Contents

1 **Introduction** .. 9
 1.1 About the User Manual ... 9
 1.2 Safety Regulations .. 9
 1.3 User Manual Conventions ... 10
 1.4 TopSpin Overview ... 11
 1.5 TopSpin License Management and Product Order .. 12
 1.6 Packages on the TopSpin DVD .. 12

2 **The TopSpin Interface** ... 15

3 **Getting Started** ... 31
 3.1 Startup TopSpin ... 31
 3.2 Configuration .. 32
 3.3 How to Display Spectra ... 32
 3.4 How to Display Peaks, Integrals, ... together with the Spectrum 33
 3.5 How to Display Projections/1D Spectra with 2D Spectra ... 33
 3.6 How to Superimpose Spectra in Multiple Display ... 33
 3.7 How to Print or Export the Contents of a Dataset Window ... 33
 3.8 How to Process Data .. 34
 3.9 How to Archive Data .. 34
 3.10 How to Import NMR Data Stored in Special Formats .. 34
 3.11 How to Fit Peaks and Deconvolve Overlapping Peaks ... 34
 3.12 How to Compute FIDS by Simulating Experiments .. 34
 3.13 How to Add Your Own Functionalities .. 34
 3.14 How to Automate Data Acquisition .. 34

4 **Dataset Handling** ... 43
 4.1 The Browse and Search Window .. 43
 4.2 Creating Data .. 50
 4.3 Opening Data .. 51
 4.4 Saving/Copying Data ... 56
 4.5 Deleting Data .. 58
 4.6 Renaming Data .. 62
 4.7 Searching/Finding Data .. 63
 4.8 Handling Data Files .. 63

5 **Parameter Handling** ... 67
 5.1 Processing Parameters ... 67
 5.2 Acquisition Parameters .. 69

6 **Acquisition** .. 73
 6.1 Acquisition Guide ... 73
 6.2 Acquisition Setup and Toolbar Buttons .. 73
 6.3 Acquisition Status Bar .. 75
 6.4 Command Queuing and Scheduling .. 78
 6.5 Tuning and Matching the Probe ... 78
Contents

6.6 Locking ... 79
6.7 BSMS Control Panel ... 80
6.8 Interactive Parameter Adjustment (GS) ... 81
6.9 Running an Acquisition ... 82
6.10 Shape Tool ... 83

7 Data Processing .. 85
7.1 Interactive Processing ... 85
7.2 Semi-automatic Processing ... 86
7.3 Processing Data with AU programs .. 88
7.4 Serial Processing .. 88

8 1D Display .. 91
8.1 Displaying one Dataset in Multiple Windows ... 91
8.2 Changing the Display of a 1D Spectrum or FID ... 91
8.3 Using the Tab Bar ... 94
8.3.1 2D Molecule Structure Editor .. 107
8.4 1D Display Options ... 109
8.5 Spectra Display Preferences .. 111
8.6 Saving Display Region ... 114
8.7 Synchronize Visible Region of all Dataset Windows ... 115

9 2D Display .. 117
9.1 The 2D Dataset Window ... 117
9.2 Changing the Display of a 2D Spectrum ... 117
9.3 Show Spectra Display Preferences/Regions/Files ... 120
9.4 Using the Tab Bar ... 121
9.5 2D Display Options .. 125

10 nD Display .. 131
10.1 Display Planes of 3D Datasets .. 131
10.2 3D Cube Display Mode ... 132
10.3 nD Parameter Display .. 134
10.4 nD FID Display .. 135
10.5 nD Peak and Integral Display .. 135

11 1D Interactive Manipulation ... 137
11.1 1D Interactive Window Multiplication ... 137
11.1.1 1D Interactive Window Multiplication Procedure ... 137
11.2 1D Interactive Phase Correction .. 139
11.2.1 1D Interactive Phase Correction Procedure .. 139
11.2.2 1D Interactive Phase Correction Details .. 139
11.3 1D Interactive Integration ... 141
11.4 1D Interactive Calibration .. 149
11.5 1D Multiple Display ... 150
11.6 1D Interactive Baseline Correction .. 158
11.7 1D Interactive Peak Picking ... 161

12 2D Interactive Manipulation ... 167
12.1 2D Interactive Phase Correction ... 167
12.1.1 2D Interactive Phase Correction Procedure .. 167
12.1.2 2D Interactive Phase Correction Details ... 169
12.2 2D Interactive Integration ... 172
12.2.1 How to Switch to 2D Interactive Integration ... 172
12.2.2 2D Interactive Integration Procedure ... 173
12.3 2D Multiple Display and Row/Column Handling ... 175
12.3.1 2D Calibration in Multiple Display ... 180
12.4 2D Interactive Calibration ... 181

13 Analysis ... 185
13.1 Introduction .. 185
13.2 Chemical Shift Distance Measurement ... 185
13.3 1D Signal to Noise Calculation .. 185
13.4 Deconvolution .. 187
13.5 Relaxation Analysis ... 190

14 Printing/Exporting Data ... 197
14.1 Printing/Plotting Data ... 197
14.2 Exporting Data ... 199

15 Configuration/Automation ... 203
15.1 NMR Super User and NMR Administration Password ... 203
15.2 Configuration ... 204
15.3 Parameter Set Conversion ... 204
15.4 Automation .. 204

16 Remote Monitoring ... 207
16.1 What is Remote Monitoring ... 207
16.2 How to Enable Remote Monitoring on your AVANCE NEO Spectrometer 207
16.3 How to Manage Remote Monitoring .. 209
16.4 How to Claim a Spectrometer .. 210
16.5 Products Using Remote Monitoring ... 211
16.5.1 AutoDiagnose ... 211
16.5.2 MICS .. 211

17 User Preferences .. 213
17.1 Define User Preferences Location for all Users ... 213
17.2 Basic Setup Preferences ... 214
17.3 Changing the Sizes of All Fonts and Icons ... 217
17.4 Changing Individual Fonts ... 218
17.5 Changing Colors ... 219
17.6 Changing Lines .. 222
17.7 Auto-Archive and Archive Directory Settings ... 223
17.8 Disabling/Enabling the Toolbars .. 224
17.9 Defining Source Directory for Programs/Lists etc. .. 224

18 User Extensions ... 227
18.1 User Notebook ... 227
18.2 Macros ... 227
18.3 AU Programs ... 228
18.4 Python Programs ... 228
18.5 Button Panels .. 229
Contents

18.6 Adding User Defined Buttons to the Toolbars ... 231
18.7 Adding User Defined Guides ... 232

19 Commands and Function Keys .. 235
19.1 Command Line Usage .. 235
19.2 Command Line History ... 236
19.3 Starting TopSpin Commands from a Command Prompt 237
19.4 Function Keys and Control Keys ... 238
19.5 Help for Individual Commands, Command Index 242
19.6 User Defined Functions Keys ... 243
19.7 How to Open Multiple TopSpin Interfaces .. 243

20 Regulatory Compliance ... 245
20.1 Preference Settings .. 245
20.1.1 GUI Restrictions and Protection of Setup Preferences 245
20.1.2 Extended Audit Trailing ... 245
20.1.3 Disable Options for Deletion of RAW Data 245
20.1.4 Disable Options for Deletion of Data Sets in General 245
20.2 Audit Trails ... 245
20.2.1 The Raw Data Audit Trail .. 246
20.2.2 The Processed Data Audit Trail ... 246
20.2.3 Viewing Audit Trails .. 246
20.2.4 Audit Trail Contents .. 248
20.2.5 Adding Comments to Audit Trail ... 249
20.2.6 Auditing User Defined Data Manipulations 249
20.2.7 Audit Trails in JCAMP-DX and ZIP Archives 249
20.3 Electronic Signatures ... 249
20.3.1 Signing a Dataset ... 249
20.3.2 Structure of a Signature ... 250
20.3.3 Displaying the Electronic Signature in the Dataset Window 250
20.3.4 Plotting the Electronic Signature ... 251
20.3.5 Multiple Signatures .. 251
20.3.6 Validity and Security of Signatures .. 251
20.4 Password Controlled Login Identification .. 251
20.4.1 Definition of an Internal User ... 251
20.4.2 How to Setup Internal Users ... 252
20.4.3 How to Change the Internal User Password 252
20.4.4 Login/Logoff .. 252
20.4.5 Locking TopSpin's Graphical User Interface 253

21 Troubleshooting ... 255
21.1 General Tips and Tricks .. 255
21.2 History, Log Files, Spooler Reports, Stack Trace 255
21.2.1 Topspin Command Log ... 255
21.2.2 Topspin Spooler Report .. 255
21.2.3 Topspin Command, Data Server and Network Log 256
21.2.4 Create a Stack Trace ... 257
21.2.5 Store Complete Log with savelogs .. 257
21.3 How to Show or Kill TopSpin Processes .. 258
1 Introduction

1.1 About the User Manual

About this document
The user manual describes the main aspects of Bruker's integrated software package TopSpin. This manual enables all users who work with Bruker software to get an overview of the various functionalities of TopSpin. The main aspects outlined in here describe the possibilities and features of the TopSpin interface and elucidate working processes for data acquisition and processing.

Target audience
The Bruker user manual for TopSpin supports all Bruker users who already work with Bruker software products or who newly enter the software dimension of TopSpin. The main aspect of this manual is to enable new TopSpin users and experienced TopSpin users to work with this software package.

How to get the User Manual
This manual is available:
• as PDF file in the TopSpin software help menu.
• as the up to date version on the Bruker web server:
 https://www.bruker.com/service/information-communication/user-manuals/nmr.html

Note: All text messages and graphics shown in this manual are taken from the current version of the respective software products. Small differences to other versions are possible.

How to read the User Manual
The user manual describes especially the TopSpin interface with all its functionalities to acquire, process and interpret spectrometer data. To find information more readily you can read selected chapters, depending on your requirements, or read the user manual in succession for general information.

1.2 Safety Regulations

To work safely in laboratories with NMR-spectrometers all users must follow the safety regulations for magnetic, electrical, cryogenic and chemical safety. For detailed information please refer to the safety instructions in the Beginners Guide manual provided on the TopSpin DVD or in the Safety Considerations manual provided on the BASH DVD.

1.3 User Manual Conventions

The User Manual utilizes different script types in order to make selected text more transparent and explicable to users. Please note that this document contains the following conventions:
Font and Format Conventions

<table>
<thead>
<tr>
<th>Type of Information</th>
<th>Font</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell Command, Commands, “All that you can enter”</td>
<td>Arial bold</td>
<td>Type or enter fromjdx zg</td>
</tr>
<tr>
<td>Button, Tab, Pane and Menu Names “All that you can click”</td>
<td>Arial bold, initial letters capitalized</td>
<td>Use the Export To File button. Click OK. Click Process…</td>
</tr>
<tr>
<td>Windows, Dialog Windows, Pop-up Windows Names</td>
<td>Arial, initial letters capitalized</td>
<td>The Stacked Plot Edit dialog will be displayed.</td>
</tr>
<tr>
<td>Path, File, Dataset and Experiment Names</td>
<td>Arial Italics</td>
<td>$tshome/exp/stan/nmr/lists expno, procno,</td>
</tr>
<tr>
<td>Data Path Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table Column Names</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Names (within Dialog Windows)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameters</td>
<td>Arial in Capital Letters</td>
<td>VCLIST</td>
</tr>
<tr>
<td>Program Code</td>
<td>Courier</td>
<td>go=2</td>
</tr>
<tr>
<td>Pulse and AU Program Names</td>
<td></td>
<td>au_zgte</td>
</tr>
<tr>
<td>Macros</td>
<td></td>
<td>edmac</td>
</tr>
<tr>
<td>Functions</td>
<td></td>
<td>CalcExpTime()</td>
</tr>
<tr>
<td>Arguments</td>
<td></td>
<td>XAU(prog, arg)</td>
</tr>
<tr>
<td>Variables</td>
<td></td>
<td>disk2, user2</td>
</tr>
<tr>
<td>AU Macro</td>
<td>Courier in Capital Letters</td>
<td>REXPNO</td>
</tr>
</tbody>
</table>

Table 1.1: Font and Format Conventions

1.4 TopSpin Overview

Functionality

TopSpin is an integrated software package for:

- Displaying NMR spectra.
- Printing and plotting spectra.
- Exporting displays and plots in various graphics and metafile formats.
- Importing NMR data from files of various formats.
- Archiving spectra in various formats such as JCAMP-DX and ZIP.
- E-mailing data.
- Processing 1D-8D fids and spectra: window multiplication, various transforms (Fourier, Hilbert, DOSY), phase correction, baseline correction, integration, peak picking, linear prediction, smoothing, adding spectra etc.
- Displaying multiple superimposed spectra (1D and 2D).
- Simulating 1D and multi-dimensional fids, given a pulse program and a spin system. See Help | Manuals (docs) | Analysis and Simulation | NMR-SIM Experiment Simulator.
- Calculating T1/T2 relaxation times.
• Fitting peaks with Lorentzian and Gaussian line shape models, deconvolve overlapping peaks.
• Multiplet analysis.
• Automatic 1D, 2D and 3D peak picking.
• Automatic 1D, 2D and 3D integration.
• Line shape analysis of solids spectra.
• Data acquisition with Bruker Avance type spectrometers.
• Supporting automated and walk-up spectrometers (IconNMR).
• Remote spectrometer control including web-enabled IconNMR.
• Adding user defined functionalities to TopSpin (AU programs, Macros and Python programs).

Available Documentation
In TopSpin the Help | Manuals submenu contains a list of available manuals for the following categories:

General
Acquisition - Users Guides
Acquisition - Application Manuals
Acquisition & Processing References
Automation and Data Publishing
Analysis and Simulation
Programming Manuals
Technical Manuals
Installation Guides
Good Laboratory Practice
Each document is listed with a short description of its contents.

1.5 TopSpin License Management and Product Order
TopSpin uses the new Code Meter license management. A license can be ordered from the Bruker website. Just go to https://www.bruker.com/nmr_license_requests.html and fill out the request form. The License department will process the order details and generate an activation ticket and provide it to the customer. A ticket consists of a 25 character code like e.g.:
PH3T4-9D9U9-FNSGP-J9FXP-TTNXC
This code works as an access key to the purchased license package. It authorizes the customer to assign the license package to a computer of personal choice.

Install the software product on the computer system. During installation you may also be requested to install the package CodeMeter Runtime. This is the component of the license management system. Most installation routines will perform this task automatically.

A Free TopSpin Evaluation license can be ordered on the following web page: https://www.bruker.com/service/support-upgrades/software-downloads/nmr/free-topspin-processing/topspin-demo-licences-generation.html
A Free TopSpin Processing license for Academia can be ordered on the following web page: https://www.bruker.com/service/support-upgrades/software-downloads/nmr/free-topspin-processing/nmr-topspin-license-for-academia.html
For further information please look up the Code Meter License Management User Manual H162728.
1.6 Packages on the TopSpin DVD

<table>
<thead>
<tr>
<th></th>
<th>TopSpin</th>
<th>Acquisition and Processing Software</th>
<th>3.6.</th>
<th>4.x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TopSpin Plot Editor</td>
<td>Object oriented WYSIWYG plot editor. ³</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Cygwin Tools</td>
<td>Used for compilation of TopSpin AU programs. ³</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>NMR-GUIDE</td>
<td>A web-based training and teaching tool providing a lot of theoretical and practical information on NMR spectroscopy and NMR methods for everybody interested in NMR. ²</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>NMR-Sim</td>
<td>Program for numerical simulation of NMR experiments. ³</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>CMC-q Viewer</td>
<td>Automation & Analysis ³</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>Central Audit File</td>
<td>Enables a Central Audit File for activity recording in TopSpin.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>CMC-a</td>
<td>CMC-assist, a tool for structure verification based on NMR data.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>IconNMR</td>
<td>Icon-driven interface for Routine Spectroscopy and Automation.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>MICS</td>
<td>Magnet Information & Control System.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>NMR-Data</td>
<td>Example datasets</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>CodeMeter Runtime</td>
<td>License manager required to start TopSpin programs.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td>AURELIA-AMIX-Viewer</td>
<td>Multiple object viewer ¹</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>During the installation the program is displayed as AMIX.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>SpectrOS</td>
<td>Spectrometer operating system for AVANCE NEO.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SpectrOS is needed for workstations controlling a spectrometer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Diskless</td>
<td>Spectrometer operating system for AVANCE III.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diskless is needed for workstations controlling a spectrometer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>SBASE</td>
<td>Spectra base for AMIX ¹</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td>Dynamics Center</td>
<td>Analysis of NMR data containing non-frequency dimensions (incl. Protein Dynamics) ¹</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>13</td>
<td>InsightMR</td>
<td>Reaction Monitoring</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

1 Requires a separate license.
2 Package is integrated in TopSpin4.x, package is selectable in TopSpin3.6.x
3 Installed by default together with the TopSpin package.

Packages available on a separate DVD:

<table>
<thead>
<tr>
<th></th>
<th>TopSpin</th>
<th>Acquisition and Processing Software</th>
<th>3.6.</th>
<th>4.x</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>AssureNMR</td>
<td>The AssureNMR software provides automated multicomponent identity, quantification, classification, and detection of outliers with spectral databases and System Suitability Tests for GxP compliance. ¹</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>AssureNMR-Methods</td>
<td>This directory includes Analysis Methods, for use with AssureNMR, that automate the analysis of poloxamers, molar substitution, tire rubber, heparin, Aloe vera and other common materials. Some of these methods may require separate software licenses for use (heparin and Aloe vera).</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

\(^1\) Requires a separate license.
2 The TopSpin Interface

Setup Preferences

For all changes in the TopSpin appearance use the global Setup preferences button in the menu bar.

TopSpin can be tailored to your preference in many respects. This ranges from startup options to spectrum objects, menu settings, remote connections, colors and fonts etc. Every standard user can create his own set of preferences.

A dialog box will appear with, at the left side, the categories that can be tailored. Click the category you want to view or change. It will become highlighted and the corresponding objects will be displayed at the right part of the dialog box.
TopSpin on High Resolution Screens

To adapt the font and icon size to a small/standard/medium or large screen resolution

- click **Setup Preferences** and in the category **Window Settings | All In One Fonts & Icon Size** click **Change**.
Help/About TopSpin/Version and License Information

This button gives information about the TopSpin documentation, software version and license.

Clicking Manuals (docs) or entering docs on the command line will open the list of all manuals delivered with TopSpin.

• Click Help | Manuals | Acquisition Application Manuals | Dosy will open the DOSY manual, for example.
Enter **help** to get information for an individual command. Three different sources can be selected for the search:

Tooltips

Pointing to a button with the mouse in the various menus opens a tooltip that describes the button functionality. Example:
Workflow Button Bar

The workflow-based interface with its arrangement of all working processes allows the user to control the workflow intuitively. Clicking one of the menu buttons opens the corresponding workflow. It contains a horizontal feature list which stays open and provides all functionality for this workflow with one mouse-click. Furthermore, some of the buttons on the Workflow button bar include a drop-down arrow. Click the drop-down arrow to see more options.

Dataset Toolbar

Depending on which dataset window tab is selected, an individual dataset toolbar is displayed, in the example the ACQU toolbar:

Note: The ACQU window tab is only displayed when TopSpin controls a spectrometer (noticeable through the Acquire tab in the TopSpin menu). When TopSpin is installed for processing-only, the Acquire tab is also not displayed.

Note: Sometimes the dataset toolbar is displayed without dataset window tabs, e.g. entering a command as .basl will display the baseline correction toolbar:
Browse and Search Window

The Browser window provides tabs as:

- Data browser and Search
- History browser
- Dataset Switcher
- Experiment Selector library

The window can be toggled On or Off with a click on the black **left** or **right** arrow.

Alternatively, the **Toggle Perspective** button on the top-right of the TopSpin window can be clicked.

The data tree tab includes a search field. Enter a search phrase, for example:

```
Search: pulprog=hsqc X
```

To limit the search results, select or deselect the data trees with **SHIFT** click or **CTRL** click.
The History tab displays the last opened datasets in a list.

This tab has a similar function as the Window Switcher, see below, but only provides a quick overview of all currently opened datasets.
The Experiment library tab provides easy access to the vast experiment library of standard experiments that is available in the standard release of TopSpin. It is also a tool that allows the user to personalize his most frequently used experiments into a separate library.

Structure Window
Molecular structures as .mol or .pdb files can be displayed here and are freely resizable. The structure window can be toggled On or Off with a click on the black up or down arrow.
• Drag the vertical or horizontal split bar to resize the structure window.

Window Switcher

The *Window Switcher* button indicates the number of all opened dataset windows plus all opened TopSpin window types like

- Dataset windows.
- Lock display window.
- Acquisition display window.
- BSMS display window.
- Temperature unit window.

• Click the *Window Switcher* button to switch between these windows.
A dataset can be closed with the **Close** button.

Viewing Integrals, Peaks and other Spectra Components

- Click **Spectrum display properties** to toggle the visibility of integrals, peaks and other spectra components. They can only be displayed when available.

Shift, Scroll and Zoom Spectra Axes

Clicking and dragging the spectrum axis allows intuitive scrolling through the spectrum.

- Single Clicks on the end regions of the axes or a click and dragging the mouse shift through the axes depending on the mouse position, see the next figure.
- Double click in the middle of the spectra axes switches to full axes region.
- Double click in the middle of the spectra itself maximizes all axes regions.
- Click on axes to shift left, right, up or down.
- Turn mouse wheel to zoom in or out.
Dataset Windows

The TopSpin window has a dataset area that may contain multiple dataset windows.

To open multiple dataset windows

- Right-click in the Browser window and in the list, select Display in new window.

Note, that selecting Display will override a current dataset.

The size of the data area depends on the overall size of the TopSpin window and on presence of the Browser. Note, that the Browser window can be toggled On or Off with the Toggle Perspective button. The following figure shows the TopSpin window without the Browser and three dataset windows.
Note, that the three dataset windows show different data objects: a 1D spectrum, a 2D spectrum and 1D processing parameters.

How to Move a Dataset Window
- Click-hold the title bar and move the mouse.

How to Resize a Dataset Window
- Move the cursor to the window edge until it becomes a double-headed arrow.
- Click-hold that position and move the mouse.
Depending on the position of the double-headed arrow, you can change the window height, width or both.

How to Select (activate) a Dataset Window
The active dataset window is the window of which the title bar is highlighted. The TopSpin menu, tool bars and command line commands correspond to and act on that window. Only one dataset window is active at a time.
To activate a different dataset window:
- Click in the desired dataset window or click its title bar.
or
- Click the **Window Switcher** button to switch between the windows.
How to Arrange Dataset Windows

If the data area contains multiple dataset windows, you can arrange them in various ways. All the arrange commands arrange the windows left to right and/or top to bottom in the order in which the windows have been active. The currently active dataset window will therefore be positioned at the top and/or left of the data area.

To arrange the dataset windows as a grid:

- Click **Show Layout Options** and **Show as Grid**.

Depending on the number of windows, they will be arranged vertically and/or horizontally.

To arrange dataset windows in stack:

- Click **Show Layout Options** and **`.**

To arrange dataset windows side by side:

- Click **Show Layout Options** and **`.**

To display a dataset windows as full screen:

- Click **Show Layout Options** and **`.** or click the **full screen** windows button.

To close the active dataset window:

- Click **File | Close Active Window** or enter **Ctrl-w**.

or
The TopSpin Interface

- Click the button in the windows title bar.

To close all dataset windows:
- Click File | Close All Windows or enter closeall.

How to Swap Dataset Windows
Within a certain layout, you can easily swap two TopSpin windows with the command `swin`. If the data area contains exactly two windows, `swin` simply swaps their position and geometry.

If it contains more than two dataset windows, `swin` opens a list from which you can select any window to be swapped with the currently selected (active) window.

Acquisition Status Bar
- Right-click the Status display or Current dataset bar to toggle the Acquisition status bar On or Off.

- Click Status Bar Preferences to set the Auto-open the acquisition status bar option as default.
The acquisition status bar contains the new Spectrometer Status area to turn the spectrometer On and Off. This functionality is also available in the menu with a click on Manage | Spectrometer | Spectrometer power On/Off or the command `pdudisp`.

Print, Export and Publish

Click on any of the 4 icons to either print the active window, export the active window to a PDF file, copy the active window to the clipboard or, show more publishing options such as E-mailing a dataset, sending a dataset to cloud storage, etc.

- Click **Show More publishing options**, e.g. to copy and paste, E-mail or use shared cloud directories.
3 Getting Started

3.1 Startup TopSpin

Under Windows

- Click the TopSpin icon on the desktop.
 or
- Click Start | Bruker NMR Software | TopSpin<version>

To start TopSpin from a Command Prompt as follows:

- Open a Shell window with cmd and in the Command Prompt enter:

 \(\text{cd <tshome>} \)

 \(\text{topspin} \)

 where \(<\text{tshome}>\) is the directory where TopSpin is installed.

Under Linux

- Open a Linux Shell or Terminal Window.
- In the Shell/Terminal enter

 \(\text{cd <tshome>} \).

 \(\text{./topspin} \).

Where \(<\text{tshome}>\) is the directory where TopSpin is installed.

Startup TopSpin specifying dataset

TopSpin can be started with a dataset option:

- Open a Windows Command Prompt or Linux Shell.
- Enter \(\text{topspin -j TOP_DATA:<dataset path>} \).

The specified dataset is automatically displayed after startup.

Examples:

\(\text{topspin -j TOP_DATA=c:\bio\data\guest\nmr\exam1d_1H\1\pdata\1} \)
\(\text{topspin -j TOP_DATA=c:\bio\data\guest\nmr\exam1d_1H\1\pdata\1\1r} \)
\(\text{topspin -j TOP_DATA=c:\jcamp.dx} \)
\(\text{topspin -j TOP_DATA=c:\data-archive.zip} \)

3.2 Configuration

After the installation of TopSpin, it must be configured once. See the TopSpin Installation Guide for a detailed description.
3.3 How to Display Spectra

In this chapter, opening data in standard Bruker format is described. Opening other data formats is described in the chapter Dataset Handling [43].

How to locate NMR data

NMR data can be in any arbitrary directory. The typical directory storage format is:

<dir>/<name>/<expnos>/pdata/<procnos>
e.g. c:\mydir\sucrose\10\pdata\1

Program versions older than TopSpin 2.5 used a different directory structure where <dir> was built up as <dir>\data\<user>\nmr.

Example: c:\bruker\topspin\data\guest\nmr\exam1d_13C\1\pdata\1

• The old format is still valid because it is a special case of the new storage format.
• The old and new style data storage must not be mixed, this would confuse the TopSpin data browser.
• The browser command scroll to active dataset will not work for old style data storage.
• The Bruker example datasets (if installed at all) can be found with TopSpin 2.5 and newer in <TOPSPIN INSTALLATION DIR>/examdata.
• This directory is automatically shown in the browser if enabled in the Setup Preferences (command set).

How to Open Data from the Windows Explorer

The easiest way to open data set in toppsin is to use drag and drop from Windows Explorer (or similar tool on other OS).

You may drag either the data set folder, any subfolder or file (1r, fid…) and drop it into the Topspin data area or dataset Window.

The corresponding data directory is automatically added to the Topspin internal browser.

This considerably simplifies the handling of data directories.

This feature may be switched on or off in the Browser Preferences:
How to Open Data from the Menu

Open the File menu and click Open...
A dialog box appears.

Select the first option, the Browser type File Chooser and click OK.
A file browser appears. Navigate to your data directory and expand it to the level of names, expnos, or procnos (double-click a directory to expand it). Select the desired item and click Display.
The selected dataset replaces the contents of the currently selected (active) window. If no dataset window was displayed, a new one will be created. The file browser can also be opened by entering reb on the command line.
How to Open Data from the Browser Window

TopSpin provides a data browser which, by default, displays the top level data directory (<dir>) with Bruker example data. You can add your own data directories, local or remote, as follows:

- Move the cursor into the browser area.
- Right-click and in the list, select **Add New Data Dir**.

![Add New Data Dir dialog](image)

- Enter the desired data directory (<dir>) and optionally an alias name and click **OK**.

Your data directory will now appear in the browser.

To display data from the Browser, proceed as follows:

- Expand your top-level directory (<dir>) in the browser to the level of the data name, *expto* or *procno*.
- Select the desired item and drag it into the data area.

How to Open Data in other Ways

TopSpin provides various other ways of displaying data. You can, for example, use command line commands like `re`, `rew`, `rep` and `dir`. Details on these features can be found in chapter [Opening Data](#) and in the Processing Reference Manual.

3.4 How to Display Peaks, Integrals, ... together with the Spectrum

When a spectrum is displayed, you can superimpose its title, parameters, integrals, and peaks as follows:

- Move the cursor into the dataset window that contains the spectrum.
- Right-click and select **Spectra Display Preferences**.
- Check the desired items and click **OK**.

Please note that the selected items are only shown if they are available. For example, peaks and integrals are only shown if peak picking and / or integration have been performed (see also [1D Interactive Manipulation](#)). The number of displayed digits for the integral and peak labels can be set in the Spectra Display Preferences.

Note: Integrals and peaks etc. can be toggled ON and OFF from the viewing options display.
3.5 How to Display Projections/1D Spectra with 2D Spectra

To display projections or 1D spectra in tandem with a 2D spectrum:

• Open a 2D spectrum.

• If no projections are shown, click Toggle projection display \(\text{pr} \) in the Spectrum Display Properties window or enter .pr on the command line. Projections can automatically be enabled in the Setup Preferences menu.

• Move the cursor into the F1 or F2 projection area.

• Right-click and choose one of the options. With External Projection... an existing 1D spectrum can be read. This can be a regular 1D spectrum or a 2D projection that was stored as a 1D spectrum. With Internal Projection the positive projection can be calculated and displayed.

An alternate way to display projections is the following:

• Click Process | Advanced | Display Projections...[projd]

or

• Right-click on a 1D dataset in the browser and choose Display As 2D Projection.
3.6 How to Superimpose Spectra in Multiple Display

TopSpin allows to compare multiple spectra in Multiple Display mode. To enter this mode, click the \(\text{\texttt{\textbf{\textcolor{red}{\textbullet\textbullet}}}} \) button in the upper toolbar or enter .md on the command line. When you open a dataset now, for example drag one from the browser, it will be superimposed on the current spectrum rather than replacing it. Several multiple display functions are available now in the dataset window toolbar. Most importantly, you can scale and shift each spectrum individually. This allows exact alignment of corresponding peaks of different spectra.

3.7 How to Print or Export the Contents of a Dataset Window

How to Print Data

A TopSpin dataset window may contain various objects like an fid, a spectrum, expansions of a spectrum, superimposed spectra, spectrum components such as parameters, peaks, integrals, cross sections etc. Whatever the content of the dataset window is, it can be printed as follows: type Ctrl + p or click File | Print..., select Print active window in the appearing dialog box and click OK.

The other options in this dialog box enable you to use or create plot layouts. Details on this can be found in the Data Publishing manual, see Help | Manuals | Data Publishing.

The colors of the printed data can be chosen in the User Preferences dialog box. Just enter the command set or click Setup Preferences | More Preferences | Spectra Printing Preferences.

How to Copy a Dataset Window to Clipboard

Under MS Windows, you can easily copy the dataset window contents to other applications.

To do that, type copy or click Copy to clipboard. This will copy the dataset window contents to the clipboard. After that you can paste the clipboard contents to any Windows application.
How to Store (Export) a Dataset Window as Graphics File

The clipboard and metafile formats are resizable vector formats. In addition to this, TopSpin allows to save the contents of a dataset window in a graphics file of selectable type, e.g. .png, .jpg, .jpeg, .bmp, .emf and .wmf. To do that, click File | Export... The resolution of such a screen dump equals the resolution of your screen. Note that when you import a graphics file into another program and resize it you lose information. Therefore, we recommend resampling rather than resize graphics.

3.8 How to Process Data

Since this manual is not a general NMR text book, we assume here that you are familiar with terms like window multiplication, Fourier Transform, phase correction, etc.

Any Fid or a spectrum displayed in a TopSpin window can be processed by:

• Typing a command on the command line, e.g. ft.
• Invoking a command from the Process | Proc. Spectrum menu.
• Entering an interactive mode by clicking a tool button, e.g. Process | Adjust Phase.
• Entering a user defined command (usually an AU or a Python program, see Help | Manuals | Programming Manuals.

Processing and analysis commands require certain parameters to be set correctly. Most commands in the Process or Analyse menu, like wm and ftf open a dialog box showing the available options and required parameters for that command. Other commands such as em, ft, ... start processing immediately. Before you use them, you must set their parameters from the parameter editor. To do that, enter edp or click the ProcPars Tab of the dataset window.

If you are a new or occasional user, we recommend processing your data with the TopSpin Processing Guide. This will guide you through the typical sequence of processing steps. To start the Processing Guide, enter prguide on the command line.

In Automatic mode, the Processing Guide will simply execute each processing command when you click the corresponding button. This requires the processing parameters to be set correctly. In interactive mode (Automatic mode unchecked), the Processing Guide will, at each step, open a dialog box offering you the available options and required parameters. For example, the phase correction button offers various automatic algorithms as well as an option to enter interactive phasing mode.

A simple way to process 1D data is the following:

• Click Process | Proc. Spectrum | Configure Standard Processing or enter proc1d on the command line.
• In the appearing dialog (see below):
 – Enable the desired processing/plotting steps.
 – Set the parameter LB for Exponential multiplication.
 – Select the desired LAYOUT for plotting.
 – Click Execute.
3.9 How to Archive Data

TopSpin provides the following methods for data archiving:

- Automatic archiving of raw data after the acquisition as defined in the setup preferences. Go to Setup Preferences | Acquisition | Configure accounting & data archiving after zg and click Change to define the archive directory.

- Copying a dataset to a desired destination directory which could for instance be located on a server. Type wrpa or click File | Save As... or type Ctrl+s.

- Saving a dataset in a ZIP file. A standard Bruker dataset is a directory tree which contains several files. Zipping a dataset stores the entire data directory tree into a single file with the extension .bnmr.zip. To zip a dataset, type tozip or click File | Save As... or type Ctrl+s. To unpack and display a zipped dataset, enter fromzip. Note that .bnmr.zip files are fully compatible with the well-known PC zip format and can be unpacked with any common unzip utility. Zipping can be applied to 1D, 2D, 3D and 4D data.

- Saving a dataset in JCAMP-DX format. This format is an IUPAC standard, and is available for 1D and 2D datasets. Data and parameters are stored in readable text (ASCII) format. To store data in JCAMP, type tojdx or click File | Save As... or type Ctrl+s. To convert and display a JCAMP-DX file, type fromjdx.
• E-mailing data to a desired destination. Type smail or click File | Send To.... The mailing format is either zip or JCAMP-DX, both of which allow for data compression to keep the transferred data size as small as possible.

3.10 How to Import NMR Data Stored in Special Formats

TopSpin allows to convert various data formats to standard Bruker format for display and processing. Click File | Open... and select Open NMR data stored in special formats. Then follow the instructions on the screen.

3.11 How to Fit Peaks and Deconvolve Overlapping Peaks

Deconvolution is a useful tool to interpret complex spectra in which the peaks are not fully resolved and clearly visible.

Peaks of a 1D and 2D NMR spectrum can be approximated by a Lorentzian, Gaussian, or a mixture of these line shapes. Overlapping peaks may be deconvolved into a sum of such line shapes.

TopSpin shows the deconvolution result, i.e. peak positions, line widths and integrals on the screen and stores it in the file dconpeaks.txt. Furthermore, it switches to multiple display mode to show the original spectrum and the sum of the computed line shapes, superimposed.

To start deconvolution, expand the spectrum on the display to show the peak or peak group of interest. Then type dcon or click Analyse | Line Shapes | Fit Lorentz/Gauss Functions.

3.12 How to Compute FIDs by Simulating Experiments

TopSpin includes a virtual spectrometer that computes FIDs of any dimension. A real spectrometer excites a sample with high frequency pulses defined by a pulse program and measures the resulting Fid. The virtual spectrometer performs this task mathematically by solving the quantum mechanical Liouville equation. The sample must be entered in form of a spin system description. For the computation, the same pulse program and acquisition parameters are taken as for the real experiment. The result is a time domain signal which can be pro-
cessed with TopSpin in the same way a measured fid is processed. Techniques such as a
selective excitation, gradient enhanced spectroscopy, and the handling of mixtures are sup-
ported.
To start the virtual spectrometer:
• Enter nmrssim on the command line or click Applications | Simulate | Simulate FID
 From Pulse Program.

