High-Resolution Diffusion-Ordered Spectroscopy (DOSY)

User Guide Pub. No. 9100094300 Rev. B 2/23/10

High-Resolution Diffusion-Ordered Spectroscopy (DOSY) User Guide Pub. No. 9100094300 Rev. B Copyright © 2010 Varian, Inc. 2700 Mitchell Drive Walnut Creek, CA 94598 USA

http://www.varianinc.com

All rights reserved. Printed in the United States.

The information in this document has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Statements in this document are not intended to create any warranty, expressed or implied. Specifications and performance characteristics of the software described in this documentation may be changed at any time without notice. Varian reserves the right to make changes in any products herein to improve reliability, function, or design. Varian does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Inclusion in this document does not imply that any particular feature is standard on the instrument.

VnmrJ is a trademark of Varian, Inc. Other product names are trademarks or registered trademarks of their respective holders.

Contents

Chapter 1	DOS	Y VnmrJ 3.0 Release Notes	3
Chapter 2	High	-resolution Diffusion Ordered Spectroscopy (DOSY)	5
•	2.1	Macros and commands in the DOSY package	5
	2.2	General Considerations.	7
	2.3	Nano Probe compatibility of DOSY experiments	9
		2.3.1 User created DOSY pulse sequences	10
Chapter 3	Grad	lient Calibration and Correction for Gradient Non-Uniformity	12
	3.1	Introduction	12
	3.2	Mapping the Gradient Shape	.13
	3.3	Processing the Gradient Mapping Data	15
	3.4 3.5	Probe file entries	10
	5.5	3.5.1 Show (plot) apparent D wrt position	19
		3.5.2 Show (plot) fitted gradient shape	19
		3.5.3 Show (plot) Fitted Signal Decay	20
Chapter 4	20 0	NOSY Experimente	24
Chapter 4	2 U-U // 1	Satting up basic 2D-DOSV experiments	21
	4.1	Simple 2D DOSY Pulse Sequences	23
		4.2.1 Dbopste (DOSY Bipolar Pulse Pair STimulated Echo) Experiment	23
		4.2.2 DgcsteSL (DOSY Gradient Compensated Stimulated Echo with Spin Loc	ck)
		Experiment	2́4
		4.2.3 The "Doneshot" Experiment	26
		4.2.4 Dbppsteinept (DOSY Bipolar Pulse Pair Stimulated Echo INEPT)	
		Experiment	.27
	4.3	DOSY pulse sequences for H ₂ O samples	29
		4.3.1 DgcsteSL_dptgse - (DOSY Gradient Compensated Stimulated Ecno with	20
		4.3.2 Doposte wa – (DOSY Bipolar Pulse Pair STimulated Echo) Experiment	29
		Using Watergate 3-9-19 Solvent Suppression	31
	4.4	Convection and Convection-Compensation in Diffusion Experiments	32
		4.4.1 Pulse Sequences with Convection Compensation	35
		4.4.1.1. Dbppste_cc (Bipolar Pulse Pair STimulated Echo with	
		Convection Compensation)	35
		4.4.1.2. DgsteSL_cc (Gradient STimulated Echo with Spin-Lock and	
		Convection Compensation)	37
		4.4.1.3 DgcsteSL_cc (Gradient Compensated ST imulated Echo with	20
		A 4 1 4 Dofadete (Pulsed Field Gradient Double STimulated Echo)	.39 //1
		4.4.2 Comparison of diffusion results obtained with and without convection	41
		compensation	42
	4.5	Processing 2D-DOSY experiments	46
	4.6	Plotting 2D-DOSY experiments	48
Chapter 5	Abso	Nute Value 3D-DOSY Experiments	50
Chapter 5	5.1	Setting up absolute value 3D-DOSY experiments	50
	5.2	Absolute value 3D-DOSY sequences	51
		5.2.1 Dgcstecosy (DOSY Gradient Compensated Stimulated Echo COSY)	
		Experiment (AV mode)	51
		5.2.2 Dgcstehmqc (DOSY Gradient Compensated Stimulated Echo HMQC)	
		Experiment (AV mode)	53
	5.3	Processing 3D-DOSY experiments	55

