z5X shim gradient, 663
Z5Y shim gradient, 663
Z6 shim gradient, 663
Z7 shim gradient, 663
Z8 shim gradient, 664
z-axis shims used for gradient shimming, 272
zero-filling, 229, 488
zeroing phase, 117
zero-order baseline correction, 344
zero-order phase, 500, 501
zero-order phasing constant, 419, 420, 501
zero-order term automatic phase, 58
zfs (zero-frequency suppression) option, 401
ZX2X2Y2 shim gradient, 664
ZX3 shim gradient, 664
ZXY shim gradient, 664
ZY3 shim gradient, 664