3.13 How to Add Your Own Functionalities

The TopSpin functionality can be extended with various user defined commands, programs
etc.

How to Create Macros

Writing a macro is the simplest way to create a user defined command. Just enter the com-
mand edmac, create a file, and enter a sequence of regular TopSpin commands and/or
Python commands. Save the file under a name of your preference. You have created a new
TopSpin command. Just enter its name on the command line to execute it. edmac shows a
list of all available macros and allows to execute one.

How to Create AU (automation) Programs

Writing an AU program is another way of creating a new TopSpin command. AU programs
are more complex and more powerful then macros. They are C-language programs, which
may contain C-statements, regular TopSpin commands, and various predefined AU macros
and functions. AU programs can perform various tasks such as dataset handling, parameter
handling, acquisition, processing, analysis, and printing. Note that AU programs do not sup-
port graphics related tasks.
TopSpin is delivered with a large set of Bruker AU programs for data processing and acquisi-
tion. Just enter edau to see them listed in a dialog box. The easiest way to create a new AU
program is to select a Bruker AU program, save it under a new name and modify it to your
needs. The chosen name is now available as a new TopSpin command. Alternatively, you
can open a new file from the AU dialog box and write your AU program from scratch.
For details on Bruker AU programs and writing your own AU programs, click Help | Manuals
| Programming Manuals | AU Programming.

How to Create Python Programs

Writing a Python program is yet another way of creating a new TopSpin command. Python is
a new generation scripting and object-oriented programming language. Python programs are
even more powerful than AU programs. They are easy to use and allow you to execute
TopSpin commands, handle NMR data and parameters, generate graphics, and interact with
the TopSpin user interface via dialogs, windows etc. To create a Python program, enter the
command edpy, select a file and insert your Python statements. Graphics and interface fea-
tures programmed in Python look and work the same as regular TopSpin features.
For details on Python programming, click Help | Manuals | Programming Manuals | Python
Programming. The examples mentioned there, like pycmd1, are delivered with TopSpin.
Just enter their names on the command line to execute them.
The Python dialog window is also available from the TopSpin menu:
Click File | Open...and select Open other file | Python program.

3.14 How to Automate Data Acquisition

TopSpin provides special user interfaces for automation, walk-up, bio-molecular experiments,
etc.
To open IconNMR

- Click **Acquire | More | IconNMR Automation**

or

- enter **iconnmr**.
4 Dataset Handling

4.1 The Browse and Search Window

The Browse and Search window appears at the left of the TopSpin window and can be shown/hidden with Ctrl+d or by clicking the arrow buttons at the upper right of the browser or with the Toggle Perspective button.

The Browse and Search window provides tabs as:

1. Data Browser tab
2. History Browser tab
3. Groups tab
4. Alias tab
5. Dataset Switcher tab
6. Experiment Selector Library tab

Note that some of the tabs are visible only when the checkbox option is checked in the preferences window.

Note that the History Browser, Dataset Switcher and Experiment Selector Library tab are already explained in chapter The TopSpin Interface.

• Right-click in the Browse and Search window and in the list, select Browser Preferences.
In the Browser Tabs group check or uncheck:
1. Show Groups Tab
2. Show Alias Tab
3. Show Experiments Tab
4. Show Open Datasets Tab.

Then restart TopSpin.
The Data Browser Tab

The browser shows data directory trees and allows to expand and collapse their elements. The figure below shows the browser with three top level data directories and one dataset fully expanded.

The dimensionality of the data is indicated with different colors:
1. *Black* for 1D data.
2. *Blue* for 2D data.
3. *Green* for 3D data.

Note that the colors can be changed in the Browser Preferences window.

Furthermore, the browser displays:
1. The pulse program with the dataset EXPNO (e.g. 1 - *hxcoqf* in the figure above).
2. The title with the dataset PROCNO (e.g. *CH-CO Cyclosporin* in the figure above).

Note that the displayed pulse program is the:
1. Status pulse program if an acquisition has been done (raw data exist).
2. Setup pulse program if no acquisition has been done (raw data does not exist).

The display of title and pulse program can be switched off (see table below).

The context menu with right mouse click displays the following list:

<table>
<thead>
<tr>
<th>Display</th>
<th>=> Display in current dataset window.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display in New Window</td>
<td>=> Display in new (additional) dataset window.</td>
</tr>
<tr>
<td>Display As 2D Projection</td>
<td>=> Display 1D dataset as projection of 2D dataset. Requires that a 2D dataset is loaded in the active dataset window.</td>
</tr>
<tr>
<td>Scroll to active dataset</td>
<td>=> Scroll in browser to PROCNO of dataset in active dataset window. This also expands the dataset, see option below.</td>
</tr>
<tr>
<td>Fully Expand Selection</td>
<td>=> One or several datasets may be selected and will be expanded.</td>
</tr>
</tbody>
</table>
Dataset Handling

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show PULPROG/Title</td>
<td>Switch pulse program/title display on/off.</td>
</tr>
<tr>
<td>Show Date</td>
<td>Show acq. date (expno) or last mod. date (name).</td>
</tr>
<tr>
<td>Sort by Date</td>
<td>Sort data by last modified date.</td>
</tr>
<tr>
<td>Copy</td>
<td>Copy dataset entry to clipboard.</td>
</tr>
<tr>
<td>File Properties</td>
<td>Show dataset properties.</td>
</tr>
<tr>
<td>Delete...</td>
<td>Delete selected entry (name, expno or procno).</td>
</tr>
<tr>
<td>Rename</td>
<td>Rename dataset name, expno or procno.</td>
</tr>
<tr>
<td>Files</td>
<td>Show files in selected entry (expno or procno).</td>
</tr>
<tr>
<td>Add New Data Dir...</td>
<td>Add new top-level data directory.</td>
</tr>
<tr>
<td>Edit Selected Data Dir...</td>
<td>Displays a window to select a directory and to enter an alias.</td>
</tr>
<tr>
<td>Remove Selected Data Dirs...</td>
<td>Remove selected top-level data directory.</td>
</tr>
</tbody>
</table>

The Groups Tab

Clicking the Groups tab displays the list of user defined dataset groups. Here you can create, modify and display groups of datasets. Defining a group is useful if you work on projects where each project involves multiple datasets. It allows to easily organize your projects and access all data belonging to a certain project.

- Right-click to display the following list:

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>Display selected dataset(s) in active window.</td>
</tr>
<tr>
<td>Display In New Window</td>
<td>Display selected dataset(s) in new window.</td>
</tr>
<tr>
<td>Display Group</td>
<td>Display all datasets in group in new windows.</td>
</tr>
<tr>
<td>Add Selected Dataset window</td>
<td>Add selected dataset window to selected group.</td>
</tr>
<tr>
<td>Add all Open Dataset windows</td>
<td>Add all open dataset windows to selected group.</td>
</tr>
<tr>
<td>Update Window Bounds & Display Limits</td>
<td>Update window bounds and display regions.</td>
</tr>
<tr>
<td>Remove Selected Datasets From Group</td>
<td>Remove selected datasets from group.</td>
</tr>
<tr>
<td>Collapse All Groups</td>
<td>Collapse all groups.</td>
</tr>
<tr>
<td>Toggle Dim/Pulprog./Title</td>
<td>Show/hide dimension, pulse program, title.</td>
</tr>
<tr>
<td>Add new Dataset Group</td>
<td>Add a new (empty) dataset group to the list.</td>
</tr>
<tr>
<td>Close All Group Windows</td>
<td>Close all dataset windows of selected group.</td>
</tr>
<tr>
<td>Process Selected Datasets</td>
<td>Process selected dataset with serial processing.</td>
</tr>
<tr>
<td>File Properties</td>
<td>Show file properties of selected dataset.</td>
</tr>
<tr>
<td>Files</td>
<td>Show file list of selected dataset.</td>
</tr>
<tr>
<td>Copy</td>
<td>Copy pathnames of selected data to clipboard.</td>
</tr>
</tbody>
</table>
Dataset Handling

Note that a group not only defines the datasets involved, but also their dataset window positions and dimensions and the displayed region of each spectrum.

The Alias Tab

Clicking the **Alias** tab displays the list of user defined alias names for datasets. Just right-click any entry to define, remove or interpret alias names.

The Experiment Library Tab

The Experiment library tab provides easy access to the vast experiment library of standard experiments that is available in the standard release of TopSpin. It is also a tool that allows the user to personalize his most frequently used experiments into a separate library.

The experiments are grouped according to their application areas, such as small molecules, proteins or drug discovery. Further grouping into sub-groups according to the type of experiments may occur depending on the number of experiments that is available within a group. For instance, the protein experiments are grouped into backbone experiments, side-chain experiments and similar. Some experiments, for instance the multi-receiver experiments, may also have an associated action item, in this case for adding a child experiment. The action items are au-programs that reside in the standard au-program library.

The Personalized Library initially is empty and can be populated by simply dragging and dropping individual experiments or groups from the standard TopSpin Library. Alternatively, the experiments can be added manually:

- Select the desired group of experiments.
- Right-click and in the list, select **Add Experiment**.
How to Open the Data Browser in a Separate Window

The browser can be opened in a separate window as follows:

- Click Setup Preferences | More Preferences | Browser Preferences | Change
- Check Display dataset browser in a separate window.

You must restart TopSpin for the change to take effect.

How to Put the Focus in the Data Browser

- Click F2
- or
- Click inside the data browser.

How to Select Folders in the Browser

To select a folder:

- Left click the folder button.
- or
- Click arrow-up/down while the focus is in the browser.

To select multiple folders:

- Hold the Ctrl key and left-click multiple folders to select them.
- or
- Hold the Shift key and left click two folders to select these two and all in between.

How to Expand/Collapse a Folder in the Browser

To expand a collapsed folder:

- Click the + (plus) button to the left of the folder button.
- or
- Double-click the folder button.
- or
- Hit the Right-Arrow key while the folder is highlighted.
To fully expand a collapsed folder:
- Right-click the DIR, NAME or EXPNO node and choose **Fully Expand Selection**.

To collapse an expanded folder:
- Click the -(minus) button to the left of the folder button.
 or
- Double-click the folder button.
 or
- Hit the **Left-Arrow** key while the folder is highlighted.

How to Show/Hide Pulse program and Title in the Data Browser
- Right-click the data name folder button and in the list, select **Show PULPROG /Title**.

How to Display Dataset Dates in the Browser.
- Right-click the data name folder button and select **Show Date**.

The last modified date is displayed the right of the dataset NAME, whereas the acquisition date is shown to the right of the dataset EXPNO:
Dataset Handling

How to Suppress the Display of the TopSpin Data Examples Directory in the Data Browser Window

By default, the browser shows the TopSpin installation directory with the Bruker example datasets. To suppress this feature, click Setup Preferences | Administration items and uncheck Show TopSpin data examples directory in data browser.

How to Add, Remove or Interpret Alias Names

To add an alias name:

• Click the Alias tab in the browser (must be enabled in the Browser Preferences).
• Right-click in the Alias table and in the list, select Define Alias For Data In Selected Window.
• Enter an alias name in the appearing dialog box and click OK. Note that alias names must begin with a letter.

To remove an alias name:

• Right-click the alias name.
• In the list select Remove selected aliases... from the popup menu (see the figure below).

Furthermore, the popup menu offers entries to display the dataset, list its properties and display the full dataset specification.

4.2 Creating Data

How to Create a New Dataset

• Click File | New [new, Ctrl + n] or click the Create Dataset button in the upper toolbar.
• Specify the dataset name, expno, dir and user in the appearing dialog box. If one or more datasets are open, the fields are initialized with the current dataset (see the figure below).
• Click the down-arrow of the Solvent box and choose a solvent from the list or type a solvent name.
• Click the down-arrow of the Experiment box and choose a parameter set from the list, or type a parameter set name.
• Type the dataset title in the TITLE box.
• Click OK.
A dataset will be created and initialized with the parameters of the chosen experiment. No FID or spectrum is available yet. They can be created by data acquisition and data processing, respectively.

4.3 Opening Data

TopSpin allows to open data in several ways, from the browser, the menu, the Windows Explorer or the command line. Furthermore, data can be opened:

1. In an existing dataset window replacing the current dataset.
2. In a dataset window which is in multiple display mode, being superimposed on the current spectra.
3. In a new dataset window, which becomes the active window.

Note that if a dataset is already displayed in one window and it is opened in a second existing window, it still replaces the dataset in the latter one. As a result, the same dataset will be displayed in two windows (see also command `reopen`).

How to Open Data from the Browser

In the browser:

- Left-click-hold a data name, `expno` or `procno` and drag it into the data area. The data will be displayed in a new dataset window.

or

- Left-click-hold a data name, `expno` or `procno` and drag it into an open dataset window. The data will replace the currently displayed data.

or

- Left-click-hold a data name, `expno` or `procno` and drag it into an empty dataset window created with `Alt+ w n`.

or

- Left-click-hold a data name, `expno` or `procno` and drag it into a multiple display dataset window. The data will be superimposed on the currently displayed data.
or
• Right-click a data name, expno or procno and choose Display from the popup menu; the data will be displayed in the current dataset window.

or
• Right-click a data name, expno or procno and choose Display in new window from the popup menu; the dataset will be displayed in a new dataset window.

or
• Hold the Ctrl key and left-click several datasets to select them or hold the Shift key and left-click two datasets to select these two and all in between. Then right-click one of the selected datasets and choose Display from the popup menu. A new window will be opened showing the selected datasets in multiple display mode. However, if the current window was already in multiple display mode, the selected spectra will be superimposed on the currently displayed spectra.

How to Automatically Select the first expno/procno of a dataset
If you open a dataset from the Browser by clicking a data name, there might be more that one expno and/or procno available. By default, TopSpin then opens a dialog box from which you can select the desired expno/procno combination (see the figure below). Clicking Open will open the selected dataset, whereas clicking Print will print the displayed dataset list.

You can, however, configure TopSpin to automatically open the first available expno/procno combination:
• Click Preferences [set].
• Click Miscellaneous in the left part of the dialog box.
• Uncheck the item Display EXPNO/PROCNO list when opening data.
• Click Apply and Close.

Note that the command rel also opens the dialog shown in the figure above, showing the available EXPNO’s under the current dataset. Similarly, repl shows the available PROCNO’s under the current dataset EXPNO.

How to Open Data from the TopSpin menu
To open a dataset:
• Click the File button in the upper toolbar.

or
• Click File | Open [open, Ctrl+o].
• Select the option **Open NMR data stored in standard Bruker format**.
• Select the browser type **RE Dialog**.
• Click **OK**.

Note that the dataset specification consists of the five variable parts of the data directory tree, in this case:

```
C:\bio\data\guest\nmr\exam1d_1H\1\pdata\1
```

The text boxes are initialized with the dataset in the current dataset window.

How to Open Data from the Explorer, Konqueror or Nautilus

You can open a dataset from the Windows Explorer as follows:

1. From the Windows **Start** button. Navigate to the data **name**, expno or procno.
or

2. By entering the command `expl` in TopSpin. The Explorer shows the contents of the current dataset procno directory. Navigate to the desired data name, expno or procno. `expl` can also be used with the argument `top` to open the TopSpin installation directory, `home` to open user home directory or with an absolute pathname to open that directory.

 – The command `expl spect` opens the Explorer in `<tshome>/conf/instr/current instrument>`
 – The command `expl prop` opens the Explorer in the user's properties directory `User-HOME/topspin<name_of_PC>/prop` By entering `expl <illegal argument>` all available options are shown.

Now you can open a dataset with:

Drag & Drop:
- Click-hold a dataset name or any of its sub-folders or files and drag it into the TopSpin data area or dataset window

or **Copy & Paste:**
- Right-click a dataset and in the list, select *Copy*.
- Click *File* | *Paste* [paste]:

How to Open Datasets from the Command Line

- Enter `re`.
- Specify a dataset in the appearing dialog box.
- Click *OK*.

To open a new procno of the current dataset:

- Enter `rep`.
- Specify a procno in the appearing dialog box.
- Click *OK*.

To open a dataset in a new window:

- Enter `rew`.
- Specify a dataset in the appearing dialog box.
- Click *OK*.

To open a new procno of the current dataset in a new window:

- Enter `repw`.
- Specify a procno in the appearing dialog box.
- Click *OK*.

To open a data browser and read a dataset from there:

- Enter `reb`.
- Select a dataset from the appearing dialog box.
- Click *Display*.
Note that re, rep and reb:
1. Replace the data in the currently selected dataset window.
2. Open the data in a new window when they are used after typing Alt w n.
3. Add the data in the currently selected window if this is in multiple display mode, whereas rew and repw always open the dataset in a new window.

TopSpin allows to open datasets stored in the following directories structures:
<mydata>/<dataname>/<expno>/pdata/<procno>

- Enter reb on the command line, browse to the desired dataset and click Display.

Open the Operating System File Browser, browse to the desired dataset and open it in TopSpin with Copy & Paste or Drag & Drop.

Note that this will create a copy of the dataset in the standard TopSpin data path:
<tshome>/data/<user>/nmr/<dataname>/<expno>/pdata/<procno>
where <user> is the current internal TopSpin user. This copy can be processed, deleted or overwritten, even if the original dataset is write-protected. The original dataset is left unchanged.

How to Open Special Format Data
Apart from the standard Bruker data format, TopSpin can read and display various other formats:
- Click File | Open [open, Ctrl+o].
- Select the option Open NMR data stored in special formats, select the desired file type (see the figure below) and click OK.

A dialog will appear which depends on the chosen file type. Just follow the instructions on the screen.

The following file types are supported:
1. JCAMP-DX - Bruker TopSpin data stored in JCAMP-DX format. Note that the TopSpin data format is identical to the XWIN-NMR data format.
2. Zipped TopSpin - Bruker TopSpin data stored in ZIP format.
3. WINNMR - Bruker WINNMR data.
4. A3000 - Bruker Aspect 3000 data.
5. VNMR - data acquired on a Varian spectrometer.
6. JNMR - data acquired on a Jeol spectrometer.
7. Felix - 1D data, FID or spectrum, which are stored in FELIX format.

Note that in all cases, the data are stored in a single data file which is unpacked/converted to standard Bruker format, i.e. to a data directory tree.
How to Open a ZIP or JCAMP-DX file from the Windows Explorer

Data stored in ZIP or JCAMP-DX format can also be opened directly from the Windows Explorer. You can do that in one of the three following ways:

Drag & drop
- Click-hold a file with the extension `.dx` or `.zip` and drag it into the TopSpin data area or dataset window.

Copy & paste
- Right-click a file with the extension `.dx` or `.zip` and in the list, select **copy**.
- Click **File | Paste [paste]**.

Associate JCAMP-DX files with a script
- Create a file with the extension `.cmd` (e.g. `jcamp.cmd`) with a text editor.
- Enter `<tshome>\prog\bin\sendgui.cmd fromjdx %1`
- Store the file.
- Open the Explorer and find the JCAMP-DX file.
- Right-click the filename and choose **Open with | Choose program | Browse**.
- Find and select the script and click **OK**.

Now, every file with the extension `.dx` will automatically be opened in TopSpin when double clicked.

4.4 Saving/Copying Data

How to Save or Copy Data

You can save the current dataset as follows:
- Click **File | Save [Ctrl+s]**.

This will open a dialog box:
Select an option and, if applicable, a file type.
Click OK to execute the option.

The options correspond to the following command line commands:

wrpa - copies the current data to a new data name or expno.
toccpn - convert experiment information to ccpn format.
tozip - convert a dataset of any dimension to ZIP format.
tojdx - convert a 1D or 2D dataset to JCAMP-DX format.
totxt - convert a 1D or 2D dataset text format.
wpar - write parameter set.
convdta - save digitally filtered data as analog filtered data.
wrp , wra, genfid, wmisc - write various files.

How to Save an Entire Dataset
- Click File | Save [Ctrl+ s].
- Select the option Copy dataset to a new destination [wrpa] and click OK.
- Specify the dataset variables and click OK.

How to Save Processed Data
- Click File | Save [Ctrl+ s].
- Select the option Save other file.
- Select File type Processed data as new procno [wrp] and click OK.
- Enter a processing number (procno) and click OK.

How to Save Acquisition Data
- Click File | Save [Ctrl+ s].
- Select the option Save other file.
- Select File type Acqu. data as new expno [wra] and click OK.
- Enter an experiment number (expno) and click OK.

How to Save Processed Data as Pseudo Raw Data
- Click File | Save [Ctrl+ s].
- Select the option Save other file.
- Select File type 1r/1i as fid [genfid] or 2rr/2ii as ser [genser].
Dataset Handling

- Click OK.
- Enter a destination expno.
- Click OK (optionally, you can specify further data path specifications).

4.5 Deleting Data

How to Delete a Specific Dataset
- Right-click the data name, expno or procno in the browser, then click Delete...

A confirmation dialog will appear. Just click OK, if you are sure you want to delete. Note that TopSpin does not allow you to delete the last available dataset, e.g. the last procno under an expno, the last expno under a name or the last name under a user.

How to Delete Types of Datasets
To delete certain types of data like 1D raw data, 2D processed data etc.:
- Click File | Delete...

or
- Enter delete on the command line.

Note: To use this function at least one dataset must be open!

![Delete Options Dialog](image)

- Select a data type option
 - For each option, the corresponding command appears in the title of the dialog box. These commands (del, dela, delp, deldat, delf, dels, delser, del2d, deli, delmac, delau, delpy, delpul, delist, delmisc) can also be used to delete data from the command line.

- Specify the **Required parameters**
 - Note that you can use the wildcards:
 - Asterix (*) for any character and any number of characters.
 - Question mark (?) for any single character.

- Click OK
Dataset Handling

A dialog box will appear showing the matching datasets. For example, if you select the option **An entire dataset** ...

- Select dataset entries for deletion (selected entries are highlighted). To select multiple entries: click them holding the **Shift** or **Ctrl** key.
- Click **OK** to delete the entire data directory.

If you select the option **Acquisition data** or **Processed data**, you can choose between deleting the data files only and deleting the entire expno or procno directory, respectively:

<table>
<thead>
<tr>
<th>Browse option</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>An entire dataset with all EXPNOs/PROCNOs</td>
<td>del</td>
</tr>
<tr>
<td>Acquisition data</td>
<td>dela</td>
</tr>
<tr>
<td>Processed data</td>
<td>delp</td>
</tr>
<tr>
<td>Data acquired at certain dates</td>
<td>deldat</td>
</tr>
<tr>
<td>1D raw data</td>
<td>delf</td>
</tr>
<tr>
<td>1D processed data</td>
<td>dels</td>
</tr>
<tr>
<td>2D/3D/etc. raw data</td>
<td>delser</td>
</tr>
<tr>
<td>2D processed data</td>
<td>del2d</td>
</tr>
<tr>
<td>Imaginary processed data</td>
<td>deli</td>
</tr>
<tr>
<td>Macro</td>
<td>delmac</td>
</tr>
<tr>
<td>AU program</td>
<td>delau</td>
</tr>
<tr>
<td>Python program</td>
<td>delpy</td>
</tr>
<tr>
<td>Pulse program</td>
<td>delpul</td>
</tr>
<tr>
<td>Parameter list</td>
<td>delist</td>
</tr>
<tr>
<td>Miscellaneous file</td>
<td>delmisc</td>
</tr>
</tbody>
</table>

Selection **An entire dataset with all EXPNOs/PROCNOs** opens the del window:
Selection **Acquisition data** will open the dela window:

Processed Data will open the delp dialog:
Data acquired at certain dates:

Delete 1D raw data will open the defl dialogue:

Macros

AU Programs
4.6 Renaming Data

How to Rename a Specific Dataset

- Right-click the dataset name, expno or procno in the data browser, then click **Rename**...
- In the appearing dialog: Enter the new dataset name, expno or procno.
4.7 Searching/Finding Data

How to Find Data

You can find TopSpin data according to various criteria. To start searching:

- Enter Ctrl+f to open the Find data window:

 ![Find data window](image)

- Enter the search items in the upper part of the dialog. Note that:
 1. There will be searched for items containing the specified string.
 2. Exact matching is performed for dataset variables, NAME, EXPNO, PROCNO and USER, if the checkboxes at the right are enabled.
 3. The search is restricted to data created between the specified dates. Note that this refers to the acquisition date.
 4. The Reset mask button allows to reset the default criteria.

- Select the Data directories to be searched in the lower part of the dialog. If no directories are selected, all will be searched.
- Click OK to start the search. A list of data that fulfill the defined criteria will appear:

 ![Search results](image)

Note that on exiting TopSpin, the search criteria will be rest to default.
Dataset Handling

How to Display one of the Found Datasets

In the search result window (see figure above):

- Click one or more datasets to select them.
- Click Display to display the selected dataset(s) in the current dataset window. If multiple datasets are selected, they are displayed in a new dataset window in multiple display mode.

The search result window offers a right-click context menu with various options:

<table>
<thead>
<tr>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
</tr>
<tr>
<td>Display In New Window</td>
</tr>
<tr>
<td>Display As 2D Projection</td>
</tr>
<tr>
<td>Sort This Column</td>
</tr>
<tr>
<td>Sort + Reverse</td>
</tr>
<tr>
<td>Show Details</td>
</tr>
<tr>
<td>Save selection in file...</td>
</tr>
<tr>
<td>Add selection to dataset group...</td>
</tr>
<tr>
<td>File Properties</td>
</tr>
<tr>
<td>Files</td>
</tr>
<tr>
<td>Process Selected Datasets...</td>
</tr>
</tbody>
</table>

Display

Display the selected dataset(s) in the current dataset window. If multiple datasets are selected, they are displayed in the same dataset window in multiple display mode. Equivalent to clicking the Display button or pressing Enter.

Display in New Window

Display the selected dataset(s) in a new window. If multiple datasets are selected, they are displayed in the one new dataset window in multiple display mode.

Display as 2D Projection

Display the selected dataset as a projection of the current 2D dataset. A dialog will appear allowing you to choose F1-projection, F2-projection or both. If multiple datasets are selected, only the first one is considered. If the current dataset is not a 2D dataset, nothing happens.

Sort this Column

Sort the selected column in ascending order.

Sort + Reverse

Sort the selected column in descending order.

Save Selection in file...

Save the list of selected datasets in a text file. First opens a file dialog where you can select or specify a filename. The saved dataset list can, for example, be used for serial processing (command serial, see also Process Selected Datasets below).

Add selection to dataset group...

Selected datasets can be defined as dataset group.
Dataset Handling

File properties
Show main dataset parameters like Dimension, Pulse program, Acquisition Date, Nuclei, Spectrometer frequency and Solvent.

Files
Show the files in the processed data directory of the selected dataset.

Process Selected Datasets
Perform serial processing on the selected datasets. Opens a dialog where you can change or edit the dataset list and specify the command, macro or Python program to be executed (starts the command serial).

The Close button allows to close the search result dialog.

4.8 Handling Data Files

How to List/Open the Current Dataset Files
A Bruker dataset is represented by a directory tree which contains files in the expno and procno subdirectories. These files contain the actual data, parameters, lists etc.

• Right-click inside the dataset window and in the list, select Files.

If the spectrum is displayed, the files in the procno subdirectory are shown. If the Fid is displayed, the files in the expno subdirectory are shown.

• Select a file and click Open to view its contents.

Note that this only makes sense for ascii files.

How to List/Open the current Dataset Files in the Windows Explorer
To list the current dataset files in the Windows Explorer:

• Click File | Run a Program
• Select Open file explorer [expl] in the appearing dialog box.
• Click OK.

Alternatively, you can enter the command expl on the command line. The Windows Explorer will be opened showing the processed data files (the files in the procno directory) of the current dataset. Under Linux a Web browser like KDE Konqueror or Gnome Mozilla will be opened.

To open a file:

• Double-click the file or right-click the folder icon and select Open.
If TopSpin data area contains no datasets, the `expl` command opens the Explorer showing the users home directory. When entered on the command line, `expl` can also be used with the argument `top` to open the TopSpin installation directory, `home` to open user home directory or with an absolute pathname to open that directory.
5 Parameter Handling

5.1 Processing Parameters

Processing parameters can be set/changed in three different ways:
1. From the parameter editor: click the ProcPars tab or enter edp.
2. From the command line: e.g. enter si.
3. From a command dialog box: e.g. wm.

How to Set a Processing Parameter from the Command Line
Enter the parameter name on the command line. For example, to set the size:
• Enter si.

For 1D data, the following dialog box will appear:

For 2D data, the following dialog box will appear:

• Specify the desired value(s), e.g. 32768 or 32k.
• Click OK.

How to Set Processing Parameters from the Parameter Editor
To open the processing parameter editor:
• Click the ProcPars tab in the Tab bar of the dataset window.
or
• Enter edp on the command line.
At the left of the parameter editor window you will see a list of parameter sections.

The processing parameter editor supports the following functions:

- Collapse/expand a parameter section by clicking the button. Note that the section Window function is collapsed.
- Collapse/expand all parameter sections by clicking the large button of the dataset window toolbar.
- Enter (part of) a parameter name in the search field and click .
- Click a parameter section, e.g. Phase at the left of the dialog box. The section becomes highlighted and the corresponding parameters will appear in the right part of the dialog box.
- Click in a parameter field, e.g. PHC0, to set the parameter value.
- Click right of parameters like AUNMP to open a list of the corresponding programs/lists.
- Click Edit Processing AU program to open the current program/list with an editor.
- Hit the Tab key to jump to the next parameter field.
- Hit Shift + Tab to jump to the previous parameter field.
- Use the scroll bar at the right of the dialog box to move to parameters further up or down in the dialog box.

How to Undo the Last Processing Parameter Change

- Click Undo last parameter change.

How to Display Processing Status Parameters

- Click Show processing status parameters.

Note that the command dpp opens the parameter editor and automatically shows the status parameters.

How to Switch to Maxent parameters

- Click Switch to Maxent parameters.
How to Change Processed Data Dimensionality

- Click ↓ 1,2,: Change data dimensionality.

This changes the number of parameter columns and value of the processing parameter PPARMOD. TopSpin supports data dimensionalities up to 8D.

The parameter editor does not allow you to modify status parameters. Processing status parameters reflect the status of the processed data and are used for further processing, display or plotting. Changing them can make the dataset inconsistent. In rare cases, however, it can be useful to change a status parameter and TopSpin allows to do that from the command line. If, for instance, you want to change the F1 status parameter MC2 of a 2D dataset, enter:

`s mc2`

Note that the command `s` is used for 1D, 2D and 3D dataset. TopSpin automatically recognizes the dimensionality of the data and displays the parameter in all relevant dimensions. Note that, for example, the parameter MC2 only exists in F1.

5.2 Acquisition Parameters

How to Set Acquisition Parameters

Acquisition parameters can be set/changed as follows:

1. From the parameter editor: click the **AcquPars** tab or enter `eda`.
2. From the command line: e.g. enter `td`.
3. From the interactive parameter adjustment window (enter `gs`).

How to Set an Acquisition Parameter from the Command Line

Enter the parameter name on the command line. For example, to set the time domain size:

- Enter `td` for 1D data, the following dialog box will appear:

 ![Dialog box for setting TD size](image)

 For 2D data, the following dialog box will appear:

 ![Dialog box for setting TD size (2D)](image)

 - Specify the desired value(s), e.g. **65536** or **64k**.
 - Click **OK**.
How to Set Acquisition Parameters from the Parameter Editor

To open the acquisition parameter editor:

• Click the **AcquPars** tab in the Tab bar of the dataset window.

or

• Enter **eda** on the command line.

The figure below shows an example of the acquisition parameter editor with the Experiment parameters displayed.

The processing parameter editor supports the following functions:

• Collapse/expand a parameter section by clicking the **button. Note that the section Width is collapsed.**

• Collapse/expand all parameter sections by clicking the large **button of the dataset window toolbar.**

• Enter (part of) a parameter name in the search field and click **.**

• Click a parameter section, e.g. Experiment at the left of the dialog box. The section becomes highlighted and the corresponding parameters will appear in the right part of the dialog box.

• Click in a parameter field, e.g. TD, to set the parameter value.

• Click the **button to the right of parameters like PULPROG to open a list of the corresponding programs/lists.**

• Click **Edit pulse program** **to open the current program/list with an editor.**

• Hit the **Tab** key to jump to the next parameter field.

• Hit **Shift + Tab** to jump to the previous parameter field.

• Use the scroll bar at the right of the dialog box to move to parameters further up or down in the dialog box.
Parameter Handling

How to Undo the Last Acquisition Parameter Change

• Click Undo last acquisition parameter change.

How to Set Pulse Program Parameters

• Click Show pulse program parameters [ased].

The button will change to .

To make this the default setting:

• Click Setup Preferences | Acquisition, check Show ased parameter selection with eda and click Apply.

How to Display Acquisition Status Parameters

• Click Show acquisition status parameters.

Note that the command dpa opens the acquisition parameter editor and automatically shows the status parameters.

How to Get Probe/Solvent Dependent Parameters

• Click Set probe/solvent dependant parameters [getprosol].

Probe and solvent dependent parameters can be set up with the command edprosol.

How to Change Acquisition Data Dimensionality

• Click Change data dimensionality.

This changes the number of parameter columns and value of the acquisition parameter PAR-MODE.

How to Set Lock Parameters

• Enter the command edlock and set the lock parameters in the appearing dialog box.

For a detailed description of edlock, please

• refer to the Acquisition Reference manual

or

• enter edlock? on the command line.

How to Set Routing Parameters

• Enter the command edasp and set the routing parameters in the appearing dialog box.

For a detailed description of edasp, please

• refer to the Acquisition Reference manual

or

• enter edasp? on the command line.
6 Acquisition

This chapter describes TopSpin acquisition as far as the interface is concerned. Individual acquisition commands are described in the Acquisition Reference manual.

6.1 Acquisition Guide

If you are a new or occasional user, we recommend acquiring your data with the *NMR Data Acquisition Guide* flowchart. This will guide you through the typical sequence of acquisition steps. To start the *NMR Data Acquisition Guide*, enter `aqguide`.

In **Automatic mode**, the Acquisition Flowchart will simply execute each command when you click the respective button. This requires the acquisition parameters to be set correctly. In interactive mode (**Automatic mode** unchecked), the Acquisition Flowchart will, at each step, open a dialog box offering you the available options and required parameters. Note that the last button **To Processing** will open the processing equivalent of the Acquisition Flowchart, the Processing Guide [prguide].

6.2 Acquisition Setup and Toolbar Buttons

Acquisition can be prepared and controlled from the Manage menu.

- Click Manage | Spectrometer | Experiments/Parameters.
Here you find several categories of acquisition related commands. Each entry gives access to a submenu with various commands.

For most entries, the command line command, for example `expinstall`, is specified in brackets.

Common acquisition commands can also be started from the TopSpin toolbar. The toolbar displays the following buttons:

- Click one of the following buttons:
 - ![Play](image) Start the acquisition. Acquires NS scans in the current dataset, over writing possibly existing data. Equivalent to the command `zg`.
 - ![Stop](image) Halt the acquisition. This stops the acquisition after the current scan has finished. All data acquired so far are saved. Equivalent to the command `halt`.
 - ![Stop](image) Stop the acquisition. This stops the acquisition immediately. Data acquired after the last disk write (if any) are lost. Equivalent to the command `stop`.
 - ![FID](image) Open the online FID display window. Shows the currently acquired FID. Only works during acquisition. Equivalent to the command `acqu`.
 - ![Lock](image) Open the Lock display window. Shows the lock signal. Equivalent to the command `lockdisp`.
 - ![Clock](image) Calculate the experiment time. Shows the total experiment time and file size of the raw data. Equivalent to the command `expt`.
 - EVTU Control Suite [vtudisp].
 - BSMS Control Suite [bsmsdisp].
Set SFO1, O1, O2 and O3 interactively. Puts a red cursor line in the dataset window. A click at the desired frequency opens a dialog box where you can set O1, O2 and/or O3.

Set the sweep width to the current region and the spectrometer frequency to the center of the current region. Update the parameters SW and SFO1, respectively.

Setup a frequency list interactively.

6.3 Acquisition Status Bar

The acquisition can be followed and controlled from the acquisition status bar. Before you use the acquisition status bar, it must be configured from the Setup Preferences window.