Chapter 6	Pha	se Sensitive 3D-DOSY Experiments	57
-	6.1	Setting up phase sensitive 3D-DOSY experiments	57
	6.2	Phase Sensitive 3D-DOSY Sequences	57
		6.2.1 Dgcstehmqc_ps (DOSY Gradient Compensated Stimulated Echo HM	1QC)
		experiment (Phase Sensitive mode)	58
		6.2.2 Dbppste_ghsqcse (Bipolar Pulse Pair Stimulated Echo Gradient HSC	QC with
		Sensitivity Enhancement)	59
	6.3	Processing Phase Sensitive 3D-DOSY Experiments	61
Chapter 7	IDO	SY (Inclusive DOSY) Experiments	62
	7.1	The Concept of I-DOSY	62
	7.2	I-DOSY pulse sequences	62
		7.2.1 . Dcosyidosy - (COSY-IDOSY)	62
		7.2.2 Dhom2djidosy – (Homonuclear 2D J-resolved IDOSY)	64
		7.2.3 Dghmqcidosy – (Gradient HMQC-IDOSY) dosy for long-range couplir	ngs,
		phase sensitive version	65
	7.3	Processing I-DOSY Data	67
Chapter 8	Sam	ple FIDs to Practice DOSY Processing	
enapter e	8.1	Data sets collected without NUG correction	
	••••	8.1.1 Dbppste.fid	
		8.1.2 DgcsteSL.fid	
		8.1.3 DacsteSL dpfase.fid	69
		8.1.4 Dbppsteinept.fid	70
		8.1.5 Dgcstecosy.fid	70
		8.1.6 Dgcstehmqc.fid	71
		8.1.7 Si29-1H_Dghmqcidosy.fid	72
	8.2	NUG mapping data	73
		8.2.1 Doneshot_nugmap_av.fid	73
		8.2.2 Doneshot_nugmap_ph.fid	74
	8.3	Data sets with NUG calibration	75
		8.3.1 QGConeshot.fid	75
		8.3.2 DextranMix.fid	84
		8.3.3 GQC_quickCOSYiDOSY.fid	87
Chapter 9	DOS	SY-Related Literature	89
	-		-

Chapter 1 DOSY VnmrJ 3.0 Release Notes

The new features of DOSY 3.0 are primarily associated with data processing:

New Functionalities:

- non-uniform gradient (NUG) calibration
- monoexponential fitting with NUG correction
- biexponential fitting, with and without NUG correction (uses a modified SPLMOD)
- multiexponential fitting, with and without NUG correction (uses a modified SPLMOD)
- fitting of distributions of diffusion coefficients with CONTIN

Performance Enhancements:

- improved support for 3D DOSY (including N- and P-type absolute value processing)
- user-friendly phase-sensitive 3D DOSY acquisition and processing
- display of residuals
- optional point-by-point instead of peak-segmented 2D DOSY fitting and display
- removal of peak number limitations in 2D DOSY
- full panel support for every experiment in the package
- full Chempack/VnmrJ 3.0 compatibility

The current DOSY package contains overall 17 diffusion pulse sequences as well as a sequence for NUG (Non Linear Gradient) calibration. Although most of the sequences were developed for the VnmrJ 2.2C software release the current versions, due to the introduction of several new parameters, are NOT back compatible with previous DOSY releases. Data run with older VnmrJ versions, though, are still expected to be compatible with the current processing tools. The new package provides completely redesigned VnmrJ-type acquisition and processing panels. The Tcl-Tk panels used in the earlier VNMR interface are not supported anymore, although the "dg" and "ap" tables are updated and are still applicable.