- Click **Setup Preferences | More Preference | Status Bar Preferences | Change**.
- Check the items to be displayed.

To switch the acquisition status bar On or Off:

- Right-click in the status display bar at the bottom of the TopSpin window and in the list, select **Acquisition Status Bar On/Off**.
The Sample field iconifies the status of the sample:

Sample

- Sample is in the magnet.
- Sample ejected, no sample in magnet.
- Sample eject in progress, status unsure.

The acquisition status bar not only displays information, it also allows to perform various actions, e.g.:

- Double-click the **Time** field to view detailed time and date information.
- Double-click the **Lock** field to open the lock display.
- Click the **Spooler /queued /delayed /cron** field to open the spooler main window.
- Double-click on sample field to open BSMS control suite.
- Double-click on VTU opens the edte window.
- Right-click the **Fid Flash** field to switch on/off FID flashing or to stop the acquisition.
- For more information about peak power check (POWCHK) please look up the Acquisition Commands and Parameters manual, Chapter 3 - Spectrometer configuration commands. Within the command explanation of **cf** you will find the functionality of POWCHK.
- Right-click the Probe Temperature **VTU** field and in the list, select **Options**.

Options...

Toggle VTU state (on/off)

This will open the following window:
• Right click the Lock field to open the following list:
 - Lock Signal Display
 - BSMS Panel
 - Toggle Lock Display Mode
 - Lock Sample

• Right click the Spooler field to open the following list:
 - Hide
 - Suspend
 - Remove all jobs
 - Show spooler report
 - Show spooler log

• Right-click the Acquisition Information field to open the following popup menu:

From this list, you can start various acquisition commands as
• Show Acquisition Display
• Start RGA
• Start Acquisition
• Start Wobble
• Start GS
• Stop Acquisition

Data specific acquisition display allows you to open multiple acquisition display windows, one for each dataset.
Note that the **Acqu** tab is automatically activated when the acquisition is started from the TopSpin menu, toolbar or command line.
6.4 Command Queuing and Scheduling

TopSpin supports command queuing (spooling) and scheduling. Acquisition commands like \texttt{zg}, \texttt{go}, \texttt{rga} and \texttt{atma} are automatically queued, if this feature is On (default Off). This allows you, for example, to enter multiple \texttt{zg} commands on different datasets. Automatic queuing can be switched on as follows:

- Check \texttt{Setup Preferences | Processing Preferences | Enable automatic data processing}.

Processing commands can be queued with the command \texttt{qu}. For example, the command sequence \texttt{zg ; qu xfb} on a 2D dataset, will start an acquisition and, when this has finished, process the data.

Acquisition and processing commands can be scheduled with the command \texttt{at}. Enter \texttt{help qu} or \texttt{help at}, for more details on the respective commands.

Queued commands can be viewed in the Spooling field of the acquisition status bar. Note that the spooling field must be activated in the User Preferences window (command \texttt{set}).

6.5 Tuning and Matching the Probe

Tuning and matching of conventional probes, (non-ATM), is performed with the wobble procedure:

- Enter \texttt{wobb} on the command line.

or

- Click \texttt{Acquire | Tune | Display wobble curve (wobb)}.

The dataset window toolbar switches to the \texttt{Acqu} tab and the wobble window is displayed:

The buttons of the wobble toolbar have the following functions:

- \texttt{wbst}: Change the number of wobble steps.
- \texttt{wbsw}: Change the wobble sweep width.
Switch to the next channel/nucleus (if available) [.nuc].

Emergency Stop acquisition, fid not saved [stop].

Save wobb curve to disk [wbwr].

- Turn the tuning and matching knobs on the probe until the wobble curve is exactly in the middle and its minimum reaches the zero line.

Automatic tuning and matching of ATM probe can be performed with the command atma.

6.6 Locking

To open lock display
 - Click Acquire | Lock
 - or
 - enter lockdisp
 - or on the Acquisition Status bar, in the Lock field right-click and in the list, select Lock Signal Display
 - or
 - Double-click the lock field in the Acquisition Status bar.

Here, you can view the lock signal, either during the lock-in procedure or, as shown above, after lock-in has been successful. At the top of the lock window the following buttons are available:

- Open the Lock Display Preferences window [set].
Here colors and numbers of grid lines can be defined.

The Lock Display Toolbar Buttons:

- Toggle lock monitor mode.
- Lock current sample \([\text{lock}] \).
- Toggle display mode between single and dual color. Colors can be set in the Lock Display Preferences window.
- Toggle grid mode between both, vertical, horizontal, off, single.
- Detach lock window from main TopSpin window.
- Set focus on TopSpin main window.
- Close window.

Note that an external lock display window is independent from the TopSpin window. You can for example, minimize TopSpin while keeping the lock display open.

The lock process can be started by entering \textbf{lock} on the command line. This command is described in the Acquisition Commands and Parameters manual.

6.7 BSMS Control Panel

The BSMS control panel allows shimming, locking, sample handling and helium level measurement. To open this panel:

- Click \texttt{Acquire | Shim | Shim manually using BSMS panel (bsmsdisp)}

or

- Enter \texttt{bsmsdisp} on the command line
The individual function of the BSMS control panel are described in detail in the Acquisition Commands and Parameters manual.

6.8 Interactive Parameter Adjustment (GS)

Several parameters can be adjusted interactively, while observing the acquired FID. To start this:

- Click **Acquire | Run | Real-Time Go Setup**
- or
- Enter `gs`.

A split window displays the FID:
The GS parameter adjustment dialog

The buttons of the FID display are the same as for the acquisition command zg. The GS parameter adjustment dialog offers tabs at the top of the window to select power, frequency, delay etc. The selected parameter is shown in the middle of the window. The slider at the right of the window allows you to change the selected parameter. The current value can be viewed and modified in the field below the slider. The sensitivity of the slider can be set in the field Sensitivity above the slider.

The effect of the change can be viewed in the FID display, the right part of the window. This can be manipulated with the FID display buttons as described in the next chapter.

At the bottom of the window you find the following buttons:
- Save: Save the value of the current parameter.
- Save all: Save the values of all changed parameters.
- Restore: Restore the value of the current parameter.
- Restore all: Restore the value of all changed parameters.
- Stop: Stop the acquisition and quit the GS window.

6.9 Running an Acquisition

A typical acquisition is performed as follows:

- Click File| New [new, Ctrl+n] to create a new dataset.
- Specify the data path variables name, expno, dir and user, select the desired Solvent and Experiment, enter the Title and click OK.

The dataset will appear in the data field with no raw and no processed data available.

- Click the AcquPars tab to display the acquisition parameters.
- Optionally: click to show the pulse program parameters only.
- Click the button to read the prosol parameters or set the relevant parameters manually.
• As an alternative, you can set the acquisition parameters interactively in the GS window (see Interactive Parameter Adjustment (GS) \[81 \]).

• To start the acquisition, click in the upper toolbar or enter zg on the command line.

The dataset window toolbar will automatically switch to the Acqu tab and the FID display window will appear.

For further explanations or for a description of the toolbar buttons enter

• help zg

or

• Click Help | Manuals | Acquisition & Processing Parameters | Acqu. Commands and Parameters and read the chapter Acquisition Commands.

When the acquisition has finished:

• Enter efp to process the FID.

The processed spectrum will be displayed in the dataset.

From here, the processed data can be analyzed, printed and/or archived.

6.10 Shape Tool

The Shape tool interface allows to create/manipulate RF shapes and wave format.

To start the Shape Tool interface:

• Click Manage | Spectrometer | Experiment/Parameters | Shape Tool

or

• Enter stdisp on the command line.
The Shape Tool window will be displayed:

This consists of a toolbar, a command line and a split pane with a data section at the right and a parameter section at the left.

If Shape Tool is opened with a dataset the current dataset will be displayed.
By default, a 1000-point Gauss shape is displayed with Truncation level 1.0.

Note that all functions of the interactive Shape Tool can also be performed non-interactively with the TopSpin command st. This command must be entered with the appropriate arguments on the command line while the associated dataset is displayed and selected.

A full description of the interactive and non-interactive Shape tool can be found under:

- Click Help | Manuals | Acquisition Application Manuals | Shapetool
7 Data Processing

7.1 Interactive Processing

Interactive processing allows full control over the processing sequence. However, it requires detailed knowledge about the required parameters (see chapter \textit{Startup TopSpin} [31]) and commands. Therefore, it is only suitable for the advanced user. New or intermediate users are recommended to use the Processing Guide for semi-automatic processing.

How to Process Data with Single Commands

Data can be processed by entering single commands on the command line. A typical 1D processing sequence would be:

- \textbf{em}: exponential window multiplication.
- \textbf{ft}: Fourier transform.
- \textbf{apk}: automatic phase correction.
- \textbf{sref}: automatic calibration (referencing).
- \textbf{abs}: automatic baseline correction.

This allows full control over each individual processing step.

How to Process Data with Composite Commands

Data can also be processed with so called composite commands. These are combinations of single processing commands. The following composite commands are available.

- \textbf{ef}: Exponential multiplication + Fourier transform.
- \textbf{efp}: Exponential multiplication + Fourier transform + phase correction.
- \textbf{fmc}: Fourier transform + magnitude calculation.
- \textbf{fp}: Fourier transform + phase correction.
- \textbf{gf}: Gaussian multiplication + Fourier transform.
- \textbf{gfp}: Gaussian multiplication + Fourier transform + phase correction.

They can be entered on the command line or clicked from the menu. For the latter option:

- Click \textbf{Process | Advanced | Special Transforms}
Just like single commands, composite commands can be used in Macros, AU programs and Python programs.

7.2 Semi-automatic Processing

How to Use the 1D Processing Dialog

1D data processing often involves the same sequence of steps, which can easily be performed as follows:

- Click **Process | Proc Spectrum | Configure Standard Processing** or enter **proc1d**.

In the appearing dialog (see the figure below):

- Enable the desired processing/plotting steps.
- Set the parameter LB for exponential multiplication.
- Select the desired LAYOUT for plotting.
- Click **OK**.

![Proc1d dialog]

How to Use the Processing Guide in Automatic mode

The Processing Guide in automatic mode guides you through the entire processing sequence of data selection, processing, printing and archiving with minimum user interaction.

- Enter **prguide**.

The Processing Guide window will appear as an integral part of the current dataset window.
In the Processing Guide window:

- Check **Automatic mode** on the upper right part of the window to perform complete automatic processing.
- Click **Open Data Set** and click **OK** to open a dataset manually, e.g. from the browser or click **Browse** to open the File Chooser.
- Click **Window function | Fourier Transform | etc.**

Each processing step will be executed without user interaction.

How to Use the Processing Guide in Interactive mode

The Processing Guide in interactive mode guides you through the entire processing sequence of data selection, processing, printing and archiving requiring some user interaction.

- Enter **prguide**.

The Processing Guide window will appear as an integral part of the current dataset window.

In the Processing Guide window:

- Uncheck **Automatic mode**.
- Click **Open Data Set** and click **OK** to open a dataset manually, e.g. from the browser or click **Browse** to open the File Chooser.
- Click **Window function | Fourier Transform | etc.**

For each step a dialog box will appear where you can enter options, parameters etc. For details on these items, please refer to the corresponding commands in the Processing Reference Guide.
7.3 Processing Data with AU programs

Data processing can be performed by using AU programs. An AU program is actually a C-program which contains TopSpin commands (macros) and/or C-language statements. Various standard AU programs are delivered with TopSpin. A typical 1D processing AU program is proc1d. A simplified version of this AU program is:

EF
APK
SREF
ABS
AUTOPLOT
QUIT

It executes the commands ef, apk, sref, abs and autoplot. To run this AU program, just enter proc_1d on the command line. Before you can use any Bruker AU program, expinstall must have been executed once. You can create your own AU programs with the command edau. Note that an AU program must end with QUIT or QUITMSG("your message"), and that all statements must be specified in capital letters. For more information on AU programs, please refer to the AU programming manual:

Click Help | Manuals | Programming Manuals | AU Programming

As an alternative to AU programs, you can also write Python programs, which allow you to use TopSpin commands, User Interface functions and Graphic functions. For more information:

Click Help | Manuals | Programming Manuals | Python Programming

7.4 Serial Processing

TopSpin allows you to process a series of datasets using serial scripts. The dataset list and command(s) to be used can be easily setup from the TopSpin interface as follows. Enter serial on the command line or click Process | Advanced | Process Dataset List.

This will open the Serial Processing flow bar:

- Click Define List | Edit Dataset List

 This opens a text file for editing and search datasets.

 or

- Click Define List | Build dataset list using Find

 You can find datasets in all data directories marked in the appearing dialog window list:
Search result example:

- Right-click a dataset for more options.

- In the Serial Processing flow bar click Define Command.
- As indicated above, several commands can be entered separated by semicolon. Also, macros, python scripts, and AU programs can be selected.

- In the Serial Processing flow bar click **Execute** or click the down arrow and select **Execute in background**.

- In the Serial Processing flow bar click **Back**.
8 1D Display

8.1 Displaying one Dataset in Multiple Windows

TopSpin allows to display one dataset in multiple dataset windows. This is, for example, convenient to view various regions or various objects (spectrum, fid, parameters etc.) of the same dataset.

How to Reopen a Dataset in a Second/Third etc. Window

- Select (activate) the desired dataset.
- Click File | Reopen [reopen].

Multiple dataset windows with the same dataset are indicated with a number in square brackets, e.g. [1], in the title bar:

How to Rescale or Shift one Dataset in Multiple windows

Display buttons like and only work on the active dataset window. The same counts for the keys Alt+ PageUP and Alt+ PageDown. However, when used with the control key, they work on all windows, for example:

- Enter Ctrl+ Shift+ PageUp or Ctrl+Alt+PageDown.

8.2 Changing the Display of a 1D Spectrum or FID

TopSpin offers buttons to scale or shift the spectrum vertically and horizontally.

How to Change the Vertical Scaling of the FID or Spectrum

- Turn the mouse wheel while the cursor is in the dataset window.
1D Display

- Hit one of the following the keys:

 Alt+ PageUp: Increase the intensity by a factor of 2.

 Alt+ PageDown: Decrease the intensity by a factor of 2.

 Alt + Enter: Reset the intensity.

 or

 - Click one of the following buttons:

 *2 Increase the intensity by a factor of 2 [*2].

 /2 Decrease the intensity by a factor of 2 [/2].

 \Click and move the mouse for smooth vertical scaling.

 /\Reset the intensity [.vr].

Alternatively, you can enter the corresponding commands as specified between square brackets [].

To manipulate all dataset windows, press the **Ctrl** key while clicking one of the above buttons.

How to Change the Horizontal Scaling of the FID or Spectrum

- Click and move the mouse for smooth horizontal scaling.

 or

 - Click one of the following buttons:

 +\ Zoom in to the center (spectrum) or left edge (FID) of the displayed region, increasing the horizontal scaling [zl].

 -\ Zoom out from the center (spectrum) or left edge (FID) of the displayed region, decreasing horizontal scaling) [zo].

 \E\ Perform an exact zoom via a dialog box [zx].

Enter the coordinates of the desired region in the dialog box:

- Click **OK**
- Click one of the buttons:

 \ Undo last zoom [zl].
Reset horizontal scaling to show the full spectrum [.hr].

Display the entire spectrum (baseline position and intensity scaling are adjusted if necessary) [.all].

Toggle interactive zoom mode. When switched off, interactive zooming only selects an horizontal region; baseline position and intensity scaling remain the same. When switched on, interactive zooming draws a box selecting the corresponding area.

Retain horizontal and vertical scaling when modifying dataset or changing to different dataset [.keep]. Effects all dataset windows.

Alternatively, you can enter the corresponding commands as specified between square brackets [].

How to Shift a Spectral Region to the Left or to the Right

- Click-hold the following button and move the mouse:
 - Smoothly shift to left or right.

 or

- Click one of the following buttons:
 - Shift to the left, half of the displayed region [.sl].
 - Shift to the right, half of the displayed region [.sr].
 - Shift to the extreme left edge of the spectrum [.sl0].
 - Shift to the extreme right edge of the spectrum [.sr0].

Alternatively, you can enter the corresponding commands as specified between square brackets [].

This functionality also becomes available when you move the mouse cursor into the horizontal axis area.

How to Shift the Spectrum Up or Down

To shift the FID or spectrum display up or down:

- Click-hold the button and move the mouse:
 - Smoothly shift the spectrum baseline up/down.

 or

- Click one of the following buttons:
 - Shift the spectrum baseline to the middle of the data field [.su].
 - Shift the spectrum baseline to the bottom of the data field [.sd].

Alternatively, you can enter the corresponding commands as specified between square brackets [].

This functionality also becomes available when you move the mouse cursor into the vertical axis area.
8.3 Using the Tab Bar

Tabs of the dataset window can be activated by clicking them or by entering the corresponding commands, as specified between square brackets, on the command line. Note that command line commands always work on the currently selected (active) dataset window.

The Tab bar can be configured from the User Preference box (command set).

How to Display the Spectrum

- Click the Spectrum tab [spec].

This displays the processed data. If these do not exist, the text No processed data available is displayed.

How to Set Processing Parameters

- Click the ProcPars tab [edp].

This opens the processing parameter editor (see also chapter Startup TopSpin [p 31]).

- Click one of the following buttons:
 - Undo last value change. Can be used to undo multiple changes.
 - Toggle status parameters view. The button turns gray when activated [dpp].
 - Switch to Maxent parameters.
 - Show eretic parameters.
 - Collapse/expand all parameter sections.
1D Display

Search for specified parameter.

Changed parameters are automatically saved.

How to Set Acquisition Parameters

- Click the AcquPars tab [eda].

This opens the acquisition parameter editor (see also chapter Startup TopSpin [p. 31]).

- Click one of the following buttons:

 🔄 Undo last value change. Can be used to undo multiple changes.

 🔖 Show pulse program parameters [ased].

 🍀 Status parameter display. The button turns gray when activated [dpa].

 🎨 Set probe/solvent dependent parameters [getprosol].

 🎨 Set nuclei and routing [edasp]

 🎨 Set nuclei and routing [edasp -s]

 🎨 Change raw dataset dimensionality (parameter PARMODE).

 🍀 Collapse/expand all parameter sections.

 📏 Read shim values from current dataset.

 🕵️ Search for specified parameter.

Changed parameters are automatically saved.
1D Display

Note that the ... and E button to the right of the PULPROG parameter allow to display the pulse program list or edit the current pulse program, respectively.

How to Edit the Title

• Click the Title tab [edi].

• Edit the title that appears in the dataset window and on the plot.

 ![Save the title file under its current name.](image)
 ![Save the title file under a new name.](image)
 ![Reload the title file. Undo modifications since the last save.](image)
 ![Open the title file with the external editor (defined in User Preferences).](image)

How to Edit the Pulse Program

• Click the PulsProg tab].

This allows to edit the current pulse program.

• Click one of the following buttons:

 S Toggle status pulse program.

 Start the graphical pulse program display with foreground parameters.

 Start the graphical pulse program display with status parameters.
How to Display the Peak list

- Click the Peaks tab.

This displays the peak list. By default, the peak list shows the following entries:

Peak: the peak number.

$v(F_1)$ [ppm]: the chemical shift.

Intensity [abs]: the absolute peak intensity.

Intensity [rel]: the relative peak intensity.

Half width [ppm]: the peak width at half-height.

Display the spectral region around a peak

- Right-click the desired peak and in the list, select one of the following options:
 - **Show spectrum | In correlated window** to open a new dataset window showing the full correlated spectrum.
 - **Expand spectrum | In current window** to change the current dataset window to spectrum display, showing the region around the selected peak.
 - **Expand spectrum | In correlated window** to open a new dataset window showing the region around the selected peak.
 - **Edit Annotation** Edit the annotation of the current peak.
 - **Define as reference | Complete table** Define the entire peak table as a reference for annotation.
 - **Define as reference | Selection** Define the selected peaks as a reference for annotation.
 - **Annotate by reference...** Create annotations according to the peak list of the reference dataset. You will be prompted for the allowed variation in chemical shift.
 - **Shift peaks...** Shift all peaks. You will be prompted for the number of ppm to be shifted.
 - **Show detailed information** Show peak information, dataset information and peak picking parameters.
Export entries of the peak list

Entries of the peak list can easily be exported to Excel or any other program as follows:

- For multiple peaks select the desired entries while pressing the Ctrl or Shift key.
- Right-click a peak entry to open the popup menu.
- Click Export... to export the selected peaks.

This opens a dialog box where you can specify the filename and file type.

- For the latter select from:
 - Auremol peaklist (.ml).
 - Comma Separated Values (.cvs).
 - Mixed Shape deconvolution peak list (peaklist).
 - TOPSPIN peak list (.xml).
 - XEASY peak list (.peaks).
 - XWIN-NMR peak list (.txt).

Important: Check the box in the lower-left corner to export the selected peaks only or uncheck it to export the entire list. Then click Export.

Delete/remove peaks from the peak list

To delete one peak:

- Right-click the peak and in the list, select Delete.

To delete multiple peaks:

- Select the peaks while pressing the Ctrl or Shift key.
- Right-click one of the peaks and in the list, select Delete.

To remove possible duplicate peaks:

- Right-click any entry and select Remove | Duplicate peaks.
To remove possible peaks outside of the spectrum:
• Right-click any entry and select **Remove | Peaks positioned outside of the spectrum.**

To remove solvent peaks:
• Right-click any entry and select **Remove | Solvent Peaks.**

Copy the peak list
Instead of exporting entries of the peak list, they can also be copied to the Clipboard and pasted to another application like Excel.
For multiple peaks:
• Select the desired entries while pressing the **Ctrl** or **Shift** key.
• Right-click a peak entry to open the popup menu.
• Click **Copy...** to copy the selected peaks to the Clipboard.

Print the peak list
• Right-click a peak entry and select **Print...**
or
• Enter **print** on the command line.
or
• Press **Ctrl-p.**

All actions will print the entire peak list.

To preview a print:
Right-click a peak entry and select **Print preview...**

Import a Peak List
To import a peak list from a different dataset or program
• Right-click an entry and in the list, select **Import...**
• In the appearing dialog box, navigate to the directory where the list resides and select one of the file types:
 – Auremol peaklist (.ml).
 – MULABEL peak list (labels).
 – TOPSPIN peak list (.xml).
 – XEASY peak list (.peaks).
 – XWIN-NMR peak list (.txt).

Peak lists can be imported from a different dataset or even different program or from a previously exported list from the current dataset.
Note that peak picking commands store the peak list in the processed data directory under the name **peak.xml** (TopSpin 2.1 or newer) or **peak.txt** (XWIN-NMR and TopSpin 2.0 or older).

Shortcuts
• Double-click a peak: zoom into spectrum, i.e. show region around that peak.
1D Display

- **Enter** key: zoom into spectrum, i.e. show region around selected peak(s).
- **Delete** key: delete the selected peak(s) from the peak list.
- **Ctrl+** c: copy selected peaks to the Clipboard.
- **Ctrl+** a: select all peaks.
- **Home**: select the first peak.
- **End**: select the last peak.
- **Shift+** Home: select current and first peak and all in between.
- **Shift+** End: select current and last peak and all in between.

Note that these keys only work when the cursor focus is in the dataset window.

Table properties

Various properties of the peak table can be configured.
- Right-click an entry and in the list, select **Table properties**...

The Table properties window provides 4 tabs:

1. **Column**: Select the columns to be displayed, set the column width and the number of fraction digits. Furthermore, you can switch on/off scientific notation of values for each column individually.
2. **Colors**: Set various colors of the table.
3. **Spacings**: Set various spacings of the table.
4. **Miscellaneous**: Set grid, printer and font style settings.
When you move the cursor over the peak list, the active peak will, by default, be highlighted in blue (see peak 3 in the figure below). If the correlated spectrum is also displayed, a vertical line moves along, showing corresponding position in the spectrum.

As soon as you click a peak, it is selected and, by default, displayed in red (see figure below). Note that this peak remains selected, i.e. is used by Enter and Delete, until a different peak is selected.
To extend the peak list, for example with Regions, Type and Index entries, right-click any part of the header bar.

To sort the peaks according to peak number, ppm value or intensity, click the header of the respective entry.

Peaks are only available if peak picking has been done (command \texttt{pp}). The peak list can be printed with \texttt{print [Ctrl + p]}. List items can be selected with the mouse, copied with \texttt{Ctrl + c} and pasted to other applications, e.g. a text editor.

How to Display the Integral list

- Click the Integrals tab [li, lipp, lippf].

This displays the integral list (upper part of figure). By default, this shows the following items:

- **Object**: the integral number.
- **Integral [abs]**: the absolute integral value.
- **Integral [rel]**: the relative integral value.
- **Peaks**: the number of peaks within the integral range.
- **Range (F1) from**: the left edge of the integral range.
- **Range (F1) to**: the right edge of the integral range.

Please note the difference between the following items:

1. **Selected integral**: the entry that has been clicked last (Integral 3 in the figure above). If you right-click an entry, it is selected, and you can execute one of the commands from the popup menu (see figure below). The keys \texttt{Enter} and \texttt{Delete} work on the selected entry.

2. **Active integral**: the entry on which the cursor resides (Integral 1 in the figure above). The active integral is also marked in the correlated spectrum by a black vertical line (see lower part of the figure above and description below). When you move the cursor over the integral list, the vertical line in the correlated spectrum moves along with it and vice versa.

Note that the colors of the selected and active integral can be set in the table properties (see below).
Display the spectral region around an integral

To display the spectral region around a particular integral:

- Right-click the desired integral and in the list, select one of from the following options:
 - **Show spectrum** | In correlated spectrum to open a new dataset window showing the full correlated spectrum.
 - **Expand spectrum** | In current window to change the current dataset window to spectrum display, showing the region around the selected integral.
 - **Expand spectrum** | In correlated window to open a new dataset window showing the region around the selected integral (lower part of the figure above).

Note that clicking the marked entry in the right-click popup menu is equivalent to pressing the **Enter** key.

Export/Import Entries of the Integral List

Entries of the integral list can easily be exported to Excel or any other program as follows:

- For multiple integrals select the desired entries while pressing the **Ctrl** or **Shift** key.
- Right-click an entry and in the list, select one of from the following options (see the figure above):
 - **Copy** Copy the selected integral(s) entry to the Clipboard. Equivalent to clicking **Edit | Copy** or hitting **Ctrl+c**. Copied integrals can easily be pasted in any other application such as Excel.
 - **Export...** Export selected integrals. Check the box in the lower-left corner to export the selected integrals only or uncheck it to export the entire list. Then click **Export**.

Calibrate Integrals to Compare Spectra

Integrals from the current and other spectra can be calibrated with respect to a reference integral.

- Right-click the reference integral and in the list, select **Define as reference**. This will determine the calibration constant.
- Right-click any integral and select **Calibrate by reference**. This will divide all integrals by the calibration constant, setting the reference integral to 1.0.

Now read any other spectrum and calibrate its integrals with respect to the reference integral defined above:

- Read the spectrum.
- Enter **int** to define the integral ranges (if this has not been done yet).
• Click the Integrals tab.
• Right-click any integral in the list and select Calibrate by reference.

Note that the calibration constant is lost when TopSpin is restarted.

Display the integral list with peaks

The integral list in the figure above shows only integrals. However, if peak picking has been done, the integral list also shows the peaks within each integral range:

Note that the integral entries can be collapsed, (hiding the peaks) or expanded (showing the peaks). As soon as one or more integrals entries are expanded, two extra columns appear showing:

\(v(F1) \) [ppm]: the chemical shift of the peak.

Intensity: the peak intensity

Depending on whether integrals are expanded, the right-click list contains the following extra items:

1. Expand: Expand the current integral showing all peaks within it.
2. Expand all: Expand all integrals showing all peaks within them.
3. Collapse all: Collapse all integrals hiding all peaks within them.

In addition to the integral entry, an individual peak within an integral can be activated (by placing the cursor on it) or selected (by clicking it). In the figure above, peak 7 is selected and the correlated spectrum is displayed. Peak 5 is active which is also shown by the vertical line in the correlated spectrum.

Delete an Integral from the Integral List

To delete one integral:

• Right-click the integral and in the list, select Delete.

To delete multiple integrals:
1D Display

- Select the integrals while pressing the **Ctrl** or **Shift** key.
- Right-click one of the integrals and choose **Delete** from the popup menu.

Note that these keys only work when the cursor focus is in the dataset window.

Table properties

Various properties of the integral table can be configured. To do that:

- Right-click an entry to open the popup menu (see figure below).
- Click **Table properties**...

In the appearing dialog box, with 4 tabs:

1. **Column**: Select the columns to be displayed. Set the column width and the number of fraction digits. Furthermore, you can switch on/off scientific notation of values for each individual column.
2. **Colors**: Set various colors of the table.
3. **Spacings**: Set various spacings of the table.
4. **Miscellaneous**: Set grid, printer and font style settings.

![Table properties dialog box](image)

Shortcuts

The following shortcuts are available:

- **Enter** key: zoom into spectrum, i.e. show region around selected integral(s).
- **Delete** key: delete the selected integral(s) from the integral list.
- **Ctrl+c**: copy selected integrals to the Clipboard.
- **Ctrl+a**: select all integrals.
- **Home**: select the first integral.
- **End**: select the last integral.
- **Shift+ Home**: select current and first integral and all in between.
- **Shift+ End**: select current and last integral and all in between.
Double-clicking an integral will show the peaks within the integral region if they exist. If they do not exist, it will zoom into the spectrum showing the integral region.

Note that these keys only work when the cursor focus is in the dataset window.

How to view Sample Information

- Click the Sample tab [edsam].

This table can be used to fill out any sample information you want to store with the dataset. The table can easily be modified or extended with the following functions:
- To select an item: double-click it!
- Click one of the following buttons:
 - Save the sample information table with the dataset.
 - Save the sample information table as default.
 - Reload the original table discarding any changes.
 - Add a new item to the table. You will be prompted for an identification name and the desired number of lines.
 - Remove the selected item from the table.
 - Move the selected item one place up in the table.
 - Move the selected item one place down in the table.

How to Display the FID

- Click the Fid tab [fid].
Displays the raw data. If these do not exist, the text *No raw data available* is displayed.

- Click one of the following buttons:

 - Show FID in shuffled mode.
 - Show FID in unshuffled mode.

If you open a new dataset, the **Spectrum** tab is activated, no matter which tab was selected before. If you enter any interactive mode, for example phase correction mode, the Tab bar is replaced by a toolbar for that mode.

8.3.1 2D Molecule Structure Editor

The new 2D molecule structure editor is integrated into the Structure tab of the TopSpin spectrum window.

The user interface of the editor consists of several main parts:

1. The top horizontal quick access toolbar contains buttons to activate the main features of the editor like drawing structures, selection and rotation capabilities, undo/redo support, file features, editing of the structure properties etc.
2. Other toolbars allow selection of an element from the periodic table of elements to be used in a drawing. The user may also use a template to draw the structure more quickly.
3. The drawing area: Used to draw and visualize the structure.
4. The popup menu: Provides access to the same features as the toolbar in an alternative way.
5. The status bar: Displays the full path and file name of the opened file.
6. The user interface was designed to follow these criteria:
 - State of the art UI.
 - Simplified use, one click adds an atom (defined bond angle and length).
 - Smart utilization of Drag & Drop.
The editor is like other chemical structure drawing programs, but a brief description of the key buttons is included here.

- Click one of the following buttons:
 - Used to activate selection mode where object can be selected and moved.
 - Used to control the zoom level.
 - Used to scale the structure to its actual size.
 - Activates the drawing mode for normal bonds or chains.
 - Activates erase mode and deletes all touched bonds or atoms (highlighted in red before deleting).
 - Deletes the selection.
 - Used for stereo bond definition (note that at this time CMC-se ignores the stereo chemistry).
 - Used to undo the last step.
 - Simple ring templates.
 - Used to save or open a user defined template.
 - Used to open a structure or save changes.
 - Used to copy and paste a selection.
 - Used to rotate or flip structures.
 - Used to clean a structure.
- Use to add an atom.

- Used to add a pseudo atom.

- Used to open the periodic table to select additional elements. Refer to the CMC-se User Manual for a list of the atoms that are supported in CMC-se.

8.4 1D Display Options

How to Toggle between Hertz and ppm Axis Units

- Click **Spectrum display properties** and in the popup window toggle h/z.

 ![Spectrum display properties](image)

 * or *

 - Move the cursor to the unit info. The cursor changes to an arrow pointing to the right.

 ![Cursor change](image)

 * or *

 - Right-click and in the popup window, click **Toggle Units** or enter .hz.
The display will change from ppm to Hz axis units $[\text{Hz}]$.

How to Switch on/off the Spectrum Overview display

- Right-click in the dataset window and in the list, select **Toggle Spectrum Overview** or enter **.ov**.

The spectrum overview shows the entire spectrum at the top of the dataset window. It is useful when only a certain region of the spectrum is displayed. In the overview, the displayed region is marked as a gray area. The default color is gray, it can be set in **Preferences | More Preferences | Spectra Display Preferences | Change | Color of zoom area**.

To shift the displayed region,

- simply click-hold the gray area in the overview spectrum and move the mouse (see figure below).

How to Toggle the Y-axis Display

- Move the cursor to the unit info.
- Right-click and in the popup window, select **Toggle Y-Axis** or enter **.y**.
The following figure shows a dataset window with the spectrum overview on, ppm axis units, and relative [cm] Y-axis display.

8.5 Spectra Display Preferences

- Right-click inside the dataset window. In the list, select Spectra Display Preferences or enter .dopt.
Check or uncheck the spectrum components and click Apply to be displayed in the dataset window.

- To display the cursor information check Cursor information.
- To display the title check Title.
- To display the main status parameters, check Status parameters. These are the status parameters that also appear on the plot.
- To display the integral trails/labels on the spectrum check Integrals and, if desired, Integral labels. If no integrals appear, the integral regions have not been determined yet. This can be done with the int command.
- To display the peak labels, check Peak labels. Peak annotations appear, on peaks for which annotations have been defined, instead of regular peak labels showing chemical shift values. If no peak labels or annotations appear, peak picking has not been done yet. This can be done with the pp command.
- To display the peak annotations, check Peak Annotations. Peak annotations appear, on peaks for which annotations have been defined, instead of regular peak labels showing chemical shift values. If no peak labels or annotations appear, peak picking has not been done yet. This can be done with the pp command.
- To display the multiplets check Multiplets.
- To display the data points, check Show data points. Expand the spectral region where you want to see individual points.
- To display the electronic signature, check Electronic Signature. The electronic signature, entered with esign, will appear below the title.
- To display the molecular structure, check Molecular structure.
- To display the vertical axis on the left side of the dataset window check Vertical axis on the left side.

Note that the Spectra Display Preferences dialog can also be opened in Setup Preferences.

How to Display the Main Dataset Properties

- Right-click inside the dataset window and select Dataset Properties.
The Properties window is displayed:

Note: this status information cannot be modified.

How to Display a List of Files of a Dataset

- Right-click inside the dataset window and in the list, select Files.

The following figure displays the file list when the Fid tab is active, i.e. when the raw data are displayed. It is the contents of the expno directory.

The next figure shows the file list that appears when the Spectrum tab is active, i.e. when the processed data are displayed. It is the contents of the procno directory.
The contents of any file in the list can be displayed as follows:
- Select a filename (it will be highlighted).
- Click Open.

Note: this is provided for ascii files, e.g. `acqu*`, `proc*` or files with the extension `.txt`.

Dataset files can also be displayed/opened with the command `expl`. This opens the Windows Explorer, or under Linux, the Konqueror or Mozilla, showing the contents of the `procno` directory.

8.6 Saving Display Region

The currently displayed spectral region can be stored as follows:
- Right-click in the dataset window and select **Save Display Region To...**

This will open the following dialog:

Here the following options are available:
Parameters F1/2 [dpl] to save the displayed region for restoring the display later. The region is stored in the parameters F1P and F2P.

To restore the saved region,

• Right-click in the dataset window and select Restore Display Region from Params F1/2

• Click

Parameters ABSF1/2 to save the displayed region for baseline correction (command absf) or phase correction (command apkf). The region is stored in the processing parameters ABSF1 and ABSF2.

Parameters STSR/STSI to save the displayed region for Strip FT (commands like ft and trf). The region is stored in the processing parameters STSR and STSI.

Parameters NOISF1/2 to save the displayed region as the signal region for Signal to Noise calculation (command sino). The region is stored in the processing parameters SIGF1 and SIGF2.

Parameters SIGF1/2 to save the displayed region as the noise region for Signal to Noise calculation (command sino). The region is stored in the processing parameters NOISF1 and NOISF2.

A text file for use with other programs to save the displayed region in a text file. This file can be viewed with any editor or used by external programs.

8.7 Synchronize Visible Region of all Dataset Windows

The visible region of all dataset windows can be synchronized as follows.

• Zoom in or out one dataset and then click or enter .sync.
9 2D Display

9.1 The 2D Dataset Window

The following figure provides a dataset with a 2D spectrum.

9.2 Changing the Display of a 2D Spectrum

TopSpin offers various buttons to scale or shift a 2D spectrum both vertically and horizontally.

How to Change the Intensity Scaling (contour levels)

- Click Edit contour levels to change the intensity scaling (contour levels) [edlev].
or

• Hit one of the keys:

 Alt + PageUp: Increase the intensity by a factor of 2.
 Alt + PageDown: Decrease the intensity by a factor of 2.
 Alt + Enter: Reset the intensity.

or

• Click one of the following buttons:

 *2 Increase the intensity (decrease the levels) by 2 [*2].
 /2 Decrease the intensity (increase the levels) by 2 [/2].
 ▼ Reset the intensity to the last saved intensity (contour levels) [vr].

Alternatively, you can enter the corresponding commands as specified between square brackets [].
To manipulate all dataset windows, press the Ctrl key while clicking one of the above buttons.

How to Smoothly Change the Vertical Scaling (contour levels)

To change levels, multiplying all levels with the same factor:

• Click-hold the ▲ button and move the mouse.

or

• Turn the mouse wheel while the cursor is in the dataset window.
To change the level distance (increment), leaving the base level the same:

- Click-hold the **button and move the mouse.

How to Display a Contour Levels Bar in the Dataset Window

- Right-click in the dataset window and in the list, select *Spectra Display Preferences*. [.dopt]
- In the group **Contour display** check **Contour Levels Bar** and click **Apply**.

How to Switch on/off Square 2D layout

- Right-click inside the dataset window field and in the list, select *Square Layout On/Off*.

The F2 scaling will be adjusted to reach a square display.

How to Zoom a 2D Spectrum In/Out

- Click one of the following buttons:
 - ![Zoom in to the center (spectrum) or left edge (FID) of the displayed region, increasing the horizontal scaling](.zi).
 - ![Zoom out from the center (spectrum) or left edge (FID) of the displayed region, decreasing horizontal scaling](.zo).
 - ![Perform an exact zoom via a dialog box](.zx).
- Enter the coordinates of the desired region in the dialog box.
- Click **OK**

![exactzoom](Please enter the exact coordinates of the desired expansion.)

- Click one of the following buttons:
 - ![Undo last zoom](.zl).
 - ![Show full spectral width in F2](.f2r).
 - ![Show full spectral width in F1](.f1r).
 - ![Show full spectrum](.all).
Retain horizontal and vertical scaling when modifying dataset or changing to different dataset. Effects all dataset windows \[.keep\].

Alternatively, you can enter the corresponding commands as specified between square brackets \[..\].

How to Shift a Spectral Region in the F2 direction (left/right)

- Click one of the following buttons:
 - Shift to the left, half of the displayed region \[.sl\].
 - Shift to the right, half of the displayed region \[.sr\].

or

- Click-hold the button and move the mouse to smoothly shift in any direction.

Alternatively, you can enter the corresponding commands as specified between square brackets \[..\].

How to Shift a Spectral Region in the F1 direction (up/down)

- Click one of the following buttons:
 - Shift the spectrum baseline to the middle of the data field \[.su\].
 - Shift the spectrum baseline to the bottom of the data field \[.sd\].

or

- Click-hold and smoothly shift the mouse up/down and left/right.

Alternatively, you can enter the corresponding commands as specified between square brackets \[..\].

9.3 Show Spectra Display Preferences/Regions/Files

- Right-click in the dataset window and in the list, select Spectra Display Preferences.
Here you can set various display options including parameters, integrals, peaks, contours, projections and electronic signature. The number of displayed digits for the integral and peak labels can also be set in the group Peaks/Integrals.

9.4 Using the Tab Bar

The 2D dataset window is a tabbed pane. This means its content depends on the currently active tab in the Tab bar. The individual tabs are basically the same as for 1D display (see chapter How to Expand a Spectral Region). There are, however, some differences, which are discussed below.

How to Set Processing Parameters

- Click the ProcPars tab [edp].

The 2D processing parameter editor contains a column for each of the two dimensions F2 and F1. Note that not all parameters exist in both dimensions.
How to Set Acquisition Parameters

- Click the AcquPars tab [eda].

The 2D acquisition parameter editor contains a column for each of the two dimensions F2 and F1. Note that not all parameters exist in both dimensions.

How to Display the Peak list

- Click the Peaks tab.
This displays list of peaks if these have been calculated (command `pp`). The list is basically the same as for 1D spectra. The only difference is that there are two columns for the two directions:

- \(v(F2) \) [ppm]: the chemical shift in the F2 direction.
- \(v(F1) \) [ppm]: the chemical shift in the F1 direction.

To specify or edit an annotation, click inside the **Annotation** field and enter a character string. The peak annotations are shown in the correlated spectrum:

How to Display the Integral list
- Click the **Integrals** tab.
This displays the list of integrals if these have been calculated (command int). The list is basically the same as for 1D spectra. The only difference is that, when peaks are shown, there are two columns for the chemical shift:

\(v(F2) \) [ppm]: the chemical shift in the F2 direction.

\(v(F1) \) [ppm]: the chemical shift in the F1 direction.

Furthermore, a stored or exported 2D integral list can be imported as follows:

- Right-click an entry and in the list, select Import...
- In the appearing dialog box, navigate to the directory where the list resides and select the integral list.

As such you can import an integral list from a different dataset or a previously exported list from the current dataset. Note that integration commands store the integral list in the processed data directory under the name integrals.txt. Exported integrals are stored in the files <name>.txt and <name>.reg, where <name> is the name specified by the user.

How to Display the FID

- Click the Fid tab [fid].

2D raw data consist of a series of FIDs which are displayed in a row. Individual FIDs can be displayed by zooming in. To do that, click repeatedly. Now you can shift and zoom in/out the data to display different FIDs.
9.5 2D Display Options

How to Switch between Hertz and ppm Axis Units in F2 and F1

• Click [Spectrum display properties] and in the popup window toggle [Hz].

or

• Move the cursor to the unit info. The cursor changes to an arrow pointing to the right.
• Right-click and in the popup window, click [Toggle Units] or enter .hz.

The display will change from ppm to Hz axis units [Hz].

How to Switch On/Off the Spectrum Overview Display

• Right-click in the dataset window and select [Toggle Spectrum Overview] or enter .ov.

With the spectrum overview on, the dataset window will, for example, look like this:

How to Switch On/Off the Projection Display

• Right-click in the dataset window and select [Toggle Projection Display] or enter .pr.

With the projections displayed, a 2D dataset looks like this:
In this example, the F1 projection is selected as indicated by the filled blue square whereas the F2 projection is not selected. A selected projection can be rescaled using the toolbar rescale buttons of function keys. If you right-click inside the projection area of the dataset window, the following list appears:

- **External Projection** opens a dialog box where you can specify or search for a 1D dataset and display this as a projection of the current 2D dataset.
- **Internal Projection** calculates and displays the positive projection and displays it along with the 2D spectrum.
- **Baseline at Bottom** or **Baseline at Center** allows to put the projection baseline at the respective positions.

Alternative ways to calculate/display projections are:

- Right-click on a 1D dataset in the browser and in the list, select **Display As 2D Projection**.
- Click **Process** | **Advanced** | **Calc. projections [proj]** or enter **proj**.
This will open the dialog box:

From here, you can calculate positive, negative, sum and disco projections and either show them with the 2D spectrum or display them in separate dataset window as a 1D data. For more details on the corresponding commands (as shown in the header of the dialog box), please refer to the Processing Reference Manual.

How to Switch On/Off the Grid display

• Click Spectrum display properties | Toggle grid mode (off, axis, fixed) to display the grid axis aligned or enter .gr.

To switch between no grid, axis aligned grid and fixed grid,

• click again Spectrum display properties | Toggle grid mode (off, axis, fixed).

The following figure shows an example of axis aligned grid display.
How to Display a 2D Spectrum in Contour Mode

- In the upper toolbar click \(\text{Switch to contour display mode} \).

In contour mode, a spectral region looks like this:

How to Set the 2D Contour Levels

- Click-hold \textit{Change the level distance} and move the cursor up or down or

- Enter \texttt{Alt+PageUp} respectively \texttt{Alt+PageDown} or

- Right-click in the dataset window and select \texttt{Edit contour levels [edlev, .lv]} or

- Click \texttt{Edit contour levels}.

The last two methods will open the following dialog box shown in the next figure. Contour levels can be entered manually, or they can be calculated.
Manual setup

This allows to create an arbitrary sequence of levels:

- Enter the level values in the fields 1, 2... at the top of the dialog box.
- Click **Apply** to update the display or **OK** to store the levels, update the display and close the dialog box.

Calculation

This allows to easily create a geometric or equidistant sequence of levels.

- Click one of the following items:
 - **Multiply with increment** to create a geometric sequence of levels.
 - **Add increment** to create an equidistant sequence of levels.
- Enter the desired **Base level**, **Level increment** and **Number of levels**.
- Click **Fill** to display and activate the sequence.
- Click **Apply** to update the display or **OK** to store the levels, update the display and close the dialog box.

The Contour level sign allows to select positive levels, negative levels or both.

How to Store interactively set Contour Levels

To store contour levels that were set interactively

- Click **Save the contour levels to disk** [.ls].

The levels are stored in the file:

/\< dir>/data/<user>/nmr/<name>/<expno>/pdata/<procno>/clevels
How to Display a 2D Spectrum in Oblique Mode

• Click **Oblique mode**

In oblique mode, a spectral region looks like that in the following figure:

![2D Spectrum in Oblique Mode](image)

In this mode you can manipulate the display in various ways.
• Right-click inside the dataset window and select one of the options in the list:

<table>
<thead>
<tr>
<th>Larger</th>
<th>Smaller</th>
<th>Default View</th>
<th>From Top</th>
<th>From Front (F2)</th>
<th>From right (F1)</th>
<th>Shift To Center</th>
<th>Shift To Bottom</th>
<th>Dataset Properties</th>
<th>Files</th>
<th>Explorer</th>
</tr>
</thead>
</table>

How to Rotate a 2D Spectrum in Oblique Mode

• Click-hold one of the following buttons and move the mouse up/down:
 - ![Rotate around x-axis](image)
 - ![Rotate around y-axis](image)

How to Switch between Displaying Positive and Negative levels

• Click ![Toggles between positive and negative levels](image) to toggle between positive and negative levels.
10 nD Display

10.1 Display Planes of 3D Datasets

3D datasets can be displayed as 2D planes or as a 3D cube. By default, the first F3-F1 plane is displayed (see the figure below). The plane orientation and number is displayed. The cube in the lower left corner graphically indicates which plane is displayed. The full 2D display functionality is available (see chapter Getting Started [31]).

How to Switch to 2D Plane Display

If the 3D cube is displayed, you can switch to 2D plane display.

- Click one of the following buttons:
 - Switch to 2D contour display.
 - Switch to 2D oblique display.

How to Display various Plane Orientations

- Click one of the following buttons:
 - Display F1-F2 planes.
Display F2-F3 planes.
Display F3-F1 planes.

How to Display various Plane Positions (numbers)
- Click one of the following buttons:
 + Display the next plane.
 − Display the previous plane.
 ‡ Scan planes smoothly.
 E Enter the exact plane number.

This will open a dialog, see the next figure. Here, you can specify the desired plane number as well as switch to a different plane orientation.

10.2 3D Cube Display Mode

How to Display the 3D Cube
- Click the following button:

![Display 3D cube:](image)
How to Rotate the 3D Cube

- Click-hold one of the following buttons and move the mouse up/down:
 - Rotate cube around x-axis.
 - Rotate cube around y-axis.
 - Rotate cube around z-axis.

How to Scale Up/Down the 3D Cube

- Right-click inside the dataset window and in the list, select Larger or Smaller.

How to Reset the Cube Size and Orientation

- Click \[R \] to reset to default size and orientation.

How to Switch Depth Cueing On/Off

- Right-click inside the dataset window and in the list, select Depth Cueing On/Off.

Depth cueing makes data points which are closer to the viewer appear brighter and those that are further away appear dimmer. This increases the depth effect of the 3D image.
How to Display a Cube Front or Side view

- Click one the following buttons:
 - Show F1-F2 planes.
 - Show F2-F3 planes.
 - Show F3-F1 planes.

10.3 nD Parameter Display

TopSpin supports parameter display of up to 8D data. To display processing parameters:

- Click the ProcPars tab of the dataset window.
 - Or
 - Enter edp on the command line.

Parameters of each direction are displayed in a separate column. The figure below displays the processing parameter display of a 3D dataset.

To display acquisition parameters:

- Click the AcquPars tab of the dataset window.
 - Or
 - Enter eda on the command line.

Parameters of each direction are displayed in a separate column. The following figure displays the acquisition parameter display of a 3D dataset.
nD FID Display

nD raw data can be displayed as a series of 1D FIDs:

- Click the FID tab of the dataset window.
- Enter `fid` on the command line.

Peak and Integral Display

TopSpin supports peak and integral display of up to 8D data. To display the nD peak list:

- Click the Peaks tab of the dataset window.
- Enter `peaks` on the command line.

The following figure displays the peak list of a 3D dataset.
The chemical shift in each of the three dimensions is displayed in a separate column. To display the nD integral list:

- Click the **Integrals** tab of the dataset window.
- or
- Enter **ints** on the command line.

The following figure displays the integral list of a 3D dataset.

<table>
<thead>
<tr>
<th>SPECTRUM</th>
<th>PROCIPARS</th>
<th>ACQIPARS</th>
<th>TITLE</th>
<th>PULSEPROG</th>
<th>PEAKS</th>
<th>INTEGRALS</th>
<th>SAMPLE</th>
<th>STRUCTURE</th>
<th>PLOT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Integral 1</td>
<td>0.1048</td>
<td>4.3100</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Integral 2</td>
<td>0.2518</td>
<td>1.5274</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Integral 3</td>
<td>0.1346</td>
<td>0.9665</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Integral 4</td>
<td>0.2138</td>
<td>0.7565</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Integral 5</td>
<td>0.5152</td>
<td>1.0050</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Integral 6</td>
<td>0.8678</td>
<td>0.8724</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Integral 7</td>
<td>0.3667</td>
<td>0.8502</td>
<td>0.0004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Integral 8</td>
<td>0.3367</td>
<td>0.8502</td>
<td>0.0009</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Integral 9</td>
<td>0.1724</td>
<td>0.8502</td>
<td>0.0011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Integral 10</td>
<td>0.3198</td>
<td>0.8502</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Integral 11</td>
<td>0.1168</td>
<td>0.8502</td>
<td>0.0014</td>
</tr>
</tbody>
</table>

The chemical shift in each of the three dimensions is displayed in a separate column. Peaks and integrals only appear if they have been calculated (commands **pp** and **int**, respectively).
11 1D Interactive Manipulation

The upper toolbar of the 1D menu offers various buttons for interactive manipulation. If you click such a button, the active dataset window will switch to the corresponding mode. An interactive manipulation mode is dataset window specific, i.e. it only applies to the active window.

11.1 1D Interactive Window Multiplication

TopSpin supports 1D interactive window multiplication.

11.1.1 1D Interactive Window Multiplication Procedure

How to Switch to Window Multiplication Mode

- Open a 1D dataset and click Process | Proc. Spectrum | Window Multiplication [wm],
- Enable Manual window adjustment in the appearing dialog and click OK.
 or
- Enter .winf on the command line.

The tab bar of the active dataset window will be replaced by a toolbar (see figure below) and the dataset window itself will be divided into three parts:
1. A parameter part at the left.
2. A spectrum part at the upper right.
3. An FID part at the lower right.
1D Interactive Manipulation

Toolbar Buttons

- Click one of the following buttons:
 - ![Display both spectrum and FID.](image)
 - ![Display FID only.](image)
 - ![Display spectrum only.](image)
 - ![Switch cursor information on/off (toggle).](image)
 - ![Save windows settings to source 2D dataset (see note below) and return.](image)
 - ![Save window settings and return.](image)
 - ![Return without save.](image)

Note: 2D from which current 1D dataset was extracted, e.g. with `rser`.

Perform interactive window manipulation as follows:
- In the WDW dropdown list select the window function type (parameter WDW).

Interactive Window Multiplication

- Set the corresponding parameter(s), e.g.
 - LB for exponential.
 - LB and GB for Gaussian.
 - SSB for sine bell and squared sine.

The displayed spectrum and/or FID will be automatically adjusted as you change the window function and parameters.
- Click **Save** to store the window settings and return.

Now you can perform further processing steps like Fourier transform, phase correction etc.
11.2 1D Interactive Phase Correction

Manually acquired spectra can be phase corrected automatically, with commands like \texttt{apk} or \texttt{apks} or, interactively, in phase correction mode.

11.2.1 1D Interactive Phase Correction Procedure

How to Switch to Phase Correction Mode

- Open a 1D dataset and click \texttt{Process} | \texttt{Adjust Phase} or enter .ph.

The Phase Correction toolbar is displayed:

\begin{center}
\textbullet \quad 0 \quad 1 \quad R \quad 90 \quad -90 \quad 180
\end{center}

The yellow button \(\uparrow\downarrow\) indicates that you are in phase correction mode. Some buttons will turn gray when they are clicked. If a button is gray, it is active.

How to Perform a Typical 1D Interactive Phase Correction

For a typical 1D phase correction, take the following steps:

- Click-hold 0 and move the mouse until the reference peak is exactly in absorption mode.
- Click-hold 1 and move the mouse until the entire spectrum is exactly in absorption mode.
- Click to save and execute the phase correction and return.

11.2.2 1D Interactive Phase Correction Details

How to Set the Phase Pivot Point

By default, the phase pivot point is set to the biggest magnitude intensity of the displayed region of the spectrum. To change the pivot point:

- Right-click on the desired pivot point position and in the list, select Set pivot point (see previous figure).

How to Perform Default Zero Order Phase Correction

- Right-click in the dataset window and in the list, select Calculate ph0 (see previous figure).

The spectrum will automatically be corrected according to the calculated value.

How to Perform Interactive Zero Order Phase Correction

- Click-hold 0 Zero order phase correction (parameter PHC0). The button turns gray.
- Move the mouse until the reference peak is exactly in absorption mode.
- Release the mouse.
1D Interactive Manipulation

How to Perform Interactive First Order Phase Correction

- Click-hold 1 First order phase correction (parameter PHC1).
- Move the mouse until the entire spectrum is exactly in absorption mode.
- Release the mouse (button turns gray).

How to Perform 90, -90 or 180° Zero Order Phase Correction

- Click one of the following buttons:

 - 90 Perform 90 zero order phase correction [.ph90].
 - -90 Perform -90° zero order phase correction [.phm90].
 - 180 Perform 180° zero order phase correction [.ph180].

How to Reset the Phase to the Original Values

- Click R Reset zero and first order phase values [.phr].

How to Change the Mouse Sensitivity

- Click one of the following buttons:

 - Increase (double) the mouse sensitivity [.inc].
 - Decrease (halve) the mouse sensitivity [.dec].
 - Reset the mouse sensitivity.

How to Return from Phase Correction Mode with/without Save

To return while saving the phase correction to the current dataset:

- Click Save, execute and return [.sret].

This will perform the following tasks:

- Execute phase correction (command pk).
- Save the current phase correction values.
- Leave the phase correction mode.

To return without save:

- Click Return, discarding any changes [.ret].

To return while saving the phase correction to the source 2D dataset:

- Click Save to 2D [.s2d].

This is only applicable on rows or columns extracted from 2D data. The phase values will be saved to the 2D dataset from which the current 1D dataset was extracted.
11.3 1D Interactive Integration

Integration of 1D data can be done automatically, with the commands abs and li or, interactively, as described in this paragraph.

How to Switch to Integration Mode

- Click Analyse | Integrate or enter .int.

The active dataset window tabs will be replaced by the Integration toolbar.

The yellow color indicates that the dataset window is in integration mode.

If integral regions have already been determined, for example with abs or with a previous interactive integration, these regions are displayed in the dataset window, along with the integral values. You can remove them, change them or add to them, as described below.

How to Define Integral Regions

- For a manual definition click one of the two following buttons:
 - : Define new region in the given spectra with manual selection (toggle)
 - : Define new integral with automated baseline correction in the selected region (toggle)

To define a new integral with exact coordinates via a dialog.
• Click Define region via dialog (see the following figure).

![Image of Define region dialog]

• Enter the exact values for the region limits and click OK.

Follow the next steps for a manual definition:
• Put the red cursor line at one edge of a peak or multiplet.
• Left-click-hold and drag the cursor line to the other edge of the peak or multiplet. In case of a baseline correction the interpolated baseline will be displayed automatically on screen (see the next figure). The integral is calculated considering the new baseline.

![Image of cursor line and integrated area]

• Repeat the last 2 steps for all regions to be defined.
• Click the button again to leave the Define region mode.

How to Read Integral Regions from Disk

You can read integrals regions from disk which have been stored by automatic integration (command `abs`) or by a previous interactive integration.

To read integrals:

• Click Read / import integration regions and in the list, select one of the following entries:
 – Read intrng: To read the last saved integral regions and apply the saved slope and bias correction values.
 – Read intrng no slope & bias corr: To read the last saved integral regions but do not apply the saved slope and bias correction values.
 – Read intrng use last slope & bias: To read the last saved integral regions applying the last slope and bias correction values.
1D Interactive Manipulation

- **Import integration regions**: To read integral regions from external file.
- **Import intrng from Relaxation Experiment**: To read the last stored integral regions of the T1/T2 relaxation experiment.
- **Edit intrng**: To edit the file (intrng) that contains the integral regions and slope and bias correction values. Changes in this file are automatically shown on the screen, when the file is saved.

How to Select / Deselect Integrals

The integrals may be selected by mouse click in the integration region area:

- Hold down the Shift key or the Ctrl key to select multiple intervals.

Alternative option:

- Right-click in the integral region and in the list, click **Select / Deselect** to toggle the selection.

How to Perform Interactive Bias and Slope Correction

To perform interactive bias correction:

- Select the integral(s) that you want to correct (right-click in the region and choose **Select / Deselect** in the context menu). If no integral is selected, bias correction will work on all integrals.

- Click-hold **Integral bias correction** and move the mouse until the integral bias is correct.

To perform interactive slope correction:

- Select the integral(s) that you want to correct (right-click in the region and choose **Select / Deselect** in the context menu). If no integral is selected, slope correction will work on all integrals.
• Click-hold the Integral slope correction button and move the mouse until the integral slope is correct.

Integrals with a defined slope or bias are marked on the display with “#” at the end of the integral curve.

The button sets both slope and bias back to zero.

How to Set the Width for Bias Determination
• Click Width for bias determination and enter the width in ppm.

How to Change the Mouse Sensitivity
• Click Increase (double) the mouse sensitivity [.inc].
Decrease (halve) the mouse sensitivity [.dec].

Reset the mouse sensitivity.

How to Calibrate/Normalize Integrals

Calibrating integrals means setting the value of a reference integral and adjusting all other integrals accordingly.
- Right-click in the reference integral region and in the list, select Calibrate Current Integral.
- Enter the desired value for the reference integral and click OK.

Normalizing integrals means setting the sum of all integrals and adjusting individual integral values accordingly.
- Right-click in the reference integral region and in the list, select Normalize Sum of Integrals.
- Enter the desired sum of all integrals and click OK.

Calibrating and normalizing only effects the current dataset. To scale integrals with respect to a reference dataset, choose lastscale from the right-click context menu (see below).

How to Scale Integrals with Respect to Different Spectra

Integrals can be scaled with respect to the last spectrum that was integrated interactively:
- Right-click in the reference integral region and in the list, select Use Lastscale for Calibration.

As such, you can compare integrals of different spectra.

Note that this only makes sense for spectra which have been acquired under the same experimental conditions. The scaling factor is stored in the file:
	<shome>/prog/curdir/<user>/intscale

How to Delete Integral Regions from the Display

To delete the selected integral regions:
- Click to delete selected integral regions from the display.
- Right-click in the integral region and in the list, select Delete Current Integral.

To delete all integral regions from the display:
- Click to select all integral regions.
- Click to delete them.

Note: Regions are only deleted from the screen and any manipulation of integration regions can be undone with the Undo button. Regions which are saved on disk (in the intrng file) are not immediately affected. The changes are stored only when a save command or save and return is executed.
How to Scale Selected Integrals

Integral scaling only manipulates selected integrals. However, if no integrals are selected, it works on all integrals.

- Click one of the following buttons:
 - Scale up selected integrals by a factor of 2.
 - Scale down selected integrals by a factor of 2.
 - Scale selected integrals up/down smoothly.

To scale up/down integrals by a factor entered via a dialog:

- Click Define scaling factor via dialog.
- Enter a scaling factor, e.g. 2.5.
- Click OK to apply this factor.

To scale all selected integrals to the same height:

- Click/Toggle Autoscale all integrals to the same height.

The individual scaling factor for each region is displayed above the integral. Clicking this button again rescales all integrals to their original height.

How to Move the Integral Trails Up/Down

To move the integrals (selected and unselected) up or down,

- Click one of the following buttons:
 - The left edge of the selected integral is put just above the baseline. If no integral is selected, the lowest integral is used.
 - The right edge of the selected integral is put at 3/4 of the window height. If no integral is selected, the highest integral is used.
 - Shift all integral trails up/down smoothly.

How to Cut Integral Regions

- Click Cut integrals into two parts (toggle) to activate or deactivate the cutting mode (toggle).
- Move the red cursor line into an integral region to the position where it must be cut and click the left mouse button.
Repeat the last step for each integral region that must be cut.

In case of overlapping integrals, you must select the integral to be cut before you cut it. Note that if one or more integrals are selected, cutting only works on selected integrals.

With TopSpin 1D Interactive Integration command cut integral can be called directly from right-click context menu. Right mouse click on the integral opens a context menu in which cut current integral must be selected.

How to Save Integral Regions

- Click Save/Export integration regions and in the list, select one of the following entries:
 - Save regions to 'intrng': Save the currently displayed integral regions including the slope and bias correction values.
 - Save Regions to 'reg': Save the integral regions to the file reg.
 - Export integration regions: Save the integral regions in a new file.
 - Export Regions To Relaxation Module and .ret: Used on relaxation data only. Exports the integral regions for T1/T2 relaxation analysis and exits from integration mode.
 - Save & show list: Save the currently displayed integral regions including the slope and bias correction values and show the integrals on the screen.

How to Undo the Last Region Operation

- Click Undo the last region operation

How to Return from the Integration Mode with/without Save

To return and save the integrals to the current dataset:

- Click Return, save regions or enter .sret.

As such, you will:

- Save the integral regions and corresponding slope and bias corrections to the file intrng.
- Save the integral regions, slope and bias corrections and integral values to the file integrals.txt. This file is displayed when you click the Integrals Tab.
- Leave the integration mode.

To return without save:

- Click Return, do NOT save regions or enter .ret.

How to Deconvolve Overlapping Peaks from Integration Mode

Deconvolution, the line shape tool to interpret complex 1D and 2D spectra with overlapping peaks can be started directly from within integration mode. As described in the Analysis chapter deconvolution calculates theoretical signals with different methods, i.e. Gaussian, Lorentzian or a mixture of these line shapes. The values are stored in the file dconpeaks.txt and displayed graphically. For further information please look up the Analysis chapter and the Processing Reference Manual (commands gdcon, ldcon, mdcon, ppp, dconpl and dcon).

From within the integration mode, after the integration of the respective peak or peak groups, deconvolution can be started by right clicking on the peak. The following window will appear:
Selecting **Deconvolution** offers the following options:

- Deconvolve and display regions.
- Change Peak Picking Parameters for Deconvolution.
- Edit Peak List & Deconvolve.
- Show Deconvolution Fit (graphical display).

With the latter function it is possible to display results after deconvolution graphically:
The integral values of each of the deconvolved signals are available in the integrals tab within the originally defined integral (column Intensity [abs]):

<table>
<thead>
<tr>
<th>Δ Object</th>
<th>Integral [abs]</th>
<th>Integral [rel]</th>
<th>Peaks</th>
<th>v(F1) [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integral 1</td>
<td>1243141.32</td>
<td>0.5021</td>
<td>0</td>
<td>9.5783</td>
</tr>
<tr>
<td>Integral 2</td>
<td>1956677.80</td>
<td>0.7904</td>
<td>2</td>
<td>9.3781</td>
</tr>
<tr>
<td>Integral 3</td>
<td>1682681.68</td>
<td>0.6797</td>
<td>0</td>
<td>9.1521</td>
</tr>
<tr>
<td>Integral 4</td>
<td>1532414.25</td>
<td>0.6190</td>
<td>1</td>
<td>8.9580</td>
</tr>
<tr>
<td>Integral 5</td>
<td>2169385.79</td>
<td>0.8644</td>
<td>2</td>
<td>8.7466</td>
</tr>
<tr>
<td>Integral 6</td>
<td>1876330.95</td>
<td>0.7579</td>
<td>2</td>
<td>8.5507</td>
</tr>
<tr>
<td>Integral 7</td>
<td>9609294.86</td>
<td>3.8814</td>
<td>0</td>
<td>8.3881</td>
</tr>
<tr>
<td>Integral 8</td>
<td>788677.73</td>
<td>0.3186</td>
<td>1</td>
<td>6.4475</td>
</tr>
</tbody>
</table>

11.4 1D Interactive Calibration

A 1D spectrum can be calibrated (referenced), automatically, with the command `sref` or, interactively, as described below.

How to Switch to Calibration Mode

- Click `Process | Calib. Axis` or enter `.cal`.

The Tab bar of the active dataset window will be replaced by the Calibration toolbar.

The yellow button indicates that the dataset window is in calibration mode.
How to Calibrate a Spectrum Interactively

In calibration mode:

- Position the red cursor line at the reference peak.
- Click at that position.

The following dialog box will appear:

![Calibrate Dialog Box]

Note that the units (Hz or ppm) correspond to the axis units of the display.

- Enter the frequency you want to assign to the reference peak.
- Click OK.

The spectrum will be calibrated and re-displayed. TopSpin will automatically leave calibration mode.

1D Multiple Display

The multiple display mode allows to display multiple superimposed spectra. The spectra will be ppm aligned or Hz aligned, according to the selected axis unit. Each spectrum can be individually shifted and scaled allowing exact alignment of corresponding peaks in different spectra. The number of superimposed spectra is unlimited.

Although multiple display is normally used for spectra with matching nuclei, it allows to superimpose spectra with non-matching nuclei. You will get a warning that the nuclei do not match. Just click OK to continue.
How to Switch to Multiple Display Mode and Read Multiple Spectra

One way to superimpose data in multiple display is to read one dataset, switch to multiple display mode and add other datasets:

• Read a 1D dataset.

• Click Multiple display or enter .md.

The dataset window will switch to multiple display mode.

Add a dataset as follows:

• Left-click-hold the dataset in the browser and drag it into the dataset window.
 or

• Right-click the dataset in the browser and choose Display from the context menu.
 or

• Enter re and specify the additional dataset in the appearing dialog box.

Another way to superimpose data in multiple display is to read multiple datasets simultaneously:

In the browser:

• Hold down the Ctrl key and click multiple datasets to select them
 or

• Hold down the Shift key and click two datasets to select these two and all datasets in between.

• Right-click any of the selected data
 – and in the list, select Display. This will show the data in the active dataset window if that is in multiple display mode or, otherwise, show the data in a new window.
 or

 – in the list, select Display in new window. This will show the data in a new window.

In multiple display mode, the tab bar of the active dataset window is replaced by a toolbar.

The following figure shows three comparable 1D spectra and the sum of all three.
The yellow button indicates that the dataset window is in multiple display mode. Some buttons will turn gray when they are clicked. If a button is gray, it is active. Furthermore, the browser is split in two parts:

![Browser split into two parts showing datasets](image)

The additional lower part shows which datasets are displayed in the active dataset window. The selected datasets are highlighted.
How to Work with Multiple Display Command .md

The following arguments of .md for controlling datasets from command line, AU-programs or Python programs are available:

Specified dataset names can be shown in the display by command .md:

• Enter command and full pathname for a specified dataset in the TopSpin command line:

 .md <PathToDataset1>\expno1\pdata\procno> <PathToDataset2>\expno2\pdata\procno>

The command .md no_load ignores the datasets stored in the last multiple display session and enters the multiple display.

The command .md write writes only the assoc file containing the dataset list for multiple display. Please note that the multiple display module is not started with this command.

• Enter command and full path name of specified dataset in the TopSpin command line:

 .md write <PathToDataset1>\expno1\pdata\procno> <PathToDataset2>\expno2\pdata\procno>

Multiple display mode is supported for 1D and 2D spectra. For spectra with a dimension > 2 the selected slice (subplane) is displayed.

How to Select/Deselect Datasets

To select a dataset:

• Click in the corresponding area in the dataset window.

or

• Left-click-hold the dataset in the browser and drag it into the dataset window.

or

• Click the corresponding entry in the lower part of the browser.

In the lower part of the browser, you can:

• Click one dataset to select it.

or

• Hold down the Ctrl key and click multiple datasets to select them.

or

• Hold down the Shift key and click two datasets to select these two and all datasets in between.

When you select a dataset, the corresponding small square is filled (see the figure above) and its entry in the lower part of the browser is highlighted (see the figure above).

Note that:

No spectrum selected = all spectra selected.

Scale/shift buttons of the dataset window toolbar only work on selected spectra.

To deselect a dataset:

• Select a different dataset.

To deselect all datasets:
1D Interactive Manipulation

- Click [Deselect all datasets.]

How to Remove a Dataset from Multiple Display
- Select the dataset(s) you want to remove.
- Click [Remove selected data from the screen.]

Note that the data on disk are not affected. Furthermore, the first spectrum cannot be removed from the screen.

How to Display the Sum or Difference Spectra
- Click one of the following buttons (button turns gray):
 - ![Δ](image) Show the difference between the first and the sum of the other datasets.
 - ![Σ](image) Show the sum of all datasets in the multiple display window.

How to Save the Sum or Difference Spectra
- Click [Save the displayed sum or difference spectrum.]
- In the next dialog box, specify the destination procno.

How to Display the Next/Previous Name/Expno
To compare a series of spectra you can interactively increment or decrement the dataset name or expno. A dataset name is incremented according to the IconNMR naming convention of increasing extensions, e.g. name.001, name.002 etc.

- Click one of the following buttons (button turns gray):
 - ![E−](image) Show the previous name/expno/procno of the last dataset.
 - ![E+](image) Show the next name/expno/procno of the last dataset.
 - ![Ei](image) Set the increment options. Clicking this button will open the following dialog:

```
Data set increment options
Increment

- procno
- expno
- name

Expno increment: 10
Preserve individual scaling

OK Cancel
```

Here you can choose to increment the procno, expno or name, set the expno increment and switch individual scaling on/off.
How to Toggle between Superimposed and Stacked Display

- Click:

 ![Image showing arrow keys]

 - Toggle between superimposed and stacked display.

 ![Image showing stacked view]

 - Set the stacked display parameters.

How to Shift and Scale Individual Spectra

To compare the intensity and chemical shift of corresponding peaks, you can shift and scale individual spectra. To do this:

- Display the spectra in multiple display mode as described above.
- Expand the spectra to display the desired region or peak.
- Select one of the spectra (e.g. by clicking it in the lower part of the browser).

 ![Image showing vertical bar with arrows]

 - Click-hold and move the mouse to align the intensities.

 ![Image showing horizontal bar with arrows]

 - Click-hold and move the mouse to align the peak positions.

The alignment can be facilitated by activating the difference spectrum button and minimize that.

Note that you can also scale the selected spectra up/down with the buttons 2S and 2S.

![Image showing down arrow]

- allows to move the selected spectra vertically.

![Image showing red cross]

- resets individual scaling and shifting.