Some pulse sequence features that earlier had been only present for individual sequences are now universally available. These features include:

gradient-pw90-gradient sandwich prior to d1 to set up steady-state conditions (sspul flag)

solvent presaturation option during the relaxation and/or diffusion delay (satmode flag)

wet solvent suppression option during the relaxation delay (wet flag)

option for gradient sign alternation on subsequent scans to occasionally minimize line shape distortions (alt_grd flag)

option to switch off the lock feedback loop during the diffusion sequence (lkgate_flg flag)

Pulse sequences have been added to support experiments on biological samples in H_2O/D_2O solvent at limited concentrations. They use either the well known watergate 3-9-19 (Dbppste_wg) or excitation sculpting (DgcsteSL_dpfgse) schemes for solvent suppression. For best results they may be combined with solvent presaturation as well as with digital solvent filtering during data processing.

There are pulse sequences that allow convection compensation (Dbppste_cc, DgsteSL_cc, DgcsteSL_cc and Dpfgdste_cc) or can be used to experimentally verify whether convection is present and might distort the diffusion data.

The Doneshot sequence has been modified to allow diffusion experiments in concentrated samples or neat liquids. The flip angle of the first pulse has been made user enterable to overcome problems associated with radiation damping.

The package contains pulse sequences that allow running phase sensitive 3D-DOSY experiments (Dgcstehmqc_ps, Dbppste_ghsqcse, Dhmqcidosy). The first two sequences were developed and tested on ¹⁵N-labeled peptide/protein samples. The Dbppste_ghsqcse sequence was taken over from the BioPack package and has been made VnmrJ 3.0 compatible.

A new approach of pulse sequence programming of diffusion sequences called inclusive-DOSY or I-DOSY has recently been published by Gareth Morris and Matthias Nilsson. Instead of concatenating the NMR and the diffusion pulse sequence, they share delays for magnetization transfer and diffusion. They have higher inherent sensitivity than conventional sequences and allow optional convection compensation with no sensitivity penalty. The Dcosyidosy and the Dhom2djidosy are absolute value sequences, while the Dhmqcidosy sequence allows acquiring phase sensitive data.

The Doneshot_nugmap pulse sequence is provided to accurately calibrate the gradient strength of the probes used for diffusion experiments as well as to map the spatial non-linearity of the gradient coil. The results of this calibration are stored in the corresponding probe file and are activated at any consequent diffusion setup and may be taken into account at data processing.

Two macros showdosyfit and showdosyresidual provide graphical display of the quality of the fit for each individual peak in DOSY processing. That allows identifying systematic errors or may help to exclude erroneous data points from the analysis.

Chapter 2 High-resolution Diffusion Ordered Spectroscopy (DOSY)

The DOSY (**D**iffusion **O**rdered **S**pectroscop**Y**) application separates the NMR signals of mixture components based on different diffusion coefficients. Generally speaking DOSY increases the dimensionality of an NMR experiment by one. In 2D DOSY the initial diffusion weighted NMR spectra are one-dimensional; adding diffusion weighting to a 2D NMR experiment such as COSY, HMQC etc. gives 3D DOSY spectra.

2.1 Macros and commands in the DOSY package

The DOSY analysis involves the following two steps:

- 1. Set up and acquire a series of diffusion-weighted spectra.
- Determine the diffusion coefficients for each line (or cross-peak) in the spectrum. Take line (or cross-peak) positions and diffusion coefficients and display the results in a DOSY plot. All of these steps are executed by the "Calculate Full DOSY" button in the Process/DOSY Process panel (or the dosy macro).

Each of these steps is described in more detail in the following sections. Table 1 lists the tools available for DOSY.