The performed scaling and shifting are displayed in the dataset window:
Automated scaling options in multiple display

NMR spectra taken from the same sample on different spectrometer architectures can have very different intensities. To simplify comparison of such spectra, Topspin implements a new scaling option **Match the Dataset maximum intensities**.
The spectra are properly scaled, the required scaling factor is displayed.

How to Move the Selected Spectrum One Place Up/Down

• Click the arrow up to Move the selected spectrum one place up in the list.

• Click the arrow down to Move the selected spectrum one place down in the list.

Note that the first spectrum and calculated spectra (sum of difference) cannot be moved up/down.

How to Switch On/Off the Display of Data Paths and Scaling Factors

• Click the toggle switch to Switch on/off display of data paths and scaling factors.

How to Return from Multiple Display Mode

• Click the ret button to Return from multiple display mode [ret].

How to Set the Colors of the 1st, 2nd, .. Dataset

The colors of the different datasets in the multiple display mode can be set in the User preferences dialog box. To set, for example, the color of the second spectrum:

• Right-click and in the list, select Spectra Display Preferences and click the Change button for the item Color of 2nd 1D spectrum.

TopSpin allows to set 8 different colors for different spectra in multiple display.
11.6 1D Interactive Baseline Correction

Baseline correction can be performed with commands like `abs` or `absd` or, interactively, as described below.

How to Switch to Baseline Correction Mode

- Click Process | Baseline or enter `.basl`.

The Tab bar of the active dataset window will be replaced by the baseline toolbar:

The yellow button indicates that the dataset window is in baseline correction mode. Some buttons will turn gray when they are clicked. If a button is gray, it is active.

How to Perform Polynomial Baseline Correction

- Click Perform polynomial baseline correction – the button turns gray.

In the dataset window, a red horizontal line will appear as well as the equation that describes the polynomial function:

\[f(x) = A + B \cdot x + C \cdot x^2 + D \cdot x^3 + E \cdot x^4 \]

- Click-hold button A and move the mouse until the red line coincides with the first point of the spectrum.
- Repeat the last step with the buttons B, C, D and E until the red line coincides with the entire baseline of the spectrum.

How to Perform Sine Baseline Correction

- Click Perform sine baseline correction – the button turns gray.

A red horizontal line will appear as well as the equation describing the sine function:

\[f(x) = A + B \cdot \sin(C \cdot x + D) \]
• Click-hold button A and move the mouse until the red line coincides with the first point of the spectrum.
• Repeat the last step with the buttons B, C and D until the red line coincides with the entire baseline of the spectrum.

How to Perform Exponential Baseline Correction

• Click Perform exponential baseline correction – the button turns gray.
A red horizontal line will appear as well as the equation describing the exponential function:

$$f(x) = A + B \cdot \exp(C \cdot x)$$

• Click-hold button A and move the mouse until the red line coincides with the first point of the spectrum.
• Repeat the last step with the buttons B and C until the red line coincides with the entire baseline of the spectrum.

How to Preview the Baseline Corrected Spectrum

Before performing the baseline correction, you can preview the result by displaying the difference between the uncorrected spectrum and the red correction line.

• Click Preview corrected spectrum (Display difference) - the button turns gray.
The corrected spectrum will be displayed in red.

If the baseline is correct,
• Click to save the correction.

If further correction is needed,
• Click to show the original spectrum and the red correction line.

How to Reset the Baseline Correction Line

• Click Reset the red correction line to zero.

If the difference spectrum is displayed (the button is active), clicking the reset button will restore the original spectrum.

How to Change the Mouse Sensitivity

• Click one of the following buttons:

 - Increase (double) the mouse sensitivity [.inc].
 - Decrease (halve) the mouse sensitivity [.dec].
 - Reset the mouse sensitivity.

How to Save the Baseline Correction and/or Return

To return while saving the baseline correction:
1D Interactive Manipulation

- Click Save baseline correction and Return [.sret]

This will perform the following tasks:
- Execute the baseline correction [bcm].
- Save the baseline correction values A, B, C, D and E.
- Leave the baseline correction mode.

To return while discarding any changes:
- Click Return, discarding any changes [.ret].

How to Perform Cubic Spline Baseline Correction

- Click Define points for cubic spline baseline correction.

The dataset toolbar is displayed:

The cursor line in the dataset window turns red. If a list of baseline points already exists, you are prompted to overwrite or append to these points. If you choose Append, the labels of the existing points are displayed on the screen. If you choose Overwrite, no labels are displayed. Nevertheless, the existing points are only overwritten when you define and save new points.

To define new baseline points:
- Move the cursor line to a baseline point and click at that position.
- Repeat this for at least five baseline points.

The figure above shows a spectrum with five defined baseline points. Note that here the points have been chosen at the right part of the spectrum for display reasons only.

Note that the actual baseline correction is only performed when you click the button in the spline baseline and interactive baseline mode.

How to Delete Spline Baseline Points from the Screen

To delete one baseline point:
- Right-click the baseline point position in the dataset window.
- In the list, select Delete Current.
To delete all baseline points:
- Right-click any position in the dataset window.
- In the list, select **Delete All**.

How to Return from Cubic Spline Baseline Mode with/without Save

To return while saving the baseline points:
- Click

 ![Save & Quit](icon)

 Save baseline points and Return \([\text{retsab}]\).

To return while discarding any changes:
- Click

 ![Return, Discarding any changes](icon)

 Return, Discarding any changes \([\text{ret}]\).

Alternatively, you can right-click in the dataset window and select **Save & Quit** or **Quit**, respectively.

11.7 1D Interactive Peak Picking

Peak picking can be performed, automatically, with the commands `pps` or, interactively, in the peak picking mode.

How to Switch to Peak Picking Mode
- Click **Analyse** | **Pick Peaks** | **Manual Peak Picking** or enter `.pp` on the command line.

The Peak picking toolbar is displayed:
The yellow button indicates that you are in peak picking mode. Some buttons will turn gray when they are clicked. If a button is gray, it is active.

Note: the button is automatically activated, i.e. you are in **Define peak picking range** mode

How to Define New Peak Picking Ranges

- Click the upper-left corner of a peak picking range.
- Left-click-hold and drag the mouse to the lower-right corner of the range.

 The peak picking range will be marked gray. The minimum and maximum intensity are set and the peaks in the range are picked and displayed.
- Repeat the last 2 steps for each peak picking range to be defined.
- Click the gray button to leave the **Define peak picking range** mode.

Note: the parameters MI and MAXI are set to the lowest minimum and the highest maximum intensity, respectively, of all ranges.

How to Change Peak Picking Ranges

- Click \(m \) to change the peak picking ranges. (button turns gray):
- Click on one of the edges of the peak picking range.

 The cursor turns into a double-headed arrow.
- Click-hold and drag the peak range edge to its new position.
- Optionally: repeat the last 2 steps for the other edge and for other peak ranges.
- Click the gray button to leave the **Change peak picking range** mode.

How to Pick Peaks in Peak Picking Ranges only

Peaks in a peak range are automatically picked when the range is defined. If peaks have been deleted from a range, they can be picked again as follows:

- Right-click in the data field and in the list select **Pick Peaks On Ranges**.
Alternatively, you can enter `ppl` on the command line. This command can be entered in *Interactive peak picking mode* or in the normal display mode.

How to Delete all Peak Picking Ranges

- In the dataset window toolbar, click ![delete](image.png).

 or

- Right-click in the data field and in the list, select **Delete All Regions**.

How to Define Peaks Manually

- Click ![define](image.png) to define peaks manually. The button turns gray. A red vertical line will appear in the dataset window.

- Put the red cursor line at the desired peak and click left. The peak label will appear at the top of the dataset window.

- Repeat the last step for each peak to be defined.

- Click the gray button to leave the *Define peaks* mode.

How to Pick Peaks Semi-Automatically

- Click ![pick](image.png) to define peaks semi-automatically. The button turns gray. Move the cursor into the dataset window.

- Put the cursor line near the desired peak.

- Click to pick forward.

 or

- Right-click to pick backward (see the figure below). A red cursor line will appear at the nearest peak whose intensity is between MI and MAXI.

 - Right-click to add the selected peak to the peak list:

 Add Peak To List

 Pick Backward

 The peak label will appear at the top of the dataset window.

 - Click ![leave](image.png) to leave the *Define peaks semi-automatically* mode.

How to Delete Peaks from the Peak List

- Right-click and in the list, select **Delete peak under cursor**.
1D Interactive Manipulation

Save & Quit
Quit

Add Peak To List
Delete Peak Under Cursor
Pick Peaks On Ranges
Show Peak List

Set MI
Set MAXI
Set PC

• To delete all peaks, click.
• To define a region to delete peaks, click.

How to Return from Peak Picking Mode with/without Save

To return while saving the peak list and peak ranges:

• Click Save the Peak Region and List and Return [.sret].

This will:
Save the peak list to the file peak.xml and the peak ranges to the file peakrng.
Leaves the peak picking mode.

To return while discarding any changes:

• Click Return, discarding any changes [.ret].

How to save Peak Lists and Regions in 1D Interactive Mode

In 1D interactive Peak Picking the Save as ... button opens a window in which two options of saving can be selected:

• Save Peak Lists and Regions.
• Save Peak List for Deconvolution. The peak list will be saved in a format which is needed for deconvolution).

To save the peak list and start the deconvolution,

• click D.

The peak list is saved, and the Deconvolution will be started, after that returning to Peak Picking.
1D Interactive Manipulation

Please adjust Gauss shape percentage(s) as desired

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Half Width</th>
<th>% Gauss/100</th>
</tr>
</thead>
<tbody>
<tr>
<td>4308.859</td>
<td>3.52</td>
<td>0.0</td>
</tr>
<tr>
<td>4301.034</td>
<td>6.54</td>
<td>0.0</td>
</tr>
<tr>
<td>4193.761</td>
<td>3.19</td>
<td>0.0</td>
</tr>
<tr>
<td>4184.030</td>
<td>3.02</td>
<td>0.0</td>
</tr>
<tr>
<td>4110.745</td>
<td>5.87</td>
<td>0.0</td>
</tr>
<tr>
<td>4103.500</td>
<td>6.20</td>
<td>0.0</td>
</tr>
<tr>
<td>4087.140</td>
<td>5.87</td>
<td>0.0</td>
</tr>
<tr>
<td>4069.664</td>
<td>2.85</td>
<td>0.0</td>
</tr>
<tr>
<td>4062.391</td>
<td>2.68</td>
<td>0.0</td>
</tr>
<tr>
<td>4020.278</td>
<td>3.19</td>
<td>0.0</td>
</tr>
<tr>
<td>3874.026</td>
<td>2.68</td>
<td>0.0</td>
</tr>
<tr>
<td>3866.258</td>
<td>2.52</td>
<td>0.0</td>
</tr>
<tr>
<td>3839.998</td>
<td>4.19</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Dest PROCNO: 999

Start deconvolution
Cancel
1D Interactive Manipulation
12 2D Interactive Manipulation

The upper toolbar of the 2D menu offers various buttons for interactive manipulation. If you click such a button, the active dataset window will switch to the corresponding mode. An interactive manipulation mode is dataset window specific, i.e. it only applies to the active window.

12.1 2D Interactive Phase Correction

2D spectra can be phase corrected interactively in both the F2 and F1 direction by selecting certain rows and/or columns and phase correct them.

12.1.1 2D Interactive Phase Correction Procedure

How to Switch to 2D Interactive Phase Correction

- Click Process | Adjust Phase or enter .ph.

The dataset tab bar of the active dataset window will be replaced by the phase correction toolbar.

The figure below shows an example of an unphased 2D inverse spectrum.

The yellow button indicates that you are in phase correction mode.

| R | Switch to phase row mode to display rows of selected peaks. |
| C | Switch to phase columns mode to display columns of selected peaks. |
Save the phase values to the 3D data from which this 2D was extracted.

Return.

How to Perform a Typical 2D Interactive Phase Correction

In this example we will perform F1 phase correction (columns) only. Take the following steps:

Select two or more peaks in different parts of the spectrum:
- Zoom in on a peak by drawing a box around it. To do that, click-hold the left mouse button and move the mouse.
- Right-click at the peak position and in the list, select **Add**.

Click to display the full spectrum.
- Zoom in on the next peak and add in the same way as the first one.
- Zoom in on the next peak etc.

The following figure shows an example of three selected peaks.

Click to phase correct the columns (F1).
A new dataset window called **Phase 2D** will appear displaying the columns of the selected peaks:

```
pivot = 128.44 ppm  Phase increment = 0.20  ph0 = 0.00  ph1 = 0.00
Column 417 / 7.2569 ppm
Column 644 / 4.2983 ppm
Column 899 / .9748 ppm
```

Note that the toolbar and the right-click popup menu offer the full 1D phase correction functions.

By default, all columns are selected as indicated by the filled blue squares ■. The red vertical line indicates the default pivot point in the upper column.

A typical way to perform phase correction is:

- Click-hold 0 for zero order correction and move the mouse until the reference peak of the first column is exactly in absorption mode.
- Click-hold 1 for first order correction and move the mouse until the reference peak in other column is exactly in absorption mode.
- Click to execute, save and return.

```
pivot = 128.44 ppm  Phase increment = 0.20  ph0 = 83.36  ph1 = -180.80
Column 417 / 7.2569 ppm
Column 644 / 4.2983 ppm
Column 899 / .9748 ppm
```

12.1.2 2D Interactive Phase Correction Details

How to Scale or Shift Individual Rows/Columns

To select one row or column:
• Click in the corresponding part of the dataset window.

The selected row/column will be marked with a filled blue square ■ whereas unselected rows/columns will be marked with an unfilled blue square □. Selecting a single row/column allows to shift and scale it separately from the other rows/columns as shown in:

![Graph showing phase correction](image)

• Click to select all rows or columns.

How to Perform Smooth Phase Correction

To perform zero order phase correction:

• Click-hold Zero order phase correction.
• Move the mouse until the reference peak of the first row/column is exactly in absorption mode.
• Release the mouse - button turns gray.

The parameter PHC0 will be set accordingly.

To perform first order phase correction:

• Click-hold First order phase correction
• Move the mouse until the reference peak of the second and further rows/columns is exactly in absorption mode.
• Release the mouse – the button turns gray.

The parameter PHC1 will be set accordingly.

How to Perform 90, -90 or 180° Zero Order Phase Correction

• Click one of the following buttons:

 90° zero order phase correction.

 -90° zero order phase correction.

 180° zero order phase correction.
How to Reset the Phase to the Original Values

• Click R Reset zero and first order phase.

How to Change the Mouse Sensitivity

• Click one of the following buttons:
 - Increase (double) the mouse sensitivity [.inc].
 - Decrease (halve) the mouse sensitivity [.dec].
 - Reset the mouse sensitivity to 2.0.

How to Show the Next/Previous Row or Column

To show the next row/column,

• click + Show next row/column.

Note that only the selected row/column is increased. If all rows/columns are selected, only the first one is increased.

To show the previous row/column,

• click − Show previous row/column.

Note that only the selected row/column is decreased. If all rows/columns are selected, only the first one is decreased.

How to Arrange Rows or Columns

• Click one of the following buttons:
 - Arrange rows/columns horizontally.
 - Arrange rows/columns vertically.
 - Arrange rows/columns vertically in a split window.

How to Return from Multi-1D Phase to 2D Phase Display

• Click to save, execute and return.

This will perform the following tasks:
1. Execute phase correction.
2. Save the current phase correction values.
3. Leave the multi-1D phase mode.

How to Return from 2D Phase Mode without Save

• Click Return.
12.2 2D Interactive Integration

TopSpin supports interactive 2D integration.

12.2.1 How to Switch to 2D Interactive Integration

• Click Analyse | Integrate or enter .int.

The active dataset window tabs will be replaced by the Integration toolbar.

The figure below shows an example of a 2D inverse spectrum.

- The yellow button indicates that you are in integration mode.
- "Define integral region" mode (active when gray).
- Move integral region (gray when active).
- Copy a region.
- Delete all integral regions.
- Read/import integral regions.
- Save/Export integral regions.
- Integrate current regions/define reference.
- Save integral regions and return.
- Return without save.
12.2.2 2D Interactive Integration Procedure

When you switch to 2D integration mode, the "Define integral region" mode is active by default. This means you can immediately start defining the integral regions. To do that:

- Click and hold the left mouse button at any corner of a region to be defined, move the mouse to draw a box around that region and release the mouse.
- Select one of the following options from the appearing popup menu:
 - Integrate: a: to add up all intensities in the region.
 - Integrate: +: to add up all positive intensities in the region.
 - Integrate: -: to add up all negative intensities in the region.
 - Integrate: a + -: to add up all intensities in the region and store separate entries for all, positive and negative intensities.
 - Integrate: a +: to add up all intensities in the region and store separate entries for all and positive intensities.
 - Integrate: a -: to add up all intensities in the region and store separate entries for all and negative intensities.
 - Integrate: + -: to add up all intensities in the region and store separate entries for positive and negative intensities.

The integral regions will be displayed along with their storage numbers and modes:

- Click Integrate current regions button and in the list, select Integrate current regions to integrate the defined regions.
- Click Integrate current regions button again and in the list, select List integral values to display the list of integrals.

The table displays the list of integrals based on the regions defined in the figure above:

<table>
<thead>
<tr>
<th>#</th>
<th>SI_F1</th>
<th>row1</th>
<th>row2</th>
<th>row1 ppm</th>
<th>row2 ppm</th>
<th>Abs. Int.</th>
<th>Integral</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1024</td>
<td>666</td>
<td>689</td>
<td>50.14583</td>
<td>46.43132</td>
<td>9.2529e+008</td>
<td>882.42</td>
</tr>
<tr>
<td>1024</td>
<td>510</td>
<td>522</td>
<td>6.04420</td>
<td>5.89291</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2D Interactive Manipulation

<table>
<thead>
<tr>
<th>#</th>
<th>SI_F1</th>
<th>row1</th>
<th>row2</th>
<th>row1 ppm</th>
<th>row2 ppm</th>
<th>Abs. Int.</th>
<th>Integral</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI_F2</td>
<td>col1</td>
<td>col2</td>
<td>col1 ppm</td>
<td>col2 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1024</td>
<td>597</td>
<td>632</td>
<td>61.28934</td>
<td>55.71759</td>
<td>1.1135e+009</td>
<td>1062</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>520</td>
<td>533</td>
<td>5.91452</td>
<td>5.74162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1024</td>
<td>652</td>
<td>692</td>
<td>52.46739</td>
<td>45.96701</td>
<td>-3.7699e+007</td>
<td>-35.953</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>566</td>
<td>579</td>
<td>5.31659</td>
<td>5.15089</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1024</td>
<td>683</td>
<td>721</td>
<td>47.35995</td>
<td>41.32388</td>
<td>1.0072e+009</td>
<td>960.57</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>589</td>
<td>605</td>
<td>5.02122</td>
<td>4.81230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1024</td>
<td>683</td>
<td>721</td>
<td>47.35995</td>
<td>41.32388</td>
<td>1.064e+009</td>
<td>1014.7</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>589</td>
<td>605</td>
<td>5.02122</td>
<td>4.81230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1024</td>
<td>683</td>
<td>721</td>
<td>47.35995</td>
<td>41.32388</td>
<td>-5.6725e+007</td>
<td>-54.097</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>589</td>
<td>605</td>
<td>5.02122</td>
<td>4.81230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1024</td>
<td>502</td>
<td>543</td>
<td>76.61168</td>
<td>70.11130</td>
<td>1.2637e+009</td>
<td>1205.2</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>637</td>
<td>649</td>
<td>4.38726</td>
<td>4.23598</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1024</td>
<td>502</td>
<td>543</td>
<td>76.61168</td>
<td>70.11130</td>
<td>1.2911e+009</td>
<td>1231.3</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>637</td>
<td>649</td>
<td>4.38726</td>
<td>4.23598</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alternatively, you can define a reference integral and integrate the defined regions of the same or of a different dataset, relative to this integral. For this purpose the button offers the following menu items:

1. **Integrate current regions rel. to reference**: You will be prompted for the reference integral number and value.
2. **List integral values**: The output list will now show an additional column with the normalized integral values.
3. **Define current dataset as reference**: You will be prompted for the reference integral number and value.
4. **Integrate and use ref. dataset for calibration**: The integral value defined on the reference dataset is used for calibration.

How to Move an Integral region

- Click - it turns gray.
- Move the mouse into the region to be moved.
- Left-click-hold and move the mouse to move the region.
- Release the mouse at the desired position.

How to Copy an Integral region

- Click - it turns gray.
- Move the mouse into the region to be copied.
- Click-hold and move the mouse to the desired position.
- Release the mouse to copy the region.
2D Interactive Manipulation

How to Delete all Integral Regions

- Click .
- Click OK to confirm deletion.

How to Read/Import Integral Regions

- Click .
- Click Read intrng to read the last stored integral ranges
 or
- Click Import Integration Regions to import an exported integral region file (see below)

How to Save/Export Integral Regions

- Click .
- Click Save Regions to intrng to save the regions to the current dataset PROCNO (file int2drng)
 or
- Click Export Integration Regions to export the integration region file for general usage;
 i.e. usage with other datasets.

How to Return from 2D Integration mode

- Click to save the current integral regions and return.
- Click to return to the 2D integration mode without save.

12.3 2D Multiple Display and Row/Column Handling

2D multiple display shows a 2D spectrum with an arbitrary number of 1D and/or 2D spectra superimposed.
Spectra are ppm aligned or Hz aligned, according to the selected axis unit.
A superimposed 1D spectrum is automatically displayed in the direction of the matching nucleus (for a hetero-nuclear 2D) or in the F2 direction (for a homo-nuclear 2D).
Although multiple display is normally used for spectra with matching nuclei, it allows to superimposed spectra with non-matching nuclei. You will get a warning that the nuclei do not match.
- Click OK to continue.

How Switch to Multiple Display mode and Read Multiple Spectra

Switching to multiple display and reading multiple spectra can be done in two different ways:
- Read a 2D dataset and click to switch to multiple display mode. Then add 1D and/or 2D spectra, e.g. from the browser or with the command re.
 or
- Select multiple spectra in the browser, right-click one of them and select Display.
 or
- Enter .md in the command line.
For a more detailed description of reading multiple data in multiple display mode, see chapter 1D Multiple Display [p. 150].

The Multiple display toolbar is displayed:

Multiple display with two 2D spectra superimposed:

Multiple display with a 1D spectrum superimposed on a 2D spectrum:

The browser in multiple display lists in the lower Data List part all open datasets (see the figure below):
How to Align Multiple 2D Spectra

2D spectra in multiple display can be individually shifted:

- Select one of the spectra in the lower part of the browser.
- Click one of the Shift Buttons in the desired direction up, down or both (e.g. hold and move the mouse).

The figure below shows a region of two comparable 1H/13C inverse 2D datasets which are shifted relative to each other.

- Click \(R \) to reset individual scaling and shifting.

How to Display the Next/Previous Name/Expno

To compare a series of spectra you can interactively increment or decrement the dataset name or expno. A dataset name is incremented according to the IconNMR naming convention of increasing extensions, e.g. name.001, name.002 etc.

- Click one of the following buttons – the button turns gray:
 - \(E^- \) Show the previous name/expno/procno of the last dataset.
 - \(E^+ \) Show the next name/expno/procno of the last dataset.
Set the increment options. Clicking this button will open the following dialog where you can select to increment the procno, expno or name, set the expno increment and switch individual scaling on/off.

How to Scan Rows/Columns

Select desired dataset(s) and click one of the following buttons to activate the scanning modus.

- Deactivation needs a second click on:
 - ![Up/Down Arrow] To scan rows in the 2D spectrum.
 - ![Left/Right Arrow] To scan columns in the 2D spectrum.
 - ![Up/Down Arrow] To scan rows and columns in the 2D spectrum.

Moving the mouse in the data field shows the current row or column in separate. Change the data selection in the Data List to switch between datasets.

To switch the modus quickly:
- right-click and in the list, select **Toggle Rows/Columns**.

To scale up the displayed row/column:
- Click or turn the mouse wheel up.

To scale down the displayed row/column:
- Click the middle mouse button or turn the mouse wheel down.

How to Grab a Row/Column

You can grab a row or column, i.e. keep it displayed in the dataset window as follows:

- Scan rows or columns as described above and hold at the desired position.
- Right-click and in the list, select **Grab Row/Column**.

Note that a grabbed row/column appears in the lower apart of the browser. It can be selected there and individually scaled or shifted.

<table>
<thead>
<tr>
<th>Toggle Rows/Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extract Row/Column</td>
</tr>
<tr>
<td>Grab Row/Column</td>
</tr>
<tr>
<td>Baseline At Center</td>
</tr>
<tr>
<td>Baseline At Bottom</td>
</tr>
</tbody>
</table>

The figure shows row 619 with the 1D baseline at the center of the dataset window.
How to Show the Next/Previous Row or Column

To display the next row/column,

- click Show next row/column.

To display the previous row/column,

- click Show previous row/column.

Alternatively, turn the mouse wheel, while pressing the Shift key to show the next/previous rows/columns.

How to Move the Selected Dataset Up/Down in the Dataset List

To move the selected dataset up,

- click Move the selected dataset up.

To move the selected dataset down,

- click Move the selected dataset down.

How to Extract a Row/Column

- Scan rows or columns as described above and hold at the desired position.
- Right-click in the dataset window and in the list, select Extract Row/Column.
- Specify the row/column number and output procno in the dialog box. Note that the ROW/COLUMN field is initialized with the grabbed row/column or, if no grabbing was done, with the current row/column.
- Click OK.

The extracted row or column is stored as a 1D dataset under the specified PROCNO and displayed in a new dataset window. In the upper left part of this, the row number and source 2D dataset is specified:
How to Copy Contour Levels from First to Other Spectra

- Click to copy contour levels from the first to the other spectra.

Note that the contour levels are only changed on screen, not on disk.

How to Position the Baseline of the Row/Column

To center the baseline:
- Right-click in the dataset window and in the list, select Baseline At Center.

To set the baseline at the bottom of the dataset window:
- Right-click in the dataset window and in the list, select Baseline At Bottom.

This works both in the scan sub mode or on a grabbed row/column.

12.3.1 2D Calibration in Multiple Display

How to calibrate data in multiple display

It is possible to align data in a multiple display interactive or in an automated in F1 and F2 direction:

To calibrate data interactively,
- select a spectra and click or to align the multiplets.
- Click the calibration button to display the following window:
The exact shifts are displayed in the dialog. The selection marks the reference data and only the selected direction will be saved. When confirming the dialog, the shifts will be saved in the processing parameter SR.

In the automated calibration step the alignment will be determined automatically. Use this feature in one of both ways:

- Click in the multiple display modus.

Next, the correctly aligned spectra will appear on the screen with a dedicated dialog on the top (see the figure above). The dialog shows the necessary chemical shift relative to the reference. The default reference in the calculation is the first dataset. Change the reference by changing the data selection. With the conformation the current result will be saved in the SR parameter.

Use the command autocalib in the command line or in AU programs (for further information read more about the command in the TopSpin Processing Manual - Analysis Commands).

12.4 2D Interactive Calibration

A 2D spectrum can be calibrated, automatically with the command sref or, interactively as described below.

How to Switch to 2D Calibration mode

- Click Process | Calib. Axis or enter .cal.

The tab bar of the active dataset window will be replaced by a toolbar: ![Toolbar](image)

The yellow button indicates that the dataset window is in calibration mode.
How to Perform a 2D Calibration

In calibration mode:

• Click in the dataset window at the reference peak to display the Calibrate window.

Note that the units for F2 and F1 (Hz or ppm) correspond to the axis units of the display.

• Enter the F2 and F1 frequency you want to assign to the reference peak.

• Click OK.

The spectrum will be calibrated and re-displayed.

How to Measure a 2D Chemical Shift Distance

• Click Chemical shift distance measurement – the button turns gray.

• Click-hold the left mouse button at one peak position and drag the mouse to another peak position.

The distance in ppm, will be displayed.

• Right-click in the dataset window to quit distance mode.
Distance measurement:
left click at first point and move mouse
right click to exit

δ(F2) 2.34 ppm / 702.72 Hz
δ(F1) 18.96 ppm / 1431.19 Hz
Distance = 19.10 ppm / 1594.40 Hz
13 Analysis

13.1 Introduction

TopSpin offers various data analysis methods including chemical shift measurement, signal to noise calculation and T1/T2 relaxation analysis as described in this chapter. Furthermore, it offers the following structure analysis tools:

1. Multiplet Analysis: Allows to easily define multiplets and deduce chemical shifts, coupling constants, multiplicities and connections.
2. Daisy: Allows to simulate spectra based on chemical shifts and coupling constants.
3. Solids Line Shape Analysis: Allows to simulate and fit calculated spectra to various experimental 1D solid NMR spectra.
5. D molecule structure editor: A program for drawing chemical structures, offering many drawing tools.
6. DNMR (Dynamic NMR) Lineshape Analysis: A program to simulate temperature dependent NMR spectra, interactively set up and iteratively refine the model parameters to get the best fit of the measured and simulated 1D NMR spectra.

Structure analysis tools can be started from the Analysis menu. They are all described in the following manuals:

- Click Help | Manuals | Analysis and Simulation | Structure Analysis Tools.

except for Daisy, which is described in the separate manual Analysis and Simulation | Daisy.

13.2 Chemical Shift Distance Measurement

How to Measure a Chemical Shift Distance

- Click Chemical shift distance measurement (button turns gray).
- Left-click-hold at one peak position and drag the mouse to another peak position. The distance in ppm, will be displayed.
- Right-click in the dataset window or move the cursor out of the dataset window to leave distance measurement mode.

13.3 1D Signal to Noise Calculation

How to Perform Interactive S/N Calculation

- Click Analyse | SiNo | Signal/Noise Calculation [. sino].

The S/N toolbar is displayed.

The current signal region (parameters SIGF1-SIGF2) and noise region (parameters NOISF1-NOISF2) are displayed.
• Move the mouse into the dataset window.
• Click-hold and drag the mouse from one edge of the signal region to the other edge. A horizontal double-headed arrow will indicate the signal region.
• Click-hold and drag the mouse from one edge of the noise region to the other edge. A horizontal double-headed arrow will indicate the noise region.
• Right-click any position in the dataset window. In the list, select **Start S/N calculation**.

The other entries allow you to redefine or clear the regions. After the noise calculation has finished, the result will appear on the screen.

How to Delete the Signal Region or Noise Region

To delete the current signal region:

• Right-click in the dataset window and in the list, select **Clear SIGREG**.

To delete the current noise region:

• Right-click in the dataset window and in the list, select **Clear NOISEREG**.

How to Edit the Limits of the Signal Region or Noise Region

• Right-click in the dataset window and in the list, select **Edit regions...**

• Enter new limit values in the appearing dialog box:
How to Change the Width of the Signal Region or Noise Region

- Right-click in the dataset window and in the list, select **Change region width**...
- Enter new width values in the appearing dialog box:

 ![Image](image1)

- Click **OK**.

 Note that as you change the width, the right limit is modified correspondingly. The left limit is kept. The S/N value is automatically recalculated and displayed.

13.4 Deconvolution

The Analysis menu of TopSpin offers the possibility of deconvolution. This line shape tool is especially useful to interpret complex spectra in which peaks cannot be defined clearly. Deconvolution calculates theoretical signals with different methods, for example Gaussian, Lorentzian or a mixture of these line shapes. As a result, information of peak position, line width and integrals of deconvolved signals are available. Furthermore, it is possible to display them graphically. With this auxiliary tool peaks of 1D and 2D NMR spectrum can be interpreted more easily. Overlapping peaks may be deconvolved into a sum of such line shapes.

To start deconvolution, expand the spectrum on the display to show the peak or peak group of interest. To activate deconvolution

- click **Analyse | Line Shapes | Fit Lorentz Gauss Functions**.
or

• enter dcon

The workflow button bar changes:

![Workflow Button Bar Change]

• Click **Destination** to define where the result will be stored.

The following dialog box will appear:

![Dialog Box]

• Click **Def. Peaks** to define the peaks to be deconvoluted.

The display changes to peak picking mode. Select the peaks as described in the chapter *1D Interactive Peak Picking [† 161]*. When done, click ![Peak List Button] and in the list, select **Save Peaklist for Deconvolution**.

• Click **View Peaks** to inspect the peak list. Here you can enter individual values for half-width and Lorentz Gauss percentage.

• Click **Params** and in the list, select values for the computation range per line [AZFW] and the integral scaling factor [CY].

• Click **Start Fit** to start the fitting process.

For further information about all deconvolution options and the parameters to be set, please look up the Processing Reference Manual (commands gdcon, ldcon, mdcon, ppp, dconpl and dcon).

TopSpin shows the deconvolution result, i.e. peak positions, line widths and integrals on the screen and stores it in the file `dconpeaks.txt` within the respective procno of the dataset:
After closing the editor window which shows the deconvolution result, TopSpin switches automatically to multiple display mode to show the original spectrum and the sum of the computed line shapes superimposed:

See also the chapter 1D Multiple Display [150] for further multiple display options.

- Click **View Fit** for further display options:
 - **View Fit Overlayed** to switch to multiple display
 - **View Numerical Result** to display the result again
 - **View Fitted Shapes** to display all deconvoluted lines individually
Please note that the results of deconvolution are approximated achievements to interpret complex spectra. These amounts are according to reality if the signal is an ideal Gauss- or Lorentzian shape and if the complete region of the signals is deconvolved.

13.5 Relaxation Analysis

Typically, relaxation data consist of a series of 1D FIDs measured with varying delays and stored as pseudo 2D data. To analyze these data, TopSpin offers an easy to use T1/T2 Relaxation Guide. Relaxation curves of various experiment types with up to six components can be fitted.

To start the Relaxation Guide click **Applications | Dynamics | T1T2 (t1t2)**.

The T1T2 toolbar is displayed:

Click the successive icons and follow the instructions on the screen.

- Click **FID** to extract an FID or a spectrum for peak determination.

Note that the latter only works if the pseudo 2D dataset have been processed. If you click FID, the extracted FID is automatically processed. We recommend entering the FID or spectrum number which was measured with the longest delay. It can be found in the **vdlst** file in the EXPNO dataset directory.

- Click **Peaks/Ranges** to define the peaks or ranges for subsequent T1/T2 calculation.
Then you can select between:

- **Manual Integration.** This will switch to Interactive integration mode. The highest peak in each region will be used for relaxation analysis.

- **Manual Peak Picking.** The selected peaks will be used for relaxation analysis.

- **Automatic mode.** Peaks will be picked automatically.

Then click **Save as…** to export regions/peaks to Relaxation Module and quit the interactive mode.

- Click **Relaxation** to switch from the 1D dataset window to relaxation analysis mode.

At the same time the relaxation parameters are displayed and can be set for the fit:
By default, this is one-component, T1-intensity fitting (Function type \texttt{uxnmrt1}) for peak 1. If the dataset was already fitted, the previous type of fitting is performed. The fitting curve is displayed in the data section and a \textit{Brief Report} is shown in the parameter section. If this default fitting is appropriate, you can view, interpret and print the results as described below. If not, you can perform the desired fitting as described below.
Perform Fitting and Calculate the Relaxation Time

Depending on the experiment, you can perform the appropriate fitting as follows:

- Select a Fitting type: Intensity or Area. Either every point reflects the intensity of the biggest peak in the defined integral range or the integral itself. Both can be used but, depending on the experiment, one of them usually give a better fitting curve.

- Click Settings to open the parameter dialog box. Select a Function Type and set the required parameters (see below).

- Click OK.

- Perform fitting and calculate the relaxation time:
 - Fit the relaxation curve for the current peak.
 - Fit the relaxation curve for all peaks.
 - Fit data according to the ASCII file t1asci.

View and interpret the results as described below.