Dbppste	Set up parameters for the Dbppste.c pulse sequence	
Dbppste_cc	Set up parameters for the Dbppste_cc.c pulse sequence	
Dbppste_ghsqcse	Set up parameters for the Dbppste_ghsqcse.c pulse sequence	
Dbppsteinept	Set up parameters for the Dbppsteinept.c pulse sequence	
Dbppste_wg	Set up parameters for the Dbppste_wg.c pulse sequence	
Dcosyidosy	Set up parameters for the Dcosyidosy.c pulse sequence	
Dgcstecosy	Set up parameters for the Dgcstecosy.c pulse sequence	
Dgcstehmqc	Set up parameters for the Dgcstehmqc.c pulse sequence	
Dgcstehmqc_ps	Set up parameters for the Dgcstehmqc_ps.c pulse sequence	
DgcsteSL	Set up parameters for the DgcsteSL.c pulse sequence	
DgcsteSL_cc	Set up parameters for the DgcsteSL_cc.c pulse sequence	

Table 1. Tools (Commands) for DOSY Experiments

DgcsteSL_dpfgse	Set up parameters for the DgcsteSL_dpfgse.c pulse sequence	
Dghmqcidosy	Set up parameters for the Dghmqcidosy.c pulse sequence	
DgsteSL_cc	Set up parameters for the DgsteSL_cc.c pulse sequence	
Dhom2djidosy	Set up parameters for the Dhom2djidosy.c pulse sequence	
Doneshot	Set up parameters for the Doneshot.c pulse sequence	
Doneshot_nugmap	Set Up parameter for NUG calibration	new
Dpfgdste	Set up parameters for the Dpfgdste.c pulse sequence	
makedosyparams	Creates DOSY-related parameters (called by DOSY sequences)	modified
cleardosy	Delete any temporarily saved data in the current (sub) experiment	
dosy	Start the 2D-DOSY or 3D AV-DOSY analyses	modified
undosy	Restore the original 1D NMR data from the subexperiment	modified
redosy	Restore the previous 2D DOSY display from the subexperiment	modified
dosy2D	Execute protocol actions of apptype dosy2d	modified
homodosy3D	Execute protocol actions of apptype homodosy3D	new
heterodosy3D	Execute protocol actions of apptype heterodosy3D	new
$process_dosy2D$	Auto-process 2D DOSY spectra	new
process_dosy3D	Auto-process 3D DOSY spectra	new
sdp	Show diffusion projection	
fbc	Apply baseline correction for each spectrum in the array	
makeslice	Synthesize 2D projection of a 3D DOSY spectrum in diffusion limits	
showoriginal	Restore the 1st 2D spectrum in a 3D DOSY experiment	
showdosyfit	Displays the fit of the DOSY analyses for a given line	
gradfit	Macro to calculate NUG coefficients	new
showgradfit	Displays the gradient strength variation with position	new
showdosyresidual	Displays the difference between experimental data and the fit for a given line or crosspeak	
reorder3D	Reorder FIDs to exchange order of gzlvl1 and phase (for phase sensitive 2Ds)	new

update_wrefshape	Creates solvent suppression selective shape for DgcsteSL_dpfgse sequence	
ddif	Synthesize and display DOSY plot	
dofiddle	Does fiddle via the FIDDLE panel	
fiddle*	Perform reference deconvolution	

*fiddle(option<,file><,option<,file>><,start><,finish><,incremen>

NOTE: the following commands have become obsolete in the new version and not used any more: setup_dosyVJ, dosy3Dps, dosy_grad_calib, unpack_DOSY3Dps.

Every DOSY pulse sequence belongs to either of three application types (apptype parameter): dosy2D, homodosy3D or heterodosy3D. The individual pulse sequences are set up by macros that share the same names as the pulse sequences themselves. In addition, each pulse sequence has a sequencename_setup macro for individual customization this is however not DOSY but VnmrJ 3.0 specific.

Auto-processing (via "Autoprocess" button, process macro or during automation) is done via the macros process_dosy2D and process_dosy3d – these are set by the execprocess parameter. Similarly, the macros sequencename_process, sequencename_plot and sequencename_display are also executed (in case they exist) during automatic processing, plotting and display.

The pulse sequences (always starting with "D") supplied with this version of the DOSY software calculate the time portion of the exponent governing diffusional attenuation as well as the Larmor-frequency of the diffusing spins, and store them in the parameters <code>dosytimecubed</code> and <code>dosyfrq</code> respectively.