Function Types and Parameters

The TopSpin relaxation routine offers functions for various relaxation experiments with up to 6 components:

uxnmt1 for one-component T1 experiments. Set the parameter List file name to the list type used during the acquisition. Set Pick data points to PD or PD0 (see below). The T1 fitting function is defined by the function:

\[R(t) = R(0) \times e^{-t/T1} \]
Where \(I \) is Intensity or Area according to the Fitting Type. The best fit is calculated by varying \(I(0) \), \(P \) and \(T1 \) in an iterative process according to the Levenberg-Marquardt algorithm. Clicking and executes the commands ct1 (current peak) and dat1 (all peaks), respectively.

uxnmrt2 for one-component T2 experiments. Set the parameter List file name to the list type used during the acquisition. Set Pick data points to PD or PD0 (see below). A T2 fitting function is defined by the function:

\[
I(t) = P \times \exp\left(\frac{t}{T2}\right)
\]

Where \(I \) is Intensity or Area according to the Fitting Type. The best fit is calculated by varying \(P \) and \(T2 \) in an iterative process according to the Levenberg-Marquardt algorithm. Clicking and executes the commands ct2 (current peak) and dat2 (all peaks), respectively.

invrec, satrec, cpt1rho, expdec, gaussdec, lorgauss linear, varbigdel, varlitdel, vargrad, vardamp: these functions can be used for various experiments with up to 6 components, except for cpt1rho and lorgauss which allow only 4 and 3 components, respectively. They all use the simplex algorithm and require some parameters to be set:

- Enter the Number of components.
- Click the Settings button to set the Iteration Control parameters. For each component, the initial guess (G) and step rate (S) can be set. The initial guess for \(I[0] \) must be selected such that the sum of all components does not exceed 1. If there is only one component, \(I[0] \) is usually set to 1. The step rate is usually set to about one tenth of the initial guess. If the step rate of a variable is set to zero, then this variable is not changed during the iterations.

Note that the initial guesses can also be set with the Guesses toolbar button.

Clicking and executes the commands simfit (current peak) and simfit all (all peaks), respectively.

The Fitting Function to pick data points can be:

1. pd - Pick data points for relaxation analysis (Drift value interpreted).
2. pd0 - Pick data points for relaxation analysis at constant peak positions (drift value ignored).
3. pft2 - Pick data points for T2 calculation of 1D raw data.

View the Fitting Results

When the fitting procedure has finished, the fitting curve is displayed in the data section and a Brief Report appears in the parameter section. The latter consists of:

1. The calculated relaxation values.
2. The fitted parameters.
3. The standard deviation SD.

- For further examination of the result, click one of the following buttons:

Show the fitting result of the previous peak/area.
Show the fitting result of the next peak/area.

Switch x-axis to linear scaling.

Switch x-axis to logarithmic scaling.

Switch x-axis to square root scaling.

Switch y-axis to logarithmic scaling. Note that this only works for curves with positive intensities/areas only.

Import integrals from dataset ~TEMP.

Export integrals to dataset ~TEMP.

Toggle button to hide/show information in the curve field, including algorithm, peak number and relaxation value.

Show an extended report, including the fitted intensity or area distribution. This consists of the same information as the brief report plus a table with the intensity or area distribution.

Example:

Dataset : C:/bio/data/guest/nmr/t1test/1/pdata/1
INTENSITY fit :
I[t]=I[0]+P*exp(-t/T1)
12 points for Peak 1, Cursor Point = 7.221 ppm
Results Comp. 1

I[0] = 1.215e+000
P = -2.211e+000
T1 = 19.449s
SD = 3.685e-003
tau ppm integral intensity
30.000s 7.221 2.5811e+009 1.9737e+008
10.000s 7.221 -3.2898e+008 -2.9056e+007
8.000s 7.221 -7.8525e+008 -6.4616e+007
5.000s 7.221 -1.6289e+009 -1.3101e+008
...

Print, Export of Copy the Fitting Results

To print the fitting curve:
- Click File | Print.

To export the fitting curve as a graphics file:
• Click File | Export.

To copy the fitting curve to the Windows Clipboard:
• Click Edit | Copy.
14 Printing/Exporting Data

14.1 Printing/Plotting Data

How to Print/Plot from the Menu

The current dataset window can be printed as follows:

• Click the button in the upper toolbar.
• Or click File | Print.
• Or enter print or Ctrl+p.

All these actions are equivalent; they open the Print dialog box.

In the Print dialog box:

• Select Print active window [prnt].
• Click OK.

Before printing starts, the operating system print dialog box will appear. Here you can, for example, select the printer name and the printer properties.

The Print dialog box (see the figure above) contains two further options:

1. Print with layout - start Plot Editor [Plot] - If you select this option and click OK, the Plot Editor will be started. This option is equivalent to entering plot on the TopSpin command line.

2. Print with layout - plot directly [autoplot] - Selecting this option activates the Plot Editor layout list box. Select the desired layout and click to print. Standard layouts are delivered with TopSpin. They use the Windows default printer. User defined layouts use the printer defined in the Plot Editor. On a 1D dataset, only 1D layouts are listed, on a 2D dataset only 2D layouts are listed etc.

For the last two options, the following required Parameters are available:
Use plot limits
1. **From screen/ CY** - The plot limits and maximum intensity are used as they are on the screen (processing parameter F1P, F2P and CY, respectively).
2. **From Plot Editor Reset Actions** - The plot limits and maximum intensity are set according to the Plot Editor Reset Actions (right-click inside the Plot Editor data field and choose Automation to set the Reset Actions).
3. **As saved in Plot Editor** - The plot limits and maximum intensity are set in the specified layout

Fill dataset list
1. **From your default portfolio** - The portfolio contains the current TopSpin dataset plus the data from the default Plot Editor portfolio.
2. **From portfolio saved in dataset** - The portfolio contains the current TopSpin dataset plus the data from the portfolio stored in this dataset.

Override Plotter saved in Plot Editor
If enabled, the plotter defined in the Plot Editor layout will be overridden by the plotter defined by the processing parameter CURPLOT.

How to Plot Data from the Processing guide
Printing/plotting data can be done from the Processing guide by clicking the **Plot/Print button**. If **Automatic mode** is checked, the active dataset window will be printed as it appears in the screen. If **Automatic mode** is unchecked, you will get the dialog box as displayed in the figure below.

How to Plot Data with the Plot Editor
The Plot Editor can be started from the Print dialog or from the command line (command **plot**). The Plot Editor allows to create layouts and plot data. The complete functionality is described in the online manual, which can be opened as follows:
- Click **Help | Manuals | Automation and Data Publishing | Data Publishing**

How to Print the Integral list
- Click the **Integrals** tab of the dataset window (see the figure below).
- Enter **print** or **Ctrl+p** to print.

How to Print the Peak list
- Click the **Peaks** tab of the dataset window (see the figure below).
- Enter **print** or **Ctrl+p**.
14.2 Exporting Data

How to Copy Data to Other Applications

Under MS Windows, you can easily copy the dataset window contents to other applications. To do that:

- Click Edit | Copy [copy].

This will copy the dataset window contents to the clipboard. After that you can paste the clipboard contents to any Windows application.

On Windows systems the command Edit | Copy [copy] saves bmp-format, whereas the command copy wmf stores the old wmf-format.

On Linux systems the command copy stores png-files into a temporary file. The pathname of this file is copied to clipboard.

Please note:

Some programs, when importing spectra from the clipboard or metafile, do not display the contained information correctly. Particularly when you resize the imported graphics, sections of the text, the spectrum, or the axis sometimes have disappeared. Usually this is only a display problem. When you print the respective page, the representation is correct.

How to Store (Export) a Dataset Window as Graphics File

The clipboard and metafile formats are resizable vector formats. In addition to this, TopSpin allows to save the contents of a dataset window in a graphics file of selectable type. Supported formats are .png, .jpg, .jpeg, .bmp, .emf, .wmf and .pdf. To do that:

- Click File | Export.... [exportfile].
- Navigate to the storage folder.
- Enter the destination filename and extension.
- Click Export.

The resolution of such a screen dump equals the resolution of your screen. When you import a graphics file into another program, you may lose information when resizing the graphics.

How to export projections of peak lists

Certain situations may require that the user wants to store a projection of a peak list (e.g. in order to evaluate an assignment in a 3D by verifying the annotated projected 2D-HSQC peak list on the respective 2D spectrum). Therefore, it is useful and timesaving to use the option "export projections of peak lists".

In order to create such a peak list projection, the following steps must be executed:

- Switch to the peaks tab of the dataset from which the peak list projection should be used.
- Select Export... from the peak table context menu (right-click).
Select the Project Peaks flag in the options panel of the appearing export dialogue. Please note that the active flag *Project Peak* invokes the export of the entire projections peak list. If separate peaks should be exported, they must be selected in the peak table and the flag *Export selected data* must be set.

In the dialogue box the file format can be changed according to the required application.

- Define the desired options in the upcoming projections dialogue window (i.e. target dimension and axis mapping).
The exported peak list is now of the specified dimension, where the axis are projected according to the specified axis mapping.
15 **Configuration/Automation**

15.1 **NMR Super User and NMR Administration Password**

During TopSpin installation, you are prompted to define:

1. The username for the so called NMR Super user. Under Windows this must be the name of an existing user. Under Linux it can also be a non-existing user, which is then automatically created by the installation program. After the installation, the NMR Super user is the owner of all TopSpin program files. Logging in as this user allows to remove these files, change file permissions etc. The name of the NMRSUPERUSER will be stored in the file:

 `<tshome>/conf/nmrsuperuser`

2. The NMR Administration password to be used for TopSpin configuration commands. This password can be freely chosen and is not connected to any user. It is asked for by TopSpin commands like `cf`, `expinstall` etc. The encrypted NMR Administration password is stored in the file:

 `<tshome>/conf/nmradminpassword`

Note that the NMR Super user login password and the NMR Administration password have different purposes and are totally independent. Changing one of them does not affect the other.

How to Change the NMR Administration Password

The NMR Administration password can be changed as follows:

Under Windows

- Login as NMR Super user or Administrator.
- Open a Command Prompt.
- Enter:

 `<tshome>/perl/bin/perl <tshome>/prog/bin/installnmr <NMRSUPERUSER>`

 where `<tshome>` is the TopSpin installation directory.

- Enter the old password and new password as requested.

Under Linux

- Login as NMR Super user or root.
- Open a Shell.
- Enter:

 `<tshome>/prog/bin/installnmr <NMRSUPERUSER>`

 where `<tshome>` is the TopSpin installation directory.

- Enter the old password and new password as requested.

If you don't know the old NMR Administration password, you can still define a new one. In that case, you must delete the file:

 `<x>/conf/nmradminpassword`

before you run the `installnmr` script.
15.2 Configuration

The main configuration steps are performed by the commands cf and expinstall. They can be started from the:

- Command line
- Click Manage | Spectrometer | Hardware Detection | Configure Hardware (cf)
- Click Manage | Spectrometer | Experiments/Parameters | Install Standard Experiments (expinstall)

For more details on cf and expinstall, please refer to the descriptions of these commands in the TopSpin Installation Guide and in the Acquisition Reference manual.

15.3 Parameter Set Conversion

The command paracon changes the basic frequency in parameter sets. This allows to use parameter sets which were created on a spectrometer with a different frequency. It opens the dialog box shown in chapter Automation [204].

Here you can setup a list of available parameter sets. You can select Bruker and/or User defined parameter sets and uses a match string. The matching parameter sets appear in the right part of the dialog box.

- To start the conversion, select one or more parameter sets and click OK.

15.4 Automation

How to Install AU Programs

To install AU programs, you have to run the command expinstall (see Configuration [204]).

How to Open the AU Program Dialog Box

To get a list of all AU programs,

- enter edau
- Click File | Run a Program
- Select Execute an AU program and click OK.
The next window displays either the Bruker defined or User defined AU programs as source.

Note that Bruker AU programs are only shown if the command `expinstall` has been executed once, after the installation of TopSpin.

How to Switch to the List of User defined AU Programs
- Click **Setup Preferences | Directories | Manage Source Directories** to open the AU program dialog box.

How to Switch to the List of Bruker defined AU Programs
- Click **Setup Preferences | Directories | Manage Source Directories** in the menu bar to open the AU program dialog box.

How to Define the AU Programs Source Directory
- Click **Setup Preferences | Manage Source Directories** in the AU program dialog box.
• In the field **AU Programs**: Add or modify AU program source directories.

How to Create an AU Program

• Click **File | New** in the AU program dialog box.
• Enter the AU program name in the field **New name** and click **OK**.
• Enter the AU program lines in the edit field of the appearing dialog box.
• Click **Compile** to compile the AU program.
• Click **File | Save** to store the AU program.
• Click **File | Close** to close the editor.

Alternatively, you can enter `edau <name>` on the command line to create the AU program `<name>`.

How to Edit an Existing AU Program

• Double-click the AU program name in the AU program dialog box.
Or
• Click the **Edit** button to edit the highlighted AU program.

• Modify the AU program according to you wishes.
• Click **Save** to store the AU program under the name shown in the title bar.
• You will be prompted to compile the AU program: click **OK**.

Alternatively, you can enter `edau <name>` on the command line to edit the AU program `<name>`.

How to Execute an AU Program

• Select the AU program in the AU program dialog box.
• Click the **Execute** button.

Alternatively, you can enter `<name>` or `xau <name>` on the command line to execute the AU program `<name>`.
If the AU program has not been compiled, compilation is automatically performed before the execution starts.

How to Delete an AU Program

• Select the AU program in the AU program dialog box.
• Click **File | Delete** or click the **Delete** button.

How to Show Comments (short descriptions) in the AU Program List

To switch on/off the comments in the AU program list:

• In the AU program dialog box: Click **Options** and select the entry **Comment**.

A comment is a short description of the AU program which is also part of the AU program header.
16 Remote Monitoring

16.1 What is Remote Monitoring

Remote monitoring allows the spectrometer to connect to a server and to send general system information like component temperature, power usage and similar to the server on a regular basis. The amount of data sent may depend on installed software or licenses.

The existing remote magnet monitoring system MICS (Magnet Information and Control System) is not part of it and operation is not affected by it. For more information on MICS refer to the user manual (Z33037) on the BASH DVD.

16.2 How to Enable Remote Monitoring on your AVANCE NEO Spectrometer

In the TopSpin command line, enter `adiag`. You will be asked for the Administrator password. In the following dialog, please fill in at least the required fields indicated with (*).

Login and Password refers to your user account at the AutoDiagnose web interface. If you do not have an AutoDiagnose account, please click on the button `Register for AutoDiagnose`.

![Initialisation of Remote Monitoring](image-url)
Remote Monitoring

This opens up a window in your internet browser that allows you to register at the AutoDiagnose web interface.

Please note that the **system name** is the name that was given to the spectrometer during initialization. It is intended to be an easy identifier for the user to allow for quick referencing. The **Login** required for the Initialisation of Remote Monitoring is the email address.

![Registration Form]

Figure 16.2: Registration

After registering, you will receive an email with a temporary password. Please login at the AutoDiagnose web interface and change your password.

In the initial dialog, please fill in your password. Click on the link to open the corresponding document. If you agree, select the checkbox.

As soon as all mandatory fields are filled in and you have agreed to the terms and conditions, the button Initialize RM (Remote Monitoring) becomes active. When you click on this button, the spectrometer will start sending health and status information to the cloud platform.

All messages sent to the cloud platform are encrypted. Data for authentication of your spectrometer is stored on the computer within the spectrometer console.

For further information please refer to the AutoDiagnose Software User Manual.
16.3 How to Manage Remote Monitoring

After you have initialized Remote Monitoring, typing `adiag` the TopSpin command line brings up the dialog below. It is protected by the Administrator password. It allows you to check and control whether your spectrometer is connected to AutoDiagnose.

![Manage AutoDiagnose](image)

Figure 16.3: Manage AutoDiagnose

Depending on the current state of Remote Monitoring (see further below), one or more actions are possible:

<table>
<thead>
<tr>
<th>Button</th>
<th>Effect</th>
</tr>
</thead>
</table>
| **Pause** | Temporary interrupts Remote Monitoring
Data for authentication stays stored on the spectrometer |
| **Resume** | Continues Remote Monitoring after pausing
As data for authentication has been kept, it is not necessary to re-initialize Remote Monitoring. |
| **Stop** | Stops Remote Monitoring
Stop permanently removes authentication data stored on the spectrometer. If you want to continue Remote Monitoring after stopping it, you have to re-initialize it again.
Note: Data acquired during "pause" status are not sent to the web server. |

Please note: Stopping the Remote Monitoring will also stop all services of products related to it. There will be no further service and no refund of any kind. To restart the service you have to contact your local Bruker service office.
Remote Monitoring

An icon and a text label show whether your spectrometer is currently connected to the cloud platform and sends health and monitoring data.

Please note that this is not the actual health state of your spectrometer. You can inspect the health state in the Remote Monitoring web interface.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Text</th>
<th>Remote Monitoring State</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔️</td>
<td>Running</td>
<td>Remote Monitoring is active. This means the spectrometer is sending health and status information.</td>
</tr>
<tr>
<td>⏯️</td>
<td>Paused</td>
<td>Remote Monitoring has been paused. Data for authentication is still stored on the spectrometer.</td>
</tr>
<tr>
<td>🔒</td>
<td>Pending</td>
<td>The authentication of the spectrometer at the cloud platform is not yet complete. In order to complete the authentication, it is required that cf has been executed at least once, and that a connection to the internet is available.</td>
</tr>
<tr>
<td>❓</td>
<td>Unknown</td>
<td>Remote Monitoring is inactive.</td>
</tr>
<tr>
<td>!</td>
<td>Broken</td>
<td>Remote Monitoring is inactive due to an error, e.g. lost connection to the internet.</td>
</tr>
<tr>
<td>✗</td>
<td>Deactivated</td>
<td>Remote Monitoring is inactive. This state appears directly after click on Stop. It confirms that authentication data has been removed. If you open the adiag dialog later, the state will have switched to Unknown.</td>
</tr>
</tbody>
</table>

16.4 How to Claim a Spectrometer

Consider the case that the user account in the AutoDiagnose web interface, that has been managing your spectrometer, is not accessible any more. You might want to give administrator privileges to another user in the AutoDiagnose web interface, while keeping the complete Remote Monitoring history of your spectrometer. This process is called claiming a spectrometer.

Please distinguish between user accounts & privileges in the AutoDiagnose web interface and on your local system. The AutoDiagnose web interface has its own user management, which is independent from users on your local system. Please refer to the AutoDiagnose web interface help for details.
In order to claim a spectrometer, type in `adiag` at the TopSpin command line to bring up the Manage AutoDiagnose dialog. It is protected by the Administrator password. Fill in your Login and Password at the AutoDiagnose web interface and click Claim.

![Image](Figure 16.4: Login to AutoDiagnose)

The result is that this user in the AutoDiagnose web interface will receive administrator privileges.

16.5 Products Using Remote Monitoring

To inspect the health state please login on the Remote Monitoring web interface (https://autodiagnose.bruker.com). Most of the products that will use the Remote Monitoring features will be implemented on the server. Access to data will not be within TopSpin and thus all the documentation will be provided there. However, there may be some actions or operations that have to be done on the spectrometer to correct or permit certain actions. These commands are summarized here.

16.5.1 AutoDiagnose

AutoDiagnose uses the setting of remote monitoring to transfer data to the server and to display some of the results. In addition to the connection a licenses and a special sample is needed to use the full functionality, please refer to the AutoCalibrate documentation.

For further information please refer to the AutoDiagnose Software User Manual.

16.5.2 MICS

Please note that MICS is not yet part of this interface. Please refer to Magnet Information and Control System (MICS) User Manual (Z33037) for further information.
17 User Preferences

TopSpin can be tailored to your preference in many respects. This ranges from startup options to spectrum objects, menu settings, remote connections etc. Every standard user can create his own set of preferences.

Please note, that an Administrator password is required, if the Enable GUI Restriction options was activated.

To avoid that everyone can access and administer the setup preferences,

- Check Setup Preferences | Regulated Environments | Enable GUI restrictions and protection of preferences

This assures, that modifications in the setup preferences are possible for only the ones who know the NMR administration password.

Read also the chapter Regulatory Compliance [\textsection 245].

To set user preferences:

- Click Setup Preferences [set]

A dialog box will appear with, at the left side, the categories that can be tailored:

Click the category of which you want to view/change certain objects. It will become highlighted and the corresponding objects will be displayed at the right part of the dialog box.

For example, if you click Processing References, the Processing References objects will appear at the top of the dialog box. The rest of this paragraph will describe some examples of setting various user preferences.

17.1 Define User Preferences Location for all Users

User Preferences are, by default, stored in the current user’s home directory:

\texttt{<userhome>/.topspin-<hostname>}

During the first TopSpin session, files with default settings are created there. They can then be modified with the `set` command and used in later sessions.

You can, however, also store user preferences at one central location, which are then used by all users. This location can even be a remote drive allowing to use the same preferences on all computers in the network:

- Make a backup copy of the file `<tshome>/javaenv.cmd`.
- Open the file `<tshome>/javaenv.cmd` using a text editor.
- Locate the line "set SYSTEM_PROPS=-DXWINNMRHOME="%XWINNMRHOME%" -DCOMPUTERNAME=%COMPUT...." near the beginning of the file.
- Append a white space character and then `-DPROPDIR=<dir>` to the end of this line, where `<dir>` is the definition of the storage directory, consisting of one or more parts (see below).
- Close the editor.

The definition of the storage directory for User Preferences can take three forms:

1. `-DPROPDIR=<mydir>`
 Stores the user properties in `<mydir>/prop`.
 Example: `-DPROPDIR="/x y z"` (The double quotes are only required if the directory contains white spaces).

2. `-DPROPDIR=<mydir> USER`
 Stores the user properties in `<mydir>/<login id>/prop`, where `<login id>` is the id under which the user is logged into the operating system.
 Example: `-DPROPDIR="/x y z USER"` (Specify exactly 1 space between the pathname and the string `USER`).

3. `-DPROPDIR=CURDIR`
 Stores the user properties in `<tshome>/prog/curdir/<login id>/prop`, where `<login id>` is the id under which the user logged into the operating system.

Please note that the specified directory must writable for all TopSpin users.

17.2 Basic Setup Preferences

How to Open the Last Used Dataset on Startup

- Check **Setup Preferences | Administration items | Auto-open last used dataset when restarting TopSpin**.

How to Define the Startup Actions

TopSpin allows to define any commands to be executed automatically after startup:

- Click **Manage | Commands | Setup Commands Executed at TopSpin Start**.
User Preferences

- Enter the desired startup command(s), in the appearing editor, for example:
  ```
  re exam1d_13C 1 1 c:\bio guest
  efp
  apk
  abs
  ```
 The above lines would cause TopSpin to display the dataset
  ```
  C:/bio/data/guest/nmr/exam1d_13C/1/pdata/1
  ```
 and execute the command `efp`, `apk` and `abs` on it.

 Note that you can use a single forward slash (`/`) or a double backslash (`\`) as path separator.

 Note that in TopSpin the file `autostart.mac` is a regular TopSpin macro. In older versions, however, the file `autostart.prop` was used with a different format.

How to Define Auto-Termination after Idle Time

TopSpin can be configured to be terminated after a user specified idle time:

- Click **Setup Preferences | Administration items | Automatic termination of TopSpin when idle time exceeded | Change**.
- Enter the NMR Administration password as requested and enter the number of minutes of allowed idle time.
- Click **OK** to close the dialog, click **OK** to close the Preferences dialog.
- Restart TopSpin to activate the change.

If the user does not execute any commands (from the command line, menu or toolbar buttons), a dialog will appear with an **OK** button (to terminate immediately) and/or **Cancel** button (to continue).

Automatic termination frees the license used by this TopSpin instance for other users. This solves the problem of users leaving TopSpin open and blocking a floating license although they do not currently use it.

How to Define Auto-Locking after Idle Time

TopSpin can be configured to lock the interface after a user specified idle time:

- Click **Setup Preferences | Administration items | Automatic locking of TopSpin when idle time exceeded | Change**.
- Enter the NMR Administration password as requested and enter the number of minutes of allowed idle time.
- Click **OK** to close the dialog, click **OK** to close the Preferences dialog.
User Preferences

If the user does not execute any commands (from the command line, menu or toolbar buttons), the TopSpin interface will be locked:

How to Change the Preferred Editor

Select your preferred editor as it is used by commands like edau, edpul, edcpd etc.:

- Click Setup Preferences | Text Editors | Preferred text editor | Change.
- Enter the desired Editor and its path. For example, for Wordpad:
 `C:\Program Files\Windows NT\Accessories\wordpad.exe`
- Click Save to save the changes.

If no editor is specified here, the TopSpin internal editor is used. If the file being edited is read-only, the TopSpin internal viewer is used.

How to Configure the Dataset Tab Bar

The default tab bar at the top of the dataset window consists of tabs to switch between various dataset objects like Spectrum, Parameters, Title, etc. You can, however, configure the tab bar to contain tabs for interactive data manipulation like phase correction, integration etc. These tabs have the same function as the corresponding buttons in the upper tool bar (see chapter Getting Started [31] and 1D Interactive Manipulation [137]) but are easier to access. You can configure the tab bar as follows:

- Click Setup Preferences | Windows Settings | Tabbed pane layout | Change.
17.3 Changing the Sizes of All Fonts and Icons

To improve the usability of Topspin for different screen resolutions, the size of icons and fonts can be changed:

- Click **Setup Preferences | Window Setting | All in One Fonts & Icon Size | Change**

 - Select one of the 4 different sizes
 - Click **Apply and Restart**
17.4 Changing Individual Fonts

How to Change Individual Fonts of the TopSpin Interface

- Click Setup Preferences | Windows Settings | Fonts and colors | Change.
- Set the entry Change fonts by points. You can enter a positive or negative number. The following figure shows an example of increasing the font sizes by 4 points.

![Window Fonts/Colors dialog box](image)

- Click Apply.
- Reopen the Window Fonts/Colors window.

The figure above shows the same part of the Preferences dialog box after the change of fonts. Note that:
1. The value of all font entries has been increased by 4.
2. The font of the dialog box itself is larger.
3. The change size has been reset to 0.

17.5 Changing Colors

How to Change Colors of Data Objects on the Screen

The color of various objects in a dataset window on the screen, like 1st, 2nd and 3rd spectrum, axis, parameters etc. can be changed. To set these colors:

- Click **Setup Preferences | More Preferences | Spectra Display Preferences | Change**.

 or

- Right-click in the dataset window and in the list, select **Spectra Display Preferences**.

![Spectrum colors settings](image)

- In the category **Spectrum colors** click **Change** right of the object you want to change.
- Select the desired color in the appearing dialog box and click **OK**.
- Click **Apply**.

How to Change Colors of Data Objects on the Printer

The color of data objects on the printer is independent from the color of the corresponding object on the screen. To set print colors:

- Click **Setup Preferences | More Preferences | Spectra Printing Preferences | Change**.
User Preferences

In the category **Spectrum colors** click **Change** right of the object you want to change.

Select the desired color in the appearing dialog box and click **OK**.

Click **Apply**.

How to Change Colors of the Lock Display

The colors of lock display objects can be changed as follows:

- Click **Setup Preferences** | **More Preferences** | **Lock Display Preferences** | **Change**.

- Select the desired color or number of gridlines in the appearing dialog box and click **Apply**.

How to Create a New Dataset Window Color Scheme

To create a new dataset window color scheme:

- Click **Setup Preferences** | **More Preferences** | **Spectra Display Preferences** | **Change**.

 or

- Right-click in the dataset window and in the list, select **Spectra Display Preferences** | **Spectrum colors**.
• In the group *Spectrum colors* change the background color, the color of 1st to 8th 1D spectrum and the zoom area color.

• Click **Apply**.

• Click **Save as …** right of the option *Save spectral windows colors as a new color scheme*.

• Enter a new name in the appearing dialog box.

• Click **OK**.

How to Read a Different Dataset Window Color Scheme

- Right-click in the dataset window and in the list, select *Spectra Display Preferences | Spectrum colors | Change spectral window color scheme | Change*

- In the list select the color scheme and click **OK**.

TopSpin is delivered with two color schemes:

1. *Light*: a white background with black axes.
2. *Dark*: a dark blue background with a white axis.

How to Change Peak and Integral Table Color/Spacings

- In the dataset window select the tab PEAKS or INTEGRALS.

- Right-click a Peak or Integral and in the list, select *Table properties...*

- In the Table properties window, in the tabs *Colours* and *Spacings* set the desired colors and spacings.

- Click **OK**.
17.6 Changing Lines

How to Create Thick Lines on the Screen

To create thick (double width) lines for high resolution display or screen dumps:
- Click Setup Preferences | More Preferences | Spectra Display Preferences | Change.
- or
- Right-click in the dataset window and in the list, select Spectra Display Preferences.
- In the group Spectrum extras enable the entry Use thick lines.
- Click OK.

How to Create Thick Lines on the Printer

- Click Setup Preferences | More Preferences | Spectra printing preferences | Change
- In the Spectra Printing Preferences window, in the group Spectrum extras check Use thick lines.
- Click Apply.
17.7 Auto-Archive and Archive Directory Settings

How to Auto-Archive Existing Expnos

- Click **Setup Preferences | Acquisition | Configure Accounting & Data Archiving after zg' | Change**

Configure archiving as described in the dialog:

- Click **OK**.
17.8 Disabling/Enabling the Toolbars

How to Hide the Toolbars

- Right-click in an empty area of the toolbar and in the list, select **Hide Toolbars**.

To restore the toolbars:

- Press the keys SHIFT+ESC

17.9 Defining Source Directory for Programs/Lists etc.

TopSpin allows to define the source directories for pulse programs, AU programs, integral ranges, various lists etc.

- Click **Setup Preferences | Directories | Manage source directories for edpul, edau etc. | Change**

or

- Open the dialog of any of the items, e.g. with the command **edau, edlist or edmisc**.

- Click **Options | Manage Source Directories**.

A dialog displays a list of items with the current source directories:
By default, two source directories are present, one for user defined items and one for Bruker items. This list can be modified or extended with your preferred source directories, e.g.:

- C:\my-pulse-programs\n
- C:\ts21\exp\stan\nmr\lists\pp\user

- C:\ts21\exp\stan\nmr\lists\pp

You can do this for each item separately. Items will be searched for in the order of the directories specified.
18 User Extensions

TopSpin offers various ways to extend the standard commands, buttons, programs etc.

18.1 User Notebook

You can create your own user specific notebook with the command:

- Click Manage | Commands | Notebook [nbook]

This can be used to store and retrieve any personal notes, information etc.

18.2 Macros

A macro contains a sequence of TopSpin commands. It can be created with the command `edmac`. A simple macro for processing and plotting the current dataset is:

```
em
ft
apk
sref
autocoll
```

All entries in a macro file must be written in lower case letters.

In TopSpin a macro may contain Python commands. Any line in a macro that starts with:

```
py>
```

Executes a Python command. An example of such a macro is:

```
re examld_13C 1 1 C:\bio guest
efp
py>NEWWIN() # open new window
re examld_1H 1 1 C:\bio guest
efp
py>x = INPUT_DIALOG()
py>if x == None: EXIT()
py>y = 2* int(x[0])
```
Note that commands like NEWWIN(), INPUT_DIALOG(), MSG() and EXIT() are Bruker defined whereas "x=" and "if" are original Python commands.

Once created, a macro can be executed by entering its name on the command line.

18.3 AU Programs

An AU program may contain TopSpin commands, AU macros and C-language statements. It can be created with the command edau. A simple AU program which performs the efp command on a series of dataset expnos is:

```c
#include <lib/util.h>
int first, max;
char string[80];
first = expno;
GETINT ("Enter first expno to process : ",first)
max = 10;
GETINT ("Enter number of expnos : ",max)
WPAR("tmpmefp","proc")
expno =first;
TIMES(max)
RPAR("tmpmefp","proc")
EFP
IEXPNO
END
DEXPNO
DELPAR("tmpmefp")
QUITMSG("--- multiefp finished ---")
```

Note that TopSpin commands like EFP and RPAR and AU macros like IEXPNO are written in upper case letters whereas C-language statements like "max = 10;" are written in lowercase letters. Once created, an AU program can be executed by entering its name on the command line.

For more information on writing AU programs:

- Click Help | Manuals | Programming Manuals | AU programming

18.4 Python Programs

A Python program may contain TopSpin commands, User Interface functions and Graphic functions. It is created with the command edpy.

The Python program below reads a region of the real part of a spectrum and the corresponding region of the imaginary part and displays both. The simplest form of DISPLAY_DATALIST is used.

```python
from TopCmds import *
import math
region = [80, 72] # define region in ppm
```
open testdata, don't display
testdata = ["exam1d_13C", "1", "1", "c:/Bruker/topspin", "guest"]
RE(testdata, "n")
read real and imaginary points of the region
reals = GETPROCDATA(region[0], region[1])
imags = GETPROCDATA(region[0], region[1], dataconst.PROCDATA_IMAG)
if reals == None or imags == None: EXIT()
set up list of data to be displayed and respective axis info list
dataList = [reals, imags]
DISPLAY_DATALIST(dataList)

For more information on writing Python program:
• Click Help | Manuals | Programming Manuals | Python programming

18.5 Button Panels

A button panel is a window with user-defined buttons for executing TopSpin commands, AU programs, Python programs or macros. It appears as an integral part of the active dataset window and acts on that Bruker delivers a few standard button panels like bnmr and bn-mrsel. To create your own button panels, you can modify one this or write one from scratch.

In this description we will create a very simple button panel with some 1D processing commands and print/export buttons:

To write this button panel, take the following steps:
• Open the Windows Explorer and navigate to the subdirectory:
 userdefined
 Of the user’s properties directory (To locate this, enter hist and look for the entry "User properties directory=".
• Create a text file with the name:
 cmdpanel_<name>.prop
 Where <name> is the name of the button panel.
• Enter the button definitions including Panel title, Colors, Toggle buttons, op buttons, Panel layout, Panel buttons and Tooltips.
• Save the file under a name:
 cmdpanel_<xxx>.prop
 where <xxx> is the actual name of your command panel.
 Make sure the extension of the file is .prop and not .txt, .prop.txt or anything else.
• Enter bpan <xxx> on the command line to open the button panel.
Example for a small button panel for 1D processing:

```
# Color definitions used in this file (RGB)
BLUE1=51 204 255
YELLOW1=255 255 0
GREEN1=84 196 20

# Title definition
TITLE=1D Processing Panel
TITLE_COLOR=0 0 255

# Toggle button definition
TOGGLE_BUTTON=To 2D
TOGGLE_CMD=bpan bproc2d
TOGGLE_TIP=Switch to 2D processing

# Top row button definition
TOP_BUTTONS=EM $ FT $ PK $
TOP_COLORS=YELLOW1 $ YELLOW1 $ YELLOW1
TOP_CMDS=em $ ft $ pk
TOP_TIPS=Exponential multiplication $\Fourier transform$ $\Phase correction$

# Panel button definitions

# LAYOUT format: rows columns hgap vgap
PAN_LAYOUT=1 3 8 8
PAN_BUTTONS=Print $ EXPORT $ SEND TO $
PAN_COLORS=BLUE1 $ BLUE1 $ BLUE1
PAN_CMDS=prnt $ exportfile $ smail
PAN_TIPS=Print the spectrum<br>as it appears on the screen<br>Export the dataset<br>Send the dataset by email
```

Enter `bpan exam` to display a panel with 75 buttons: 5 rows and 15 columns. The corresponding panel file is called `cmdpanel_exam.prop`, which resides in the directory:

```
<ts/home>/classes/prop/English
```

In the same directory, you can find the files `cmdpanel_bnmr.prop` and `cmdpanel_bnmrsel.prop`, which are used to display the `bnmr` and `bnmrsel` panel described above.

The texts displayed on the buttons can be graphically adjusted in various ways, because the text may optionally be specified in html format. In the example above, the PAN_BUTTONS property has no html tags. Therefore, the texts are displayed in black using the default TopSpin Dialog window font as specified in the User Preferences (command `set`). If you replace the text `Print` by the following:

```
<html><font size=10><font color="00BF00">Print<br>Now</font></html>
```

Then the new text "Print Now" is displayed in green (the color to be specified in RGB hex code), with 10 points font size. Also, "Now" is display below "Print" due to the html `
` (= break line) tag.

Note that:

1. The **Close** button and **Tips** switch are automatically created. You don’t need to specify them.
2. The TOGGLE button is typically, but not necessarily, used to call another button panel. In this example it calls the panel `bproc2d`. If TOGGLE_BUTTON is specified without a value, i.e. the entry is "TOGGLE_BUTTON=" instead of "TOGGLE_BUTTON=action text", the corresponding button is not shown in the panel.

3. Items must be separated with the "$" character, button items with "$ $"

4. A "\" followed by "end of line" continues an item on the next line.

5. Tooltips may use html tags for text formatting.

6. Commands may be specified as single commands like "em" or as composite commands like "em\nft\npk". Note that in the latter case, the commands must be separated by "\n".