2.2 General Considerations

The DOSY experiments are among the most demanding gradient sequences in NMR spectroscopy. In conventional coherence pathway selected experiments one can optimize the experimental conditions for a given gradient setting. In DOSY, however, very often the whole scale of available gradient power is used and high-resolution NMR conditions must still be maintained. Convection, i.e. moving liquid columns along the sample axis (primarily due to temperature gradients), does not hurt coherence pathway selected experiments seriously (apart from the obvious intensity losses), it can, on the other hand, make the DOSY analysis of the diffusion data completely useless.

DOSY pulse sequences use the gradient stimulated echo element (or one of its modifications):

In the DOSY experiments the strength of the diffusion-encoding gradient is arrayed and the diffusion coefficients are calculated according to the Stejskal-Tanner formula:

$$S(G_{zi}) = S(0) \exp(-D_i \gamma^2 \delta^2 (G_{zi})^2 (\Delta - \delta/3))$$

where $S(G_{zi})$ and S(0) are the signal intensities obtained with gradients strengths of G_{iz} and 0, respectively, *D* is the diffusion coefficient, γ is the gyromagnetic constant, δ is the gradient pulse duration and Δ is the diffusion delay.

From the formula alone one can get valuable hints on how to set DOSY-related parameters in different pulse sequences.

$(\gamma \delta G_{zi})^2$ – gradient pulse area squared

a: nuclei with higher γ are more sensitive to diffusion than the low- γ nuclei. (If possible, observe ¹H or ¹⁹F, or at least do the diffusion-encoding step on the high- γ nucleus (see Dbppsteinept).

b: shaping a gradient dramatically reduces its phase encoding efficiency. Although the VNMR software enables the shaping of gradients on VNMRS or 400-MR spectrometers, it is not really recommended.

 δ – gradient pulse duration

during δ (and the subsequent gradient stabilization delay, gstab) the magnetization is transverse and subject to T₂ relaxation and homonuclear *J*-evolution. Do not use long δ values in the presence of large homonuclear couplings or short T₂ relaxation times ($\delta \ll T_2$ or 1/*J*).

 G_z – gradient strength

use the highest values possible, provided high-resolution NMR conditions are still maintained (no phase, amplitude and line shape distortions)

 Δ – diffusion delay

convection can always be an undesired competitor to diffusion, and T_1 relaxation attenuates the signal intensities. Do not use unnecessarily long diffusion delays ($\Delta < T_1$).

Some of the recommendations above may look contradictory. Of course, in real cases one needs to find an acceptable compromise between them.

The separation efficiency in the diffusion domain is determined by the accuracy of the measured diffusion coefficients. DOSY does not necessarily intend to get absolute diffusion coefficients (in mixtures it is difficult to speak about "absolute" numbers anyway); the relative differences in the *D* values may be adequate for separation.

NOTE: Changing the solvent of a DOSY mixture may change the diffusion coefficients and hence the separation power of the method. The solvent can play a similar role in DOSY as the different columns in HPLC chromatograph

Errors in the diffusion coefficients can either be of statistical or systematic nature. The most obvious source of statistical errors is inappropriate signal-to-noise (S/N) ratio, therefore in DOSY experiments relatively high S/N values must be reached even with the strongest phase-encoding gradients. Systematic errors are primarily caused by instrumental imperfections like gradient non-linearity over the active sample volume, phase distortions, changes in experimental lineshape as a function of gradient amplitude etc. The systematic errors can be minimized by careful pulse sequence design (see Magn. Reson. Chem. 1998, 36, 706.) and by adding a suitable internal reference compound to the sample (a component producing a strong, well isolated singlet peak in the spectrum) suitable for reference deconvolution (FIDDLE) when processing DOSY. Gradient nonlinearity can be calibrated and corrected during data processing (see chapter 3. for details).