7. When the `bpan <name>` command comes up with an error message, carefully check the syntax of your cmdpanel file. A common mistake is to specify the button items incorrectly. With the keyword PAN_LAYOUT you define the number of rows and columns, and the number of items will become rows*cols. All specifications such as PAN_BUTTONS, PAN_COLORS, etc. must have this number of members, otherwise you will result in a Topspin error. Please insert the "$" separator to make sure the item count is correct.

18.6 Adding User Defined Buttons to the Toolbars

The upper and lower toolbar at the top of the TopSpin window can be extended with user defined buttons. They can be assigned to any TopSpin command, macro, AU program or Python program.

To create a user defined button
- Right-click in an empty area of the upper or lower workflow toolbar.
- In the list, select **User-Defined Buttons**.
- Select the data dimension, where the button will be displayed, in the example **1D**.

- In the next window enter
 - the button text or the graphic file and pathname
 - the command to be executed
 - the tool tip text.

For an icon label, you must store the icon image file in one of the following directories:
1. `<user-home>/.topspin-<hostname>/prop/user` defined (only available for this user).
2. `<tshome>/classes/prop` (available for any user).
3. Any directory (the full pathname must be specified in the icon label field).

The formats `.gif`, `.jpg`, `.jpeg` and `.png`, are supported. Standard TopSpin icons have a size of 16 * 16 pixels. If your own icons have a different size, they are automatically rescaled and displayed at the standard size.

In the example above, a button `FT` is created with a separator, which only appears for 1D datasets, and executes the command `ft`.

How do I Remove or Disable a User Defined Toolbar Button?

- Right-click in an empty area of the upper or lower workflow toolbar.
- In the list, select User-Defined Buttons.
- Select the data dimension.
- Select a line and click Disable Display of user-defined buttons or delete the entries.

18.7 **Adding User Defined Guides**

TopSpin offers several guides like the Acquisition Guide (command `aqguide`), the Processing Guide (command `prguide`) and the T1/T2 Guide (command `t1guide`). You can set up your own guides, which can be adaptations of Bruker guides or new written ones. In order to do that, you must edit the file `toolbar_user.prop` and `cmdtab_user.prop` in the directory:

```
<user properties directory>/userdefined/
```

To identify this directory, enter the command `hist` in TopSpin.

The file `toolbar_user.prop` contains the guide definition. If the file does not exist, it must be created. Here is an example of a user modified T1/T2 guide.

```
MyT1T2Toolbar=\
NM=t1fid_40.gif, NM2=$Extract fid, TIP=$Do rser,
CMD=_t1_fid, END=,\
NM=t1spec_40.gif, NM2=$Transform, TIP=$Do ef+apk,
CMD=_t1_spec, END=,\
NM=t1ranges_40.gif, NM2=$Ranges, TIP=$Enter integ. mode,
CMD=_t1_ranges, END=,\
NM=t1screen_40.gif, NM2=$Relax. Window, TIP=$Enter Relax mode,
CMD=_t1_relax, END=, NM=-, END=,\
NM=myicon.gif, NM2=$Fit Methods, TIP=$Select fit funcs.,
CMD=_t1_func, END=,\
NM=c:/myicons/myicon1.gif, NM2=$Start, TIP=$ct1,ct2, simfit,
CMD=_t1_start, END=,\
NM=c:/myicons/myicon2.gif, NM2=$Show Report, TIP=$report,
CMD=_t1_report, END=,\
NM=t1print_40.gif, NM2=$Print it, TIP=$print,
CMD=_t1_export, END=
```

Notes to this guide definition:
1. The original Bruker guides are defined in the file `toolbar.prop` in the directory `<tshome>/classes/prop`. The corresponding commands are defined in `cmdtab_main.prop` in the same directory.

2. The bold lines in the example above are user-modified lines.

3. `NM=t1fid_40.gif`: a Bruker defined icon with a size of 40x40 pixels.

4. `NM=myicon.gif`: a user-defined icon, which must be located in the user properties directory (Caution: not in its subdirectory userdefined).

5. `NM=C:/myicons/myicon1.gif`: a user-defined icon located C:/myicons. Using the absolute pathname allows you to store icons in an arbitrary directory.

6. `NM=` Indicates the start of the second icon column.

7. `NM2=` The text to appear underneath of the icon. The $ sign is mandatory.

8. `CMD=` The command to be executed when the icon is clicked. This can be a regular TopSpin command, a macro or an AU or Python program.

9. `TIP=` The tooltip to be displayed when the cursor is held over the icon. Note that the $ sign is mandatory.

Before you can start a user defined guide, you must edit the file `cmdtab_user.prop` and define the corresponding command in the file, for example:

```
myt1guide=EM=J, MC=N, CL=tutor.TutStarter, ME=startTutorial, AR=MyT1T2Toolbar;My T1 T2 Tutorial=
```

Here:

1. "MyT1T2Toolbar" is the toolbar identifier as it is used in the file `toolbar_user.prop`.

2. "My T1 T2 Tutorial" is the title as it appears at the top of the guide.

If your guide is a Bruker modified guide, you can also redefine the original Bruker command, i.e. specify `t1guide` instead of `myt1guide`. Note that the original Bruker guide is then no longer accessible.

If you want to access a user defined guide from the TopSpin toolbar, you must create a new toolbar button. To do that, right-click in an empty area of the toolbar and define a button in the appearing dialog.
19 Commands and Function Keys

19.1 Command Line Usage

How to Put the Focus in the Command Line.
In order to enter a command on the command line, the focus must be there. Note that, for example, selecting a dataset from the browser, puts the focus in the browser. To put the focus on the command line:

• Click Esc
or
• Click inside the command line.

How to Retrieve Previously Entered Commands
All commands that have been entered on the command line since TopSpin was started are stored and can be retrieved. To do that:

• Click ↑ (Up-Arrow).
By hitting this key repeatedly, you can go back as far as you want in retrieving previously entered commands. After that you can go forward to more recently entered commands as follows:

• Click ↓ (Down-Arrow).

How to Change Previously Entered Commands

• Click ← (Left-Arrow) or → (Right-Arrow) to move the cursor.
• Add characters or click Backspace to remove characters.
• Mark characters and use Backspace or Delete to delete them, Ctrl+c to copy them, or Ctrl+v to paste them.
In combination with the arrow-up/down keys, you can edit previously entered commands.

How to Enter a Series of Commands

To execute a series of commands on a dataset, enter the commands on the command line separated by semicolons, e.g.:

`em;ft;apk`

To use a series regularly, store it in a macro as follows:

- Right-click in the command line and select **Save as macro**.

19.2 Command Line History

TopSpin allows to easily view and reuse all commands, which were previously entered on the command line. To open a command history control window, in the structure window click **Command Line History**, or right-click in the command line and select **Command Line History**, or enter the command `cmdhist`:
It displays all commands that have been entered on the command line since TopSpin was started. You can select one or more commands and apply one of the following functions:

Execute

Execute the selected command(s).

Append

Append the (first) selected command to the command line. The appended command can be edited and executed. Useful for commands with many arguments such as `re`.

Save as...

The selected command(s) are stored as a macro. You will be prompted for the macro name. To edit this macro, enter `edmac <macro-name>`. To execute it, just enter its name on the command line.

19.3 Starting TopSpin Commands from a Command Prompt

TopSpin commands can be executed outside of the TopSpin interface, from a Windows Command Prompt or Linux Shell.

Under Windows

1. Open a Windows Command Prompt.
2. Enter a TopSpin command in the following format:

 `<tshome>\prog\bin\sendgui <topspincommand>`, where `<tshome>` is the TopSpin installation directory.

 Examples:

H9469SA3_12_012 237 / 272
Commands and Function Keys

C:\ts2.1\prog\bin\sendgui ft executes a 1D Fourier transform.
C:\ts2.1\prog\bin\sendgui re exam1d_1H 1 1 C:/bio joe reads the dataset C:/bio/joe/nmr/exam1d_1H/1/pdata/1.

Under Linux

1. Open a Linux Shell.
2. Enter a TopSpin command in the following format:
 <tshome>\prog\bin\scripts\sendgui <topspincommand>, where <tshome> is the TopSpin installation directory.
 or
 sendgui <topspincommand>, if the TopSpin home directory is in the users search path.

Examples:
C:\ts2.1\prog\bin\scripts\sendgui ft executes a 1D Fourier transform.
sendgui re exam1d_1H 1 1 C:/bio joe reads the dataset C:/bio/joe/nmr/exam1d_1H/1/pdata/1.

Note that commands are executed on the currently active TopSpin dataset window.

19.4 Function Keys and Control Keys

For several TopSpin commands or tasks, you can use a control key or function key short cut. **Note**, that some of the keys are available only on a QWERTY keyboard. On an AZERTY keyboard use **Suppr** instead of **Delete**, **Fin** instead of **End**…

Focus anywhere in TopSpin

<table>
<thead>
<tr>
<th>Key Combination</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esc</td>
<td>Put the focus in the command line.</td>
</tr>
<tr>
<td>Shift + Esc</td>
<td>Display menu bar and toolbars (if hidden).</td>
</tr>
<tr>
<td>F2</td>
<td>Put the focus in the browser.</td>
</tr>
<tr>
<td>F1</td>
<td>Search for string in command help or NMR Guide [help].</td>
</tr>
<tr>
<td>F6</td>
<td>Select the next window in the data area.</td>
</tr>
<tr>
<td>Alt + F4</td>
<td>Terminate TopSpin [exit].</td>
</tr>
<tr>
<td>Ctrl + d</td>
<td>Switch the browser on/off.</td>
</tr>
<tr>
<td>Ctrl + o</td>
<td>Open dataset [open].</td>
</tr>
<tr>
<td>Ctrl + f</td>
<td>Find data [find].</td>
</tr>
<tr>
<td>Ctrl + n</td>
<td>New dataset [new].</td>
</tr>
<tr>
<td>Ctrl + p</td>
<td>Print current data [print].</td>
</tr>
<tr>
<td>Ctrl + s</td>
<td>Save current data [sav].</td>
</tr>
<tr>
<td>Ctrl + w</td>
<td>Close active window [close].</td>
</tr>
<tr>
<td>Ctrl + c</td>
<td>Copy a text that you selected/highlighted in an error box, dialog box, pulse program, title etc., to the clipboard.</td>
</tr>
<tr>
<td>Ctrl + v</td>
<td>Paste text from the clipboard into any editable field.</td>
</tr>
</tbody>
</table>
Focus in the command line

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl+ Backspace</td>
<td>Kill current input.</td>
</tr>
<tr>
<td>Ctrl+ Delete</td>
<td>Kill current input.</td>
</tr>
<tr>
<td>UpArrow</td>
<td>Select previous command (if available).</td>
</tr>
<tr>
<td>DownArrow</td>
<td>Select next command (if available).</td>
</tr>
</tbody>
</table>

Focus in the "striped" tables (e.g. edsolv, ednuc, peaks, integrals, cortab etc.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl + C</td>
<td>Copy the currently selected table rows to the system’s clipboard as a CSV-formatted table.</td>
</tr>
<tr>
<td>Home</td>
<td>The table package assumes that data will always be represented by complete rows rather than individual cells. This makes a re-binding of [Home] necessary, to enforce the behavior of jumping to the first row.</td>
</tr>
<tr>
<td>End</td>
<td>The table package assumes that data will always be represented by complete rows rather than individual cells. This makes a re-binding of [End] necessary, to enforce the behavior of jumping to the last row.</td>
</tr>
<tr>
<td>Shift + Home</td>
<td>The table package assumes that data will always be represented by complete rows rather than individual cells. This makes a re-binding of [Shift + Home] necessary, to enforce the behavior of selecting all rows starting from the current anchor to the first row.</td>
</tr>
<tr>
<td>Shift + End</td>
<td>The table package assumes that data will always be represented by complete rows rather than individual cells. This makes a re-binding of [Shift + End] necessary, to enforce the behavior of selecting all rows starting from the current anchor to the last row.</td>
</tr>
<tr>
<td>Ctrl + Numpad +</td>
<td>Auto-resizes all columns such that the data fits optimally.</td>
</tr>
<tr>
<td>Ctrl + Shift + X</td>
<td>Opens the export dialog.</td>
</tr>
<tr>
<td>Ctrl + Shift + I</td>
<td>Opens the import dialog.</td>
</tr>
<tr>
<td>Ctrl + Shift + P</td>
<td>opens the table properties dialog.</td>
</tr>
<tr>
<td>Ctrl + Shift + V</td>
<td>Opens the print preview.</td>
</tr>
</tbody>
</table>

Focus in the peak table

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete</td>
<td>Deletes the current selection of peaks.</td>
</tr>
<tr>
<td>Enter</td>
<td>Zooms the spectrum pane in the current MDI window such that all selected objects are visible.</td>
</tr>
<tr>
<td>Ctrl + e</td>
<td>Starts the annotation editor of the currently anchored peak.</td>
</tr>
<tr>
<td></td>
<td>See the example in the next figure.</td>
</tr>
<tr>
<td>Ctrl + Shift + R</td>
<td>Opens the Axis Rotation window.</td>
</tr>
<tr>
<td>Ctrl + Shift + S</td>
<td>Opens the Shift peaks window.</td>
</tr>
<tr>
<td>Ctrl + Shift + D</td>
<td>Opens the Detailed peak picking information window for the current selected peaks.</td>
</tr>
</tbody>
</table>
Commands and Function Keys

Ctrl + Shift + A
Opens the Annotate by reference window. Before, a reference peak must be defined: right-click and in the list, select **Define as reference**.

Focus in the browser

<table>
<thead>
<tr>
<th>Key</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>UpArrow</td>
<td>Select previous dataset.</td>
</tr>
<tr>
<td>DownArrow</td>
<td>Select next dataset.</td>
</tr>
<tr>
<td>Enter</td>
<td>dir/user/name/expno selected: expand node or collapse node, depending on the current state.</td>
</tr>
<tr>
<td>Enter</td>
<td>procno selected: display this dataset.</td>
</tr>
<tr>
<td>Ctrl+Enter</td>
<td>name/expno selected: display this dataset.</td>
</tr>
<tr>
<td>Enter</td>
<td>multiple procnos selected: show in multiple display</td>
</tr>
<tr>
<td>Delete</td>
<td>one or more name/expno/procno nodes selected: delete these datasets.</td>
</tr>
</tbody>
</table>

Focus anywhere in TopSpin

Scaling Data

<table>
<thead>
<tr>
<th>Key Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt + PageUp</td>
<td>Scale up the data by a factor of 2 (\times 2).</td>
</tr>
<tr>
<td>Alt + PageDown</td>
<td>Scale down the data by a factor 2 (/2).</td>
</tr>
<tr>
<td>Ctrl + Alt + PageUp</td>
<td>Scale up by a factor of 2, in all dataset windows.</td>
</tr>
<tr>
<td>Ctrl + Alt + PageDown</td>
<td>Scale down by a factor of 2, in all dataset windows.</td>
</tr>
<tr>
<td>Alt + Enter</td>
<td>Perform a vertical reset.</td>
</tr>
<tr>
<td>Ctrl + Alt + Enter</td>
<td>Perform a vertical reset in all dataset windows.</td>
</tr>
</tbody>
</table>

Zooming Data

<table>
<thead>
<tr>
<th>Key Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt + Plus</td>
<td>Click the + plus sign on the standard keyboard, not on the numeric keypad.</td>
</tr>
<tr>
<td>Alt + Minus</td>
<td>Click the - minus sign on the standard keyboard, not on the numeric keypad.</td>
</tr>
<tr>
<td>Ctrl + Alt + Plus</td>
<td>Zoom in, in all dataset windows.</td>
</tr>
<tr>
<td>Ctrl + Alt + Minus</td>
<td>Zoom out, in all dataset windows.</td>
</tr>
</tbody>
</table>

Shifting Data

<table>
<thead>
<tr>
<th>Key Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt + UpArrow</td>
<td>Shift spectrum up (.su).</td>
</tr>
<tr>
<td>Alt + DownArrow</td>
<td>Shift spectrum down (.sd).</td>
</tr>
</tbody>
</table>
Commands and Function Keys

<table>
<thead>
<tr>
<th>Alt+ LeftArrow</th>
<th>Shift spectrum to the left [.sl].</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt+ RightArrow</td>
<td>Shift spectrum to the right [.sr].</td>
</tr>
<tr>
<td>Ctrl+ Alt+ UpArrow</td>
<td>Shift spectrum up, in all dataset windows.</td>
</tr>
<tr>
<td>Ctrl+ Alt+ DownArrow</td>
<td>Shift spectrum down, in all dataset windows.</td>
</tr>
<tr>
<td>Ctrl+ Alt+ LeftArrow</td>
<td>Shift spectrum to the left, in all dataset windows.</td>
</tr>
<tr>
<td>Ctrl+ Alt+ RightArrow</td>
<td>Shift spectrum to the right, in all dataset windows.</td>
</tr>
</tbody>
</table>

Focus in a table (e.g. peaks, integrals, nuclei, solvents)

<table>
<thead>
<tr>
<th>delete</th>
<th>Delete the selected entries.</th>
</tr>
</thead>
<tbody>
<tr>
<td>home</td>
<td>Select the first entry.</td>
</tr>
<tr>
<td>end</td>
<td>Select the last entry.</td>
</tr>
<tr>
<td>Shift+ Home</td>
<td>Select the current and first entry and all in between.</td>
</tr>
<tr>
<td>Shift+ End</td>
<td>Select the current and last entry and all in between.</td>
</tr>
<tr>
<td>DownArrow</td>
<td>Select next entry.</td>
</tr>
<tr>
<td>UpArrow</td>
<td>Select previous entry.</td>
</tr>
<tr>
<td>Ctrl+ a</td>
<td>Select all entries.</td>
</tr>
<tr>
<td>Ctrl+ c</td>
<td>Copy the selected entries to the clipboard.</td>
</tr>
<tr>
<td>Ctrl+ z</td>
<td>Undo last action.</td>
</tr>
<tr>
<td>Ctrl+ y</td>
<td>Redo last undo action.</td>
</tr>
</tbody>
</table>

Focus in a plot editor

<table>
<thead>
<tr>
<th>F1</th>
<th>Opens the help window.</th>
</tr>
</thead>
<tbody>
<tr>
<td>F5</td>
<td>Refresh.</td>
</tr>
<tr>
<td>Ctrl+F6</td>
<td>Display next layout.</td>
</tr>
<tr>
<td>ctrl+ Shift+ F6</td>
<td>Display previous layout.</td>
</tr>
<tr>
<td>Ctrl+ tab</td>
<td>Display next layout.</td>
</tr>
<tr>
<td>delete</td>
<td>Delete the selected objects.</td>
</tr>
<tr>
<td>Ctrl+ a</td>
<td>Select all objects.</td>
</tr>
<tr>
<td>Ctrl+ i</td>
<td>Open TopSpin Interface.</td>
</tr>
<tr>
<td>Ctrl+ c</td>
<td>Copy the selected object from the Clipboard.</td>
</tr>
<tr>
<td>Ctrl+ l</td>
<td>Lower the selected object.</td>
</tr>
<tr>
<td>Ctrl+ s</td>
<td>Save the current layout.</td>
</tr>
<tr>
<td>Ctrl+ p</td>
<td>Print the current layout.</td>
</tr>
<tr>
<td>Ctrl+ q</td>
<td>Close the Plot Editor window (Linux only).</td>
</tr>
<tr>
<td>Ctrl+ r</td>
<td>Raise the selected object.</td>
</tr>
<tr>
<td>Ctrl+ t</td>
<td>Reset X and Y scaling of all marked objects.</td>
</tr>
<tr>
<td>Ctrl+ v</td>
<td>Paste the object from the Clipboard.</td>
</tr>
<tr>
<td>Ctrl+ w</td>
<td>Open the attributes dialog window.</td>
</tr>
</tbody>
</table>
Commands and Function Keys

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl + x</td>
<td>Cut the selected object and place it on the Clipboard.</td>
</tr>
<tr>
<td>Ctrl + z</td>
<td>Undo the last action.</td>
</tr>
</tbody>
</table>

Note that the function of function keys can be changed as described in chapter *User Defined Functions Keys* [p. 243].

19.5 Help for Individual Commands, Command Index

To get help for an individual command, for example `ft`:

- Enter `ft?`
- Enter `help ft`

In both cases, the HTML page with a description of the command will be opened.

Note that some commands open a dialog box with a Help button. Clicking this button will show the same description as using the `help` command. For example, entering `re` and clicking the Help button in the appearing dialog box opens the same HTML file as entering `help re` or `re?`.

![Image of the dialog box for the `re` command]

How to Use the Command Index

To open the TopSpin command index:

- Enter `cmdindex`.
- Click Help | Commands

From there you can search for and click any command and jump to the corresponding help page.
19.6 User Defined Functions Keys

The default assignment of functions keys is described in chapter Function Keys and Control Keys [p. 238] and in the document TopSpin Control and Function Keys.

Click Help | Manuals | General | Control & Function Keys.

Assign own commands to functions keys. Example:

1. Open the file cmdtab_user.prop, located in the subdirectory userdefined of the user properties directory (to locate this directory, enter hist and look for the entry "User properties directory="). The file cmdtab_user.prop is initially empty and can be filled with your own command definitions.

2. Insert e.g. the following lines into the file: _f3=$em_f3ctrl=$ft_f3alt=$pk_f5=$halt_f5ctrl=$reb_f5alt=$popt

3. Restart TopSpin.

Strike the F3 key and the command em will be executed. In the same way, Ctrl+ F3, Alt+ F3, F5, Ctrl+ F5 and Alt + F5 will execute the commands ft, pk, halt, reb and popt, respectively. You can assign any command, macro, AU program or Python program to any function keys. Only the keys Alt+ F4, F6, Ctrl + F6, and Alt + F6 are currently fixed. Their function cannot be changed.

19.7 How to Open Multiple TopSpin Interfaces

TopSpin allows to open multiple User Interfaces. This is, for example, useful to run an acquisition in one interface and process data in another. To open an addition interface, enter the command newtop on the command line. To open yet another interface, enter newtop in the first or in the second interface. The display in each interface is completely independent from the others. As such, you can display different datasets or different aspects of the same dataset, e.g. raw/processed, regions, scaling etc. When the dataset is (re)processed in one interface, its display is automatically updated in all TopSpin interfaces.

The command exit closes the current TopSpin interface. Interfaces that were opened from this interface remain open. Entering exit in the last open TopSpin interface, finishes the entire TopSpin session. The position and geometry of each TopSpin interface is saved and restored after restart.
Chapter 20: Regulatory Compliance

TopSpin complies with the FDA 21 CFR Part 11 regulations. Please read the document, accessible under Help | Manuals | Good Laboratory Practice | 21 CFR Part 11 compliance. This chapter describes the respective functionalities provided by TopSpin in detail.

20.1 Preference Settings

The following Preference settings specifically support operation in regulatory compliance.

20.1.1 GUI Restrictions and Protection of Setup Preferences

If this option is active, modifications in the setup preferences are possible for only the ones who know the NMR administration password. In Plot Editor the operations Cut, Copy, Paste, Delete, Duplicate, and the editing of text objects and parameter objects are disabled. It also disables the commands expl, shell, and the button Open in the Files dialog. These activities would offer access to operating system level otherwise.

- Enable Setup Preferences | Regulated Environments | Enable GUI restrictions and protection of preferences

20.1.2 Extended Audit Trailing

As default all common functions as acquisition, processing and status parameter change are logged in the audit trail. To record all parameter changes on a dataset, the extended audit trailing must be enabled:

- Check Setup Preferences | Regulated Environments | Enable extended audit trailing

20.1.3 Disable Options for Deletion of RAW Data

If this option is active, deletion and renaming of data set NAME or EXPNO parts are prohibited. PROCNO elements are still changeable, i.e. processing data parts of data sets can be deleted. Commands del, delf, delser and similar are disabled. The related Delete and Rename actions in TopSpin’s data browser are prohibited. The command delete shows the dialog but with disallowed options removed.

- Check Setup Preferences | Regulated Environments | Disable options for deletion of RAW data

20.1.4 Disable Options for Deletion of Data Sets in General

If this option is active, neither NAME, EXPNO nor PROCNO elements can be deleted, or renamed. Commands delp, deli, dels and similar are disabled. The related Delete and Rename actions in TopSpin’s data browser are prohibited. The command delete shows the dialog but with disallowed options removed.

- Check Setup Preferences | Regulated Environments | Disable options for deletion of data sets in general

20.2 Audit Trails

-
20.2.1 The Raw Data Audit Trail

Each expno sub-directory contains a text file `audita.txt`, the audit trail of the raw data. This reflects the acquisition state of the raw data and contains a checksum for the file itself (audita.txt) and one for the raw data file (fid or ser). The latter checksum links the audit file with the raw data. By means of the checksums, any illegal manipulation of the audit file or the raw data file can be detected, using the TopSpin commands `audit` or `auditchck`. Whenever an acquisition is started, the possibly existing audit file is overwritten by a new one, belonging to the new raw data file. By default, the user is warned when the current dataset already contains raw data, thus preventing accidental overwriting (The option “Override existing fid without inquiry” is, by default, OFF.

To change this option,

- Check Setup Preferences | Acquisition | Overwrite existing FID without inquiry (ZG safety off).

20.2.2 The Processed Data Audit Trail

Each procno sub-directory contains a text file `auditp.txt`, the audit trail of the processed data. It reflects the processing state of the processed data and contains a checksum for the file itself (`auditp.txt`), and a checksum for the real processed data files (`1r`, `2rr`, `3rrr`, ...). The latter checksum links the audit file with the processed data. By means of the checksums, any illegal manipulation of the audit file or the processed data file can be detected, using the TopSpin commands `audit` or `auditchck`. Whenever a processing command is performed, the current audit file is updated with this command and its associated parameters. When processing starts from scratch (from a raw data file), the existing audit file is overwritten. As such, the processed data can always be regenerated from raw data by applying the commands and parameters listed in the audit trail.

If the laboratory management does not allow data files or audit trails to be deleted, a respective saving procedure must be established. For this purpose, TopSpin provides data copying commands, which may be called in a user defined macro or AU program, before a new acquisition or processing starts.

20.2.3 Viewing Audit Trails

Since audit trails are regular ASCII text files, they can be viewed or printed with any text editor, outside of TopSpin. Within TopSpin, you can use the command `audit` or click Manage | Security | Show/Verify Audit Trails.
This opens the dialog box:

![Audit trail dialog box]

Selection **Show current dataset audit trail** provides an Audit Trail Report PDF, for example:

![Audit Trail Report]

Selection **Verify audit trails** performs an audit trail check, i.e. a data consistency check. If both raw and processed data are consistent, a message is displayed:

![Audit file check dialog box]
If the data have been manipulated outside of TopSpin, e.g. with third party software, the checksum will be inconsistent. The next figure shows the message for inconsistent processed data.

The fourth and fifth entry in the Audit Trail dialog box allow to add a comment to the raw or processed audit trail files, respectively.

20.2.4 Audit Trail Contents

The contents of an audit file are grouped in the following way:

(NUMBER, WHEN, WHO, WHERE, PROCESS, VERSION, WHAT)

These entries have the following meaning:

NUMBER

Running number of an entry, starting with 1.

WHEN

Date of the entry, e.g. <2004-03-30 10:55:36.171 +0200>, where the last value represents the offset in hours to Universal Time (UTC).

WHO

The user logged in, at the time the entry was generated. It has one of the two forms: <user1> or <user1/user2>. The user <user1> is always the user who is logged into the operating system (Windows or Linux user), and who started TopSpin. <user2> only appears, if the NMR administrator has setup an internal TopSpin user administration, and the option Enforce "login" for working with TopSpin in the User Administration dialog is enabled (see below, command `uadmin`). In this case <user2> is the current internal TopSpin user.

WHERE

The network name of the current computer, e.g. <EOS2>.

PROCESS

The TopSpin process (module) which performed the acquisition or processing.

VERSION

The TopSpin version which performed the acquisition or processing.

WHAT

The type of acquisition or data manipulation performed.

Note that if only the entries NUMBER, WHEN, WHO, WHERE, WHAT are present, then the audit trail was created by TopSpin 1.3 or older.
20.2.5 Adding Comments to Audit Trail

Audit trail entries are normally generated automatically by a respective acquisition or processing command. However, a user can also add a comment manually, using the `auditc` command. This is available either from the command line, or from the menu under Manage | Security | Add a comment to dataset audit trail (auditc).

A dialog is opened allowing to enter the comment and the target component (RAW or processed data).

![Audit Trail Entry Dialog](image)

You may also add a comment to the raw data or processed data audit trail from an AU program, using the macros AUDITCOMMENTA(comment) or AUDITCOMMENTP(comment), respectively.

20.2.6 Auditing User Defined Data Manipulations

When manipulating a data file with a user-defined algorithm, e.g. by means of an AU program or external program, the data file and the respective audit trail become inconsistent (detectable with the command `auditcheck`), and the dataset is no longer compatible with regulations. In order to solve this problem, TopSpin provides a function CheckSum File, which adds the correct data checksum to the audit trails, and a function Audit Append for additional text (an alternative to the comment function described above). These functions are described in the AU manual which can be opened by clicking Help | Manuals | Programming Manuals | AU programming.

20.2.7 Audit Trails in JCAMP-DX and ZIP Archives

The TopSpin commands `tojdx` and `tozip` allow to store a dataset into a single file in the internationally standardized ASCII-type JCAMP-DX format or in the well-known ZIP format, respectively. Both storage formats retain the audit trails. When unpacking such files with `fromjdx` or `fromzip`, respectively, the original dataset in standard Bruker format is restored. The command `auditcheck` may be used to check whether the data are still consistent. If, for example, JCAMP-DX or ZIP file have been manipulated, the data might not be consistent.

20.3 Electronic Signatures

20.3.1 Signing a Dataset

The command `esign` adds an electronic signature to the raw data or to the processed data of a dataset. It opens a dialog where you can select the data component to be signed, the signature meaning and, optionally, add a comment. The command `esign` requires that the NMR administrator has set up a list of users who are allowed to sign a dataset, along with definitions of signature meanings (e.g. review, approval). See below for details, command `uadmin`.
20.3.2 Structure of a Signature

In TopSpin, an electronic signature is realized as a special entry appended to the audit trail of the raw or processed data. It is therefore linked with the data and protected against manipulations just like any other audit trail entry. Signatures can be viewed with the command `audit`.

An electronic signature consists of the following items:

USER ID

The ID of the user logged in at the time `esign` was executed. This is either the user who was logged into the operating system (Windows or Linux user), and who started TopSpin, or the TopSpin internal user. Which of these two modes is applied depends on how the NMR administrator configured TopSpin: If the option Enforce "login" for working with TopSpin is disabled (see below, command `uadmin`), the first mode is active, otherwise the second.

What is the difference between the modes?

- In the first case, the System User (= Windows or Linux user) who started TopSpin signs the dataset. Prior to signing, `esign` requests this user's password, which is administrated by the operating system (OS). No internal TopSpin user management plays a role. Advantage: This mode is entirely OS compliant. Disadvantages: a) TopSpin termination/restart is required when a different user wants to sign data (alternatively several licenses would admit simultaneous TopSpin sessions). b) All TopSpin users must have an OS login.

- In the second case, any TopSpin internal user who is enabled by the NMR administrator (with `uadmin`) may sign. Advantage: Convenient and easy usage. Disadvantage: TopSpin internal user management is required (internal users and their passwords).

USER NAME

The complete name of the signer as specified by the NMR administrator during user administration (command `uadmin`).

SIGNATURE MEANING

The meaning of a signature e.g. Review or Approval. A user may only select meanings that were assigned to him by the NMR administrator during user administration.

SIGNATURE COMMENT

Any text.

20.3.3 Displaying the Electronic Signature in the Dataset Window

The electronic signature can be displayed in the dataset window by setting the corresponding display component.

- Right-click in the dataset window and select Spectra Display Preferences... [.dopt].
• In the group **Spectrum components** check **Electronic Signature** and click **Apply**.

The electronic signature will appear, at the upper left corner, below the title.

20.3.4 Plotting the Electronic Signature

When plotting a dataset using TopSpin's plot editor (commands **plot** and **autoplot**), an electronic signature is automatically plotted (unless this feature is disabled), if the last entry of the audit trail of the data to be plotted is an electronic signature. This ensures that after signing no more data manipulations have been performed.

20.3.5 Multiple Signatures

The command **esign** may be applied several times to a dataset, for instance if two persons (say an operator and an administrator) must sign in accordance with company regulations.

20.3.6 Validity and Security of Signatures

TopSpin electronic signatures of datasets must not be confused with digital signatures as defined in applicable law. Digital signature laws are usually country dependent. They require the administration of passwords (more general: electronic keys which authenticate the owner of the document) to be performed by authorized trust centers. In contrast, TopSpin uses OS-encrypted passwords or internal user passwords encrypted by TopSpin itself.

For this reason, a Standard Operating Procedure (SOP) of the company or institution that wishes to apply TopSpin signatures must exist defining the role of TopSpin signatures.

For this reason, companies and institutions that want to apply TopSpin signatures must have a Standard Operating Procedure (SOP), which defines the role of these signatures.

Note that digital signatures complying with respective laws requires special software, and the involvement of trust centers. Bruker refers to the respective commercial software for this purpose.

20.4 Password Controlled Login Identification

20.4.1 Definition of an Internal User

In TopSpin, the NMR administrator may set up a list of internal TopSpin users. An internal user need not have a user account for the operating system and is only known to TopSpin. Such a user is characterized by the following items:

USER ID

A short unique string of characters identifying a user (e.g. guest).

USER NAME

A long string of characters, usually the full name of a user (e.g. Franz J. Maier).

SIGNATURE MEANINGS

A list of items separated by comma (e.g. Approval, Review), an empty string or the special string “-NONE-“. In the latter two cases, this user cannot electronically sign data. In all other cases, the user is allowed to sign. The **esign** dialog allows the user to select one of the items to specify the meaning of the signature.
PASSWORD
A password for this user, required for using TopSpin and for applying an electronic signature.

20.4.2 How to Setup Internal Users
In order to define or modify the list of internal users:
• Click Manage | Security | Internal User Administration (uadmin).
 or
 • enter uadmin.

• Enter the NMR administration password.

A dialog will appear where you can add, remove and/or modify users and passwords.

20.4.3 How to Change the Internal User Password
To change the password of the internal user:
• Enter chpwd on the command line.
 or
 • click Manage | Security | Change Internal User Password and enter the user ID and the new password twice, as requested.

20.4.4 Login/Logoff
The uadmin command allows the administrator to make a TopSpin internal user mandatory. To do that, enable Enforce login for working with TopSpin at the top of the dialog, click Save+Close and restart TopSpin. After the restart, a login prompt will be displayed, and TopSpin cannot be used without entering an internal user and his password.

To log off the internal user:
• Click Manage | Security | Log Off From Internal User and enter the username and password as requested.
 or
 • enter logoff.
If TopSpin internal user is not mandatory, i.e. the entry Enforce "login" for working with TopSpin is disabled, you are not prompted to login after TopSpin startup. You can, however, still login as internal user with the command \texttt{login}.

20.4.5 Locking TopSpin's Graphical User Interface

TopSpin can be locked, such that it does no longer accept user input via mouse or keyboard.

- Click Manage | Security | Lock TopSpin for Other Users
- or
- enter \texttt{lockgui}.

A window will appear indicating the locked status and offering buttons to unlock.

![Locking TopSpin](image)

Only the current user or the NMR Administrator can unlock the user interface. While TopSpin is locked, all background activities such as data acquisition and processing continue.

For safety reasons TopSpin can be forced to execute \texttt{lockgui} automatically when no commands from the command line, menus or toolbar buttons have been entered for a certain period (for instance because the current user has left). In order to enable automatic locking.

- Click Setup Preferences Administration Items | Automatic locking of TopSpin when idle time exceeded | Change
- Enter the maximum allowed idle time (in minutes) in the dialog and click \texttt{OK}.
21 Troubleshooting

21.1 General Tips and Tricks

On a spectrometer, make sure the commands `cf` and `expinstall` have been executed once after installing TopSpin. `cf` must be executed again if your hardware configuration has changed. Sometimes, executing `cf` is useful in case of acquisition problems.