When setting up DOSY experiments the following recommendations should be taken into consideration:

Be sure that the probe parameter is set to the probe you intend to use and Probegcal has the right value in the probe file. The setup macros extract the gradient strength (gcal) from the probe file and store it in the local parameter gcal_. Pulse power levels and pw90 values are also read from the probe calibration file. If the probe gradient non-linearity has been mapped then the nugcal_[1-5] values are also retrieved and may be used during processing.

set z0 precisely on resonance, and adjust the lock phase carefully (misadjustment may cause progressive phase errors with increasing gradient power

do not spin the sample

use an adequate number of data points for proper spectral digitization

when running long experiments use interleaved acquisition (il='y')

in order to minimize temperature gradients (and hence convection) avoid using extreme (low and high) temperatures. For solutions with very low viscosity it may be preferable to switch off the VT controller completely.

in case you can find a substance suitable for reference deconvolution, add it to the mixture before running DOSY. For proton spectra in small molecule mixtures TMS (organic solvents) or DSS (water) might be ideal candidates.

2.3 Nano Probe compatibility of DOSY experiments

For optimum performance of pulsed field gradient experiments on a Nano Probe the encoding and decoding gradient durations need to be fine adjusted to ensure that the duration of each gradient pulse corresponds to an integer number of rotations.

The current VnmrJ 3.0 release provides a general solution for the problem covering both automatic and manual spin control.

Once the probe file is set up properly the user hardly needs to do anything to run Nano Probe compliant experiments: for systems with software spin control everything is automatic, while for systems with manual spin control, prior to starting the acquisition, the parameter srate needs to be set to the actual spinning frequency, either in the command line or in the **Start/Standard** parameter panel.

This software setup relies upon some new probe file entries: there may be up to three Nano Probe related lines / definitions in the probe file:

Probeprobetype	nano
Probespintype	tach / mas*

Probespinmax

3000 / 10000*

(* mas and 10000 1/s will be the options for the newly released FastNano[™] probe)

corresponding to VnmrJ parameters probetype, spintype, and spinmax. The first one, probetype, is a new global parameter. While the addprobe macro adds this new parameter to the probe file (with a default value of liquids), the updateprobe macro will add that definition to an existing probe file if it is not present yet. Alternatively, an existing probe file may be edited, adding the first of these three lines exactly as shown above. The other two parameters, spintype and spinmax, do exist since VnmrJ 2.2C and are only relevant for systems with software spin control. Upon changing to a Nano Probe, all three parameters are activated (via the _probe macro) and the system is ready to do the extra, Nano Probe related tasks automatically.

2.3.1 User created DOSY pulse sequences

This software setup requires a few changes to existing pulse sequences: the actual gradient adjustment takes place within the pulse sequence itself, i.e., is performed at "go" time (through the "Acquire" button or the cpgo macro). It is therefore the pulse sequence programmers privilege and responsibility to ensure that the pulse sequence is Nano Probe compliant.

All DOSY pulse sequences in VnmrJ3.0 have been adjusted to be compliant with Nano Probes. A user created diffusion pulse sequence could be made Nano Probe compatible by following the steps listed below:

- 1. Be sure that the probe file has all relevant parameters defined and set, as outlined above. Include the necessary changes in your pulse sequence code as described below and recompile the pulse sequence.
- 2. Making an existing gradient pulse sequence compatible with Nano Probes involves several changes in the pulse sequence code itself:

Near the top of the pulse sequence, just below the line

#include <standard.h>

an extra include line must be added for the header file chempack.h:

#include <chempack.h>

Define which parameter(s) need adjustment by inserting expression "A" (or "A" and "B" together) from below. Note that a homospoil gradient pulse (i.e., a gradient that simply destroys residual transverse magnetization) does *not* need this type of adjustment. Let's assume that the relevant gradient pulse has duration of gtE and amplitude of gzlvIE. In this case, expression "A"

gtE = syncGradTime("gtE", "gzlvlE", 1.0) trims the gradient pulse length gtE and leaves the amplitude gzlvlE unchanged. Each Nano Probe compatible pulse sequence must contain *at least* this definition. The third argument is a multiplier that is typically set to 1.0 in sequences with single gradient pulse duration. If a pulse sequence uses gradient pulses with lengths of both gtE and gtE/2 (as many heteronuclear Chempack-type sequences), then the multiplier must be set to 0.5 to ensure that the requirements are also met for gtE/2.