On a data station, a default configuration is automatically done during the installation. No configuration commands are required. Only if you want to use AU programs, you must run `expinstall` once.

21.2 History, Log Files, Spooler Reports, Stack Trace

If you have a problem with TopSpin and want to contact Bruker, it is useful to have as much information as possible available. If TopSpin is still running, you can view log files with the commands `hist` and `ptrace`. If TopSpin hangs, you can create a stack trace by hitting `Ctrl+\` (Linux) or `Ctrl+Break/Pause` (Windows) in the TopSpin startup window.

21.2.1 Topspin Command Log

By default, the history (protocol) feature is switched on. This means all TopSpin commands will be protocolled and can be examined by entering `hist` on the command line.

If, for some reason, history is switched off, you can switch it on as follows:

- Click `Setup Preferences` | `Miscellaneous`.
- Check the entry `Record commands in protocol file`.
- Click `Apply` and `Close`.

21.2.2 Topspin Spooler Report

TopSpin reports all queued, delayed and cron jobs in the so-called spooler report file. The spooler report stores all jobs since TopSpin installation and can become very large. Therefore, it should be cleaned from time to time. To do that:

- Enter the command `spooler`.
- Click `Tools` | `Show spooler report`.

- Mark the entries to be deleted.
- Right-click in the dialog and choose `Delete`.
- Close the Spooler report.
Note that the spooler report can also be opened from Spooler field (if enabled) in the Acquisition Status Bar.

- Right-click the current dataset bar and toggle the Acquisition Status Bar ON.

- Right-click Spooler and select Show spooler report.

21.2.3 Topspin Command, Data Server and Network Log

A full protocol including not only TopSpin commands but also data server and network traffic is displayed by the command `ptrace`. This opens the following dialog window:

Here TopSpin log messages from various log files are displayed time sorted. Messages from different log files are shown in different colors. The color assignment and location of the files is shown in the lower part of the dialog window.

`ptrace` supports the following functions:
Search keywords
To search the displayed log files for a certain keyword, just enter it in the text bar at the top of the window and hit Enter.

Anchor specific entries
To anchor an entry:
• Double-click in the first column of the entry.
The entry is marked with an X. Now you can use the < > buttons at the upper right of the window to go to the previous or next entry, respectively.

Add log files
By default, the procol.txt, history and data server log files are shown. To include additional log files to the ptrace list:
• In the ptrace [TopSpin Log-File Viewer] window, click File | Add, specify the file and click Open.
Note that most log files are stored in the directory:
<tshome>/prog/curdir/<user>

Save the log messages
To save log messages in a text file:
• Click File | Save and specify the output text file.

21.2.4 Create a Stack Trace
If TopSpin hangs it can be useful to send Bruker a stack trace about a possible cause. You can create a stack trace as follows.
• Move the cursor into the TopSpin startup window.
• Under Windows: hit Ctrl+Break/Pause, under Linux: hit Ctrl+\ (Control backslash). On a notebook enter CTRL+Fn+Insert/Pause.
• Copy the appearing text into a text file.

21.2.5 Store Complete Log with savelogs
To write a complete set of TopSpin log files, click Manage | Commands | Collect & Save Logfiles or enter savelogs on the command line.
If TopSpin has hung up or has crashed savelogs can be executed as follows.
Under Windows:
• Click the Bruker Utilities<topspin version> icon on your desktop. An Explorer will be opened.
• Double-click Miscellaneous.
• Execute the script savelogs.
Under Linux:
• Open a shell.
• Type savelogs
For detailed information about saving all possible log files and about the upload to the Bruker file server please refer to the Processing Commands and Parameters Manual.

21.3 How to Show or Kill TopSpin Processes

To show the currently running TopSpin processes, click Manage | Commands | Show Currently Active Commands or enter the command show or kill on the command line. A list of processes displays the process command, dataset etc.

![Active commands and processes](image)

The figure above shows a list with one process (command xfb). To kill a process, select it in the list and click the button Kill...

The commands show all or kill all work like show and kill, except that they also show TopSpin system processes. Note that killing such processes may kill TopSpin.

21.4 What to do if TopSpin Hangs

If, for some reason, TopSpin hangs, please do the following.

Under Linux:
- Open a Shell.
- Enter `<tshome>/prog/bin/script/killtopspin`, where `<tshome>` is the TopSpin installation directory.

Under Windows:
- Click Start | Programs | Bruker NMR Software | Bruker <version> Utilities
 - The file explorer opens with a path, e.g. `C:\Bruker\TopSpin<version>\prog\bin\utilities`
 - Open the sub-directory Miscellaneous and double-click killtopspin.

Normally, this kills all TopSpin processes including cpr, cprserver, dataserver and java.

21.5 How to Restart the TopSpin User Interface during Acquisition

If TopSpin hangs up during a data acquisition, you can restart the user interface without disturbing the acquisition. To do that:

- Open the file: `<tshome>/prog/curdir/<user>/history` where `<tshome>` is the TopSpin home directory and `<user>` is the user who started TopSpin. Look for the term 'Java Virtual Machine' and check its PID.
- Open the Task Manager (Windows) or System Monitor (Linux).
- Stop the Java(w).exe process with the PID found in the history file.
- Open a Windows Command Prompt or Linux Shell.
- Go to the TopSpin Installation directory.
- Enter toppspin –client.
22 Contact

Manufacturer
Bruker BioSpin GmbH
Silberstreifen 4
D-76287 Rheinstetten
Germany

E-Mail: nmr-support@bruker.com
http://www.bruker.com
WEEE DE43181702

Bruker BioSpin Hotlines
Contact our Bruker BioSpin service centers.
Bruker BioSpin provides dedicated hotlines and service centers, so that our specialists can respond as quickly as possible to all your service requests, applications questions, software or technical needs.
Please select the service center or hotline you wish to contact from our list available at:
https://www.bruker.com/service/information-communication/helpdesk.html
Index

Symbols

<table>
<thead>
<tr>
<th>Command</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>*2 command</td>
<td>92, 118, 240</td>
</tr>
<tr>
<td>.all command</td>
<td>93, 119</td>
</tr>
<tr>
<td>.basl command</td>
<td>158</td>
</tr>
<tr>
<td>.cal command</td>
<td>181</td>
</tr>
<tr>
<td>.co command</td>
<td>128</td>
</tr>
<tr>
<td>.dec command</td>
<td>140, 145, 159, 171</td>
</tr>
<tr>
<td>.dopt command</td>
<td>119, 250</td>
</tr>
<tr>
<td>.f1r command</td>
<td>119</td>
</tr>
<tr>
<td>.f2r command</td>
<td>119</td>
</tr>
<tr>
<td>.gr command</td>
<td>127</td>
</tr>
<tr>
<td>.hr command</td>
<td>93</td>
</tr>
<tr>
<td>.hz command</td>
<td>110, 125</td>
</tr>
<tr>
<td>.inc command</td>
<td>140, 144, 159, 171</td>
</tr>
<tr>
<td>.int command</td>
<td>172</td>
</tr>
<tr>
<td>.jpeg files</td>
<td>199</td>
</tr>
<tr>
<td>.jpg files</td>
<td>199</td>
</tr>
<tr>
<td>.keep command</td>
<td>93, 120</td>
</tr>
<tr>
<td>.ls command</td>
<td>129</td>
</tr>
<tr>
<td>.lt command</td>
<td>130</td>
</tr>
<tr>
<td>.lv command</td>
<td>128</td>
</tr>
<tr>
<td>.ov command</td>
<td>110</td>
</tr>
<tr>
<td>.ph command</td>
<td>167</td>
</tr>
<tr>
<td>.ph180 command</td>
<td>140</td>
</tr>
<tr>
<td>.ph90 command</td>
<td>140</td>
</tr>
<tr>
<td>.phr command</td>
<td>140</td>
</tr>
<tr>
<td>.png files</td>
<td>199</td>
</tr>
<tr>
<td>.ret command</td>
<td>140, 147, 157, 160, 161, 164</td>
</tr>
<tr>
<td>.retsab command</td>
<td>161</td>
</tr>
<tr>
<td>.s2d command</td>
<td>140</td>
</tr>
<tr>
<td>.sd command</td>
<td>93, 120</td>
</tr>
<tr>
<td>.sino command</td>
<td>185</td>
</tr>
<tr>
<td>.sl command</td>
<td>93, 120</td>
</tr>
<tr>
<td>.sl0 command</td>
<td>93</td>
</tr>
<tr>
<td>.sr command</td>
<td>93, 120</td>
</tr>
<tr>
<td>.sr0 command</td>
<td>93</td>
</tr>
<tr>
<td>.sret command</td>
<td>140, 147, 160, 164</td>
</tr>
<tr>
<td>.st command</td>
<td>130</td>
</tr>
<tr>
<td>.su command</td>
<td>93, 120</td>
</tr>
<tr>
<td>.txt files</td>
<td>114</td>
</tr>
<tr>
<td>.vr command</td>
<td>92, 118</td>
</tr>
<tr>
<td>.wmf files</td>
<td>199</td>
</tr>
<tr>
<td>.zi command</td>
<td>92, 119</td>
</tr>
<tr>
<td>.zl command</td>
<td>92, 119</td>
</tr>
<tr>
<td>.zo command</td>
<td>92, 119</td>
</tr>
<tr>
<td>.zx command</td>
<td>92, 119</td>
</tr>
<tr>
<td>/2 command</td>
<td>92, 118, 240</td>
</tr>
<tr>
<td>? command help</td>
<td>242</td>
</tr>
</tbody>
</table>

Numerics

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>180 degree phase correction:1D</td>
<td>140</td>
</tr>
<tr>
<td>180 degree phase correction:2D</td>
<td>170</td>
</tr>
</tbody>
</table>

3D molecule viewer

- 185

A

- abs command 85
- absd command 158
- absorption mode 139, 170
- acqu command 74
- Acquisition Reference Manual 71, 80, 81, 204
- acquisition:commands 74, 77
- acquisition:parameters 69, 70, 82
- activate:a data window 26
- add:comment to audit file 248
- add:directory to the browser 34
- add:functionalities to Topspin 40
- Alt + LeftArrow 241
- Alt + Minus 240
- Alt + Plus 240
- Alt + RightArrow 241
- Alt-F6 key 243
- Analysis menu 37
- apk command 85
- arrange:columns in 2D phase correction 171
- arcsin files 65
- ased command 71, 95
- Aspect 3000 data 55
- atma command 79
- AU program reference manual 88
- AU programs 88, 204, 228
- automatic data acquisition 40
- automatic baseline correction 85
- automatic calibration (referencing) 86
- automatic mode:of the Acquisition Guide 73
- automatic mode:of the Processing Guide 37, 86
- automatic phase correction 85
- automatic:compilation of an AU program 206
- automation 40
- autostart.mac file 215
- Avance spectrometers 11
- axis units 109, 125, 182

B

- Backspace key 235
- backward peak picking 163
- baseline correction:mode 158
- bcm command 160
- bnmrsel command 229
- bpan command 229
- browser 51, 238
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>browser:in multiple display mode</td>
</tr>
<tr>
<td>Bruker:AU programs</td>
</tr>
<tr>
<td>Bruker:data format</td>
</tr>
<tr>
<td>Bruker:example datasets</td>
</tr>
<tr>
<td>BSMS display window</td>
</tr>
<tr>
<td>bsmdisp command</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>calibration:1D interactive</td>
</tr>
<tr>
<td>calibration:2D interactive</td>
</tr>
<tr>
<td>calibration:mode</td>
</tr>
<tr>
<td>chemical shift distance:1D</td>
</tr>
<tr>
<td>chemical shift distance:2D</td>
</tr>
<tr>
<td>C-language</td>
</tr>
<tr>
<td>clevals file</td>
</tr>
<tr>
<td>clipboard</td>
</tr>
<tr>
<td>close command</td>
</tr>
<tr>
<td>close:lock display window</td>
</tr>
<tr>
<td>cmdhist command</td>
</tr>
<tr>
<td>cmdindex command</td>
</tr>
<tr>
<td>collapse a data directory</td>
</tr>
<tr>
<td>color scheme</td>
</tr>
<tr>
<td>command line:focus</td>
</tr>
<tr>
<td>command line:history</td>
</tr>
<tr>
<td>Command Prompt</td>
</tr>
<tr>
<td>command:definition</td>
</tr>
<tr>
<td>command:index</td>
</tr>
<tr>
<td>command:line</td>
</tr>
<tr>
<td>compile:AU program</td>
</tr>
<tr>
<td>composite commands</td>
</tr>
<tr>
<td>configuration:of the acquisition status bar</td>
</tr>
<tr>
<td>consistency check</td>
</tr>
<tr>
<td>contour display:of 2D spectra</td>
</tr>
<tr>
<td>contour display:of 3D planes</td>
</tr>
<tr>
<td>contour levels</td>
</tr>
<tr>
<td>control keys</td>
</tr>
<tr>
<td>convert a 1D or 2D dataset text format</td>
</tr>
<tr>
<td>convert a 1D or 2D dataset to JCAMP-DX format</td>
</tr>
<tr>
<td>convert a dataset of any dimension to ZIP format</td>
</tr>
<tr>
<td>copy command</td>
</tr>
<tr>
<td>copy data</td>
</tr>
<tr>
<td>create:an AU program</td>
</tr>
<tr>
<td>create:an empty data window</td>
</tr>
<tr>
<td>create:new dataset</td>
</tr>
<tr>
<td>create:set of user preferences</td>
</tr>
<tr>
<td>Ctrl + Alt + LeftArrow</td>
</tr>
<tr>
<td>Ctrl + Alt + RightArrow</td>
</tr>
<tr>
<td>Ctrl + c</td>
</tr>
<tr>
<td>Ctrl + d</td>
</tr>
<tr>
<td>Ctrl + f</td>
</tr>
<tr>
<td>Ctrl + F4</td>
</tr>
<tr>
<td>Ctrl + n</td>
</tr>
<tr>
<td>Ctrl + o</td>
</tr>
<tr>
<td>Ctrl + p</td>
</tr>
<tr>
<td>Ctrl + s</td>
</tr>
<tr>
<td>Ctrl + v</td>
</tr>
<tr>
<td>Ctrl + w</td>
</tr>
<tr>
<td>Ctrl key</td>
</tr>
<tr>
<td>Ctrl-c key</td>
</tr>
<tr>
<td>Ctrl-n key</td>
</tr>
<tr>
<td>Ctrl-o key</td>
</tr>
<tr>
<td>Ctrl-p key</td>
</tr>
<tr>
<td>Ctrl-s key</td>
</tr>
<tr>
<td>Ctrl-v key</td>
</tr>
<tr>
<td>cubic spline baseline correction</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>data window</td>
</tr>
<tr>
<td>data window:contents</td>
</tr>
<tr>
<td>data window:popup menu</td>
</tr>
<tr>
<td>data window:printing</td>
</tr>
<tr>
<td>data:area</td>
</tr>
<tr>
<td>data:compression</td>
</tr>
<tr>
<td>data:dimensionality</td>
</tr>
<tr>
<td>data:directory</td>
</tr>
<tr>
<td>data:object colors</td>
</tr>
<tr>
<td>dataset:colors</td>
</tr>
<tr>
<td>dataset:directory tree</td>
</tr>
<tr>
<td>dataset:files</td>
</tr>
<tr>
<td>dataset:handling</td>
</tr>
<tr>
<td>dataset:procno directory</td>
</tr>
<tr>
<td>dataset:properties</td>
</tr>
<tr>
<td>dataset:selection in multiple display</td>
</tr>
<tr>
<td>dataset:user</td>
</tr>
<tr>
<td>dataset:variables</td>
</tr>
<tr>
<td>dcon command</td>
</tr>
<tr>
<td>Decrease the intensity by a factor of 2.</td>
</tr>
<tr>
<td>default:find criteria</td>
</tr>
<tr>
<td>default:pivot point in 1D phase correction</td>
</tr>
<tr>
<td>default:zero order phase correction</td>
</tr>
<tr>
<td>define:cubic spline baseline points</td>
</tr>
<tr>
<td>define:NM R ADMINISTRATOR password</td>
</tr>
<tr>
<td>define:peak ranges</td>
</tr>
<tr>
<td>define:peaks</td>
</tr>
<tr>
<td>delete:AU program</td>
</tr>
<tr>
<td>delete:data</td>
</tr>
<tr>
<td>delete:integrals from display</td>
</tr>
<tr>
<td>delete:noise region S/N</td>
</tr>
<tr>
<td>delete:signal region S/N</td>
</tr>
<tr>
<td>delete:spline baseline points</td>
</tr>
<tr>
<td>depth cueing in 3D</td>
</tr>
<tr>
<td>deselect: data in multiple display</td>
</tr>
<tr>
<td>difference spectrum:in baseline correction</td>
</tr>
<tr>
<td>difference spectrum:in multiple display</td>
</tr>
<tr>
<td>dimensionality of a dataset</td>
</tr>
<tr>
<td>display columns of selected peaks</td>
</tr>
<tr>
<td>display rows of selected peaks</td>
</tr>
<tr>
<td>display:1D FID</td>
</tr>
<tr>
<td>display:1D processed data</td>
</tr>
<tr>
<td>display:1D raw data</td>
</tr>
<tr>
<td>display:1D spectrum overview</td>
</tr>
<tr>
<td>display:2D FID</td>
</tr>
<tr>
<td>display:2D grid</td>
</tr>
<tr>
<td>display:2D projections</td>
</tr>
</tbody>
</table>

262 / 272

H9469SA3_12_012
<table>
<thead>
<tr>
<th>Display:3D cube</th>
<th>132</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display:button</td>
<td>33, 54, 64</td>
</tr>
<tr>
<td>display:contours in 2D phase</td>
<td>167</td>
</tr>
<tr>
<td>display:data from the browser</td>
<td>34</td>
</tr>
<tr>
<td>display:found dataset</td>
<td>64</td>
</tr>
<tr>
<td>display:manipulation</td>
<td>91</td>
</tr>
<tr>
<td>Display:menu item</td>
<td>52, 151</td>
</tr>
<tr>
<td>display:mode of the lock window</td>
<td>80</td>
</tr>
<tr>
<td>display:planes of 3D data</td>
<td>131</td>
</tr>
<tr>
<td>display:special data formats</td>
<td>55</td>
</tr>
<tr>
<td>display:spectra</td>
<td>32</td>
</tr>
<tr>
<td>display:spectrum overview in 2D</td>
<td>125</td>
</tr>
<tr>
<td>display:status parameters</td>
<td>68</td>
</tr>
<tr>
<td>display:superimposed 2D spectra</td>
<td>175</td>
</tr>
<tr>
<td>distance measurement:1D</td>
<td>185</td>
</tr>
<tr>
<td>double-headed arrow</td>
<td>26, 186</td>
</tr>
<tr>
<td>Down-Arrow key</td>
<td>235</td>
</tr>
<tr>
<td>dpa command</td>
<td>95</td>
</tr>
<tr>
<td>dpp command</td>
<td>68, 71, 94</td>
</tr>
</tbody>
</table>

E

eda command	69, 70, 95, 122
edasp command	71, 95
edau command	204, 206, 228
edc pul command	96
edit command	96
edit:AU program	206
edit:commands	236
edit:signal/noise regions	186
edit:title of a dataset	96
edlev command	117
edmac command	227
edp command	67, 94, 121
edprosol command	106, 124
edpy command	40, 228
ef command	85
efp command	83, 85
em command	85
equidistant sequence of levels.	129
Esc key	235
execute:AU program	204, 206
execute:macro	40, 228
execute:Python program	40
exit command	238, 243
expand:a data directory	240
expand:individual spectra in multiple display	155
expinstall command	74, 203, 204, 255
expl command	65, 66
Explorer	53, 65
exno	53, 57, 113

F

F1 dimension	120, 167
F1-F2 plane	131, 134
F2 dimension	120
F2 key	48
F2-F3 plane	132, 134
F3-F1 plane	131, 132, 134
fid command	106, 124
FID display	76, 81, 83
files of a dataset	113
find command	63, 238
find data	63
first order phase correction:1D	140
first order phase correction:2D	170
fmc command	85
focus	48
forward peak picking	163
Fourier transform	85
Fourier transform + magnitude calculation	85
Fourier transform + phase correction	85
fp command	85
fromjdx command	38
ft command	37, 85

G

Gaussian deconvolution	39
Gaussian multiplication + Fourier transform	85
genser command	57
geometric sequence of levels.	129
getprosol command	71, 95
gf command	85
gfp command	85
grab rows/columns in 2D	178
graphics files	37, 199
grid:display	80
grid:window arrangement	27
gs command	69, 81
GS parameter adjustment window	82

H

halt an acquisition	75
halt command	74
helium level	80
help command	242
Help:button	242
help:on commands	242
hist command	229, 232, 255
HTML page	242

I

iconnmr command	41
Increase the intensity by a factor of 2.	118
initial guess	194
install:Topspin	203
int command	112
Index

Integral slope correction. 144
integral:bias 143
integral:regions 141, 142, 146
integral:scaling factor 146
integral:trails 146
integral:values 141
Integrals tab 123, 147
integration:1D interactive 141, 142
integration:mode 141, 147
interactive:1D baseline correction 158
interactive:1D data manipulation 137
interactive:1D phase correction 137
interactive:1D signal to noise calculation 185
interactive:2D data manipulation 167
interactive:2D phase correction 167
interactive:data manipulation 37, 216
interactive:processing 85
interactive:Processing Guide mode 87
interface fonts 218
internal projection 35
intrng file 147
J
JCAMP-DX format 55, 56
Jeol spectrometer 55
K
kill command 258
L
Left-Arrow key 49
Levenberg-Marquardt algorithm 194
li command 102
lipp command 102
lippf command 102
list:1D integrals 102
list:2D peaks 122
list:baseline points 160
list:Bruker AU programs 205
list:files 65
list:EXPNOS/PROCNOS 52
list:found data 63
list:integrals 198
list:opened datasets 46, 47
list:parameter sets 50
list:peaks 163, 198
list:peaks 1D 97
list:solvents 50
list:user defined AU programs 205
lock display:colors 220
lock display:window 23, 76
lock:parameters 71
lockdisp command 74, 79
lock-in procedure 79
M
macros:in Topspin 40, 86, 227
MAXI parameter 163
MC2 parameter 69
mixtures 39
mouse sensitivity:in 2D phase correction 171
move:data window 26
Mozilla 65, 114
multiple display mode 150
multiple display:1D 151, 175
multiple display:1D/2D 36, 52, 55
multiple display:in deconvolution 39
multiple window display 91
multiplet 142
N
negative:2D levels 130
new command 238
newtop command 243
next:channel for wobbling 79
next:command 239
next:dataset in Browser 240
next:plane in 3D 132
next:window in data area 238
nmrsim command 40
noise region 186
NOISF2 parameter 185
notebook 227
O
O1 parameter 75
O2 parameter 75
O3 parameter 75
objects:of a dataset 26, 91, 219
oblique display:of 2D spectra 130
oblique display:of 3D planes 131
online manual:plot editor 198
open command 238
open:browser/portfolio 48
open:data 52
open:data from the browser 33
open:data from the command line 54
open:data from the menu 33
open:IconNmr interfaces 40
open:special format data 55
P
paracon command 204
parameter:adjustment window 81
parameter:change 68, 71
parameter:editor 67, 70
parameter:field 68, 70
parameter:files 65
parameter:name 67, 69
parameter:search 95
<table>
<thead>
<tr>
<th>Parameter/Value</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARMODE parameter</td>
<td>95</td>
</tr>
<tr>
<td>paste command</td>
<td>56</td>
</tr>
<tr>
<td>peak picking:1D interactive</td>
<td>161</td>
</tr>
<tr>
<td>peak picking:mode 1D</td>
<td>161</td>
</tr>
<tr>
<td>peak picking:ranges in 1D</td>
<td>162, 163</td>
</tr>
<tr>
<td>peak:alignment</td>
<td>36, 155</td>
</tr>
<tr>
<td>peak:display</td>
<td>34</td>
</tr>
<tr>
<td>peak:fitting</td>
<td>39</td>
</tr>
<tr>
<td>peak:labels</td>
<td>163</td>
</tr>
<tr>
<td>peak:list</td>
<td>163</td>
</tr>
<tr>
<td>peak:picking mode</td>
<td>161</td>
</tr>
<tr>
<td>peak:position</td>
<td>185</td>
</tr>
<tr>
<td>peak:ranges</td>
<td>164</td>
</tr>
<tr>
<td>peakrng file</td>
<td>164</td>
</tr>
<tr>
<td>Peaks tab</td>
<td>97, 122, 198</td>
</tr>
<tr>
<td>phase correction:1D interactive</td>
<td>139</td>
</tr>
<tr>
<td>phase correction:2D interactive</td>
<td>167</td>
</tr>
<tr>
<td>phase correction:mode 1D</td>
<td>139</td>
</tr>
<tr>
<td>phase correction:mode 2D</td>
<td>167</td>
</tr>
<tr>
<td>phase correction:values 1D</td>
<td>140</td>
</tr>
<tr>
<td>PHC0 parameter</td>
<td>139, 170</td>
</tr>
<tr>
<td>PHC1 parameter</td>
<td>140, 170</td>
</tr>
<tr>
<td>pivot point:in 1D phase correction</td>
<td>139</td>
</tr>
<tr>
<td>pivot point:in 2D phase correction</td>
<td>169</td>
</tr>
<tr>
<td>pk command</td>
<td>140</td>
</tr>
<tr>
<td>plane display in 3D</td>
<td>131</td>
</tr>
<tr>
<td>plot command</td>
<td>197</td>
</tr>
<tr>
<td>Plot Editor</td>
<td>36, 197</td>
</tr>
<tr>
<td>plot:data from the menu</td>
<td>197</td>
</tr>
<tr>
<td>plot:data from the Plot Editor</td>
<td>198</td>
</tr>
<tr>
<td>polynomial:baseline correction</td>
<td>158</td>
</tr>
<tr>
<td>position the baseline of a row/column in 2D</td>
<td>180</td>
</tr>
<tr>
<td>pp command</td>
<td>112</td>
</tr>
<tr>
<td>PPARMOD parameter</td>
<td>69, 71</td>
</tr>
<tr>
<td>ppl command</td>
<td>163</td>
</tr>
<tr>
<td>preferences</td>
<td>213</td>
</tr>
<tr>
<td>preview:the baseline corrected spectrum</td>
<td>159</td>
</tr>
<tr>
<td>previous:commands</td>
<td>235</td>
</tr>
<tr>
<td>previous:dataset in browser</td>
<td>240</td>
</tr>
<tr>
<td>previous:parameter field</td>
<td>68, 70</td>
</tr>
<tr>
<td>previous:plane in 3D</td>
<td>132</td>
</tr>
<tr>
<td>previous:row/column in 2D phase correction</td>
<td>171, 179</td>
</tr>
<tr>
<td>print command</td>
<td>197, 238</td>
</tr>
<tr>
<td>print:active window</td>
<td>36</td>
</tr>
<tr>
<td>print:colors</td>
<td>219</td>
</tr>
<tr>
<td>print:data from the Processing Guide</td>
<td>198</td>
</tr>
<tr>
<td>print:metafiles</td>
<td>199</td>
</tr>
<tr>
<td>printer colors</td>
<td>219</td>
</tr>
<tr>
<td>prnt command</td>
<td>197</td>
</tr>
<tr>
<td>proc_1d AU program</td>
<td>88</td>
</tr>
<tr>
<td>process data</td>
<td>37</td>
</tr>
<tr>
<td>process data:from the command line</td>
<td>85</td>
</tr>
<tr>
<td>Processing Guide</td>
<td>86, 87</td>
</tr>
<tr>
<td>Processing Reference Manual</td>
<td>34</td>
</tr>
<tr>
<td>processing:parameters</td>
<td>67</td>
</tr>
<tr>
<td>processing:parameters 1D</td>
<td>94</td>
</tr>
<tr>
<td>processing:parameters 2D</td>
<td>121</td>
</tr>
<tr>
<td>procno</td>
<td>52, 54, 57, 113</td>
</tr>
<tr>
<td>ProcPars tab</td>
<td>37, 67</td>
</tr>
<tr>
<td>projections of a 2D spectrum</td>
<td>35</td>
</tr>
<tr>
<td>properties:of a printer</td>
<td>197</td>
</tr>
<tr>
<td>pseudo raw data</td>
<td>57</td>
</tr>
<tr>
<td>pulse program</td>
<td>96</td>
</tr>
<tr>
<td>PulsProg tab</td>
<td>96</td>
</tr>
<tr>
<td>Python programs</td>
<td>40, 228, 231</td>
</tr>
</tbody>
</table>

R

- re command | 54, 151 |
- read:color scheme | 221 |
- reb command | 33, 54 |
- reference peak:in 1D calibration | 150 |
- reference peak:in 2D calibration | 182 |
- relaxation:curve | 190 |
- remove:data from multiple display | 154 |
- reopen a dataset | 91 |
- reopen command | 51, 91 |
- rep command | 54 |
- repw command | 54 |
- rescale:2D projection | 126 |
- Reset the intensity. | 92, 118 |
- reset:1D baseline correction | 159 |
- reset:1D phase values | 140 |
- reset:3D cube size and orientation | 133 |
- resize:data window | 26 |
- restore:uncorrected baseline | 159 |
- retrieve:previously entered commands | 235 |
- rew command | 54 |
- Right-Arrow key | 48, 235 |
- routing parameters | 71 |

S

- S/N value | 187 |
- Sample tab | 106 |
- sav command | 238 |
- save digitally filtered data as analog filtered data | 57 |
- save:1D baseline correction | 159 |
- save:1D integrals | 147 |
- save:1D phase correction | 140 |
- save:acquisition data | 57 |
- save:AU program | 40 |
- save:color scheme | 221 |
- save:cubic spline baseline points | 161 |
- save:data | 56 |
- save:entire dataset | 57 |
- save:integration regions | 147 |
- save:parameters | 95 |
- save:phase correction 2D | 171, 175 |
- save:processed data | 57 |
- save:pulse program | 106 |
- save:sum or difference spectrum | 154 |
- save:title of a dataset | 96 |
- scale:1D integrals | 146 |
- scale:1D spectrum | 91 |
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>scale:2D spectrum</td>
</tr>
<tr>
<td>scale:3D cube</td>
</tr>
<tr>
<td>scale:individual spectra in multiple display</td>
</tr>
<tr>
<td>scale:row/column in 2D phase</td>
</tr>
<tr>
<td>scan:rows/columns in 2D</td>
</tr>
<tr>
<td>screen dump</td>
</tr>
<tr>
<td>scroll bar</td>
</tr>
<tr>
<td>search:criteria</td>
</tr>
<tr>
<td>search:field in the parameter editor</td>
</tr>
<tr>
<td>search:result window</td>
</tr>
<tr>
<td>select:AU program</td>
</tr>
<tr>
<td>select:data in multiple display</td>
</tr>
<tr>
<td>select:expno/procno combination</td>
</tr>
<tr>
<td>select:folders in the browser</td>
</tr>
<tr>
<td>select:integral regions</td>
</tr>
<tr>
<td>select:lock signal color</td>
</tr>
<tr>
<td>select:multiple folders</td>
</tr>
<tr>
<td>select:peaks in 2D phase correction</td>
</tr>
<tr>
<td>select:spectra in 2D multiple display</td>
</tr>
<tr>
<td>select:spectrum color</td>
</tr>
<tr>
<td>semi-automatic:peak picking</td>
</tr>
<tr>
<td>sensitivity:of the mouse</td>
</tr>
<tr>
<td>serial command</td>
</tr>
<tr>
<td>serial processing</td>
</tr>
<tr>
<td>set command</td>
</tr>
<tr>
<td>set:1D acquisition parameters</td>
</tr>
<tr>
<td>set:2D acquisition parameters</td>
</tr>
<tr>
<td>set:user preferences</td>
</tr>
<tr>
<td>SFO1 parameter</td>
</tr>
<tr>
<td>Shift key</td>
</tr>
<tr>
<td>shift:1D data smoothly</td>
</tr>
<tr>
<td>shift:1D/2D data</td>
</tr>
<tr>
<td>shift:2D data smoothly</td>
</tr>
<tr>
<td>shift:data in multiple windows</td>
</tr>
<tr>
<td>short description:of an AU program</td>
</tr>
<tr>
<td>show command</td>
</tr>
<tr>
<td>signal region</td>
</tr>
<tr>
<td>signal to noise calculation</td>
</tr>
<tr>
<td>simulating experiments</td>
</tr>
<tr>
<td>sine:baseline correction</td>
</tr>
<tr>
<td>single commands</td>
</tr>
<tr>
<td>slider sensitivity</td>
</tr>
<tr>
<td>slope correction</td>
</tr>
<tr>
<td>smooth:1D phase correction</td>
</tr>
<tr>
<td>smooth:1D shifting</td>
</tr>
<tr>
<td>smooth:scaling of 1D integrals</td>
</tr>
<tr>
<td>smooth:scanning of planes in 3D</td>
</tr>
<tr>
<td>smooth:shifting of 1D integrals</td>
</tr>
<tr>
<td>spec command</td>
</tr>
<tr>
<td>special format data</td>
</tr>
<tr>
<td>Spectrometer menu</td>
</tr>
<tr>
<td>spectrum:display 1D</td>
</tr>
<tr>
<td>square 2D layout</td>
</tr>
<tr>
<td>square brackets</td>
</tr>
<tr>
<td>sref command</td>
</tr>
<tr>
<td>stacked multiple display</td>
</tr>
<tr>
<td>Start button</td>
</tr>
<tr>
<td>stop command</td>
</tr>
<tr>
<td>store:2D contour levels</td>
</tr>
<tr>
<td>SW:2D contour levels</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2 calculation</td>
</tr>
<tr>
<td>Tab bar:2D</td>
</tr>
<tr>
<td>Tab bar:configuration</td>
</tr>
<tr>
<td>Tab bar:usage</td>
</tr>
<tr>
<td>tabbed pane</td>
</tr>
<tr>
<td>temperature unit window</td>
</tr>
<tr>
<td>Terminal Window</td>
</tr>
<tr>
<td>title bar</td>
</tr>
<tr>
<td>title file</td>
</tr>
<tr>
<td>title of a dataset</td>
</tr>
<tr>
<td>toolbar:1D</td>
</tr>
<tr>
<td>toolbar:2D</td>
</tr>
<tr>
<td>toolbar:for acquisition</td>
</tr>
<tr>
<td>toolbar:icons</td>
</tr>
<tr>
<td>toolbar:of the data window</td>
</tr>
<tr>
<td>top level directory</td>
</tr>
<tr>
<td>topspin command</td>
</tr>
<tr>
<td>Topspin icon</td>
</tr>
<tr>
<td>Topspin:color schemes</td>
</tr>
<tr>
<td>Topspin:startup</td>
</tr>
<tr>
<td>tshome directory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>undo:last parameter change</td>
</tr>
<tr>
<td>undo:last region operation</td>
</tr>
<tr>
<td>unzip utility</td>
</tr>
<tr>
<td>Up-Arrow key</td>
</tr>
<tr>
<td>user defined:AU programs</td>
</tr>
<tr>
<td>user defined:buttons</td>
</tr>
<tr>
<td>user defined:commands</td>
</tr>
<tr>
<td>user defined:functions keys</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varian spectrometer</td>
</tr>
<tr>
<td>vertical scaling</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>wbst command</td>
</tr>
<tr>
<td>wildcards</td>
</tr>
<tr>
<td>WINNMR data</td>
</tr>
<tr>
<td>wm command</td>
</tr>
<tr>
<td>wobb command</td>
</tr>
<tr>
<td>wobble:display</td>
</tr>
<tr>
<td>wobble:procedure</td>
</tr>
<tr>
<td>wra command</td>
</tr>
<tr>
<td>write parameter set</td>
</tr>
<tr>
<td>write various files</td>
</tr>
<tr>
<td>wrp command</td>
</tr>
<tr>
<td>wrpa command</td>
</tr>
</tbody>
</table>
X
- xau command: 206
- x-axis rotation in 3D: 130, 133

Y
- y-axis rotation in 3D: 130, 133

Z
- z-axis rotation in 3D: 133
- zero order phase correction: 1D: 139
- zero order phase correction: 2D: 170
- ZIP data format: 55
- zoom 1D/2D data: 240
- zoom: 2D data: 119
- zoom: in 2D phase correction: 168