A second expression "B"

```
gzlvlE = syncGradLvl("gtE", "gzlvlE", 1.0)
used with a combination with expression "A" above adjusts also the gradient
amplitude (gzlvlE in this example) such that the gradient area (i.e., the product
gtE*gzlvlE) remains constant.
```

The use of both expressions is *required* for all sequences used to measure diffusion rates!**Important**: In order to avoid any incompatibilities between current VnmrJ DOSY pulse sequences and the DOSY processing package, expressions "A" and "B" must be inserted **after** the line starting with: putCmd ("makedosyparams...)

(Every Varian-supplied DOSY sequence contains such a line).

Statements "A" and "B" above actually do *not* update the parameter values in any VnmrJ parameter tree. If the gradient pulse duration (and amplitude, if applicable) are adjusted "on-the-fly", the output of dps shows the modified values, but after the experiment the VnmrJ parameters will *not* reflect the values actually used. However, this will not have any negative consequences, at least as long as both the gradient pulse duration *and* the amplitude are corrected, as the gradient areas in the "real" experiment correspond to the specified values.

Chapter 3 Gradient Calibration and Correction for Gradient Non-Uniformity

3.1 Introduction

As described in section 2.1, the measurement of good quality DOSY data is highly dependent on the careful optimization of experimental parameters and the reduction, or complete elimination, where possible, of sources of systematic errors in the data. However, even when all possible steps have been taken to maximize spectral data quality, some systematic sources of error will remain that can degrade the quality of the final DOSY spectrum and reduce the accuracy of the diffusion measurements. Among these remaining sources of systematic error, one of the most significant is spatial non-uniformity of the field gradient pulses produced by the probe.

As described in section 2.1, diffusion measurements by NMR involve the fitting of the signal amplitude as a function of the square of the gradient pulse area to the Stejskal-Tanner equation:

$S(G) = S(0) \exp(-D_i \gamma^2 \delta^2 G^2 \varDelta) \qquad [1]$

where S(G) and S(0) are the signal intensities obtained with gradients strengths of *G* and 0, respectively, *D* is the diffusion coefficient, γ is the gyromagnetic ratio, δ is the gradient pulse duration and Δ is the effective diffusion delay.

Unfortunately, largely due to necessary compromises made in all probe designs, the field gradients produced are not perfectly uniform over the active volume of the sample. In diffusion experiments this leads to problems with gradient calibration and to signal decays whose form deviates slightly from that of the Stejskal-Tanner (S-T) equation. Fitting such data to the S-T equation without correcting for non-uniform gradients has some undesirable consequences: first, with increasing diffusion weighting, the deviation of the signal decay from the S-T equation also increases. This means that the apparent diffusion coefficient calculated from the fit depends on the level of diffusion weighting used. Second, the standard deviation of D estimated in the fitting process is increased because the experimental and theoretical decays do not match, a problem that gets worse as the diffusion domain of a DOSY spectrum, (see section 4.5) any increase in the standard error leads to a loss of diffusion resolution.

Fortunately, it is straightforward to correct for almost all of these effects of gradient non-uniformity by fitting the experimental data to a modified Stejskal-Tanner equation that takes into account the actual gradient shape produced by the probe. A single experiment is used to determine the necessary correction to the S-T equation, which can then be used in the processing of all DOSY data. The steps involved in correcting for gradient non-uniformity can be summarized as follows:

Mapping of the gradient shape

Calculation of the actual signal decay under this gradient shape

Parameterization of the experimental signal decay

Each of these steps is described in the sections below.

3.2 Mapping the Gradient Shape

The first step in correcting for gradient non-uniformity in diffusion measurements is to map the shape of the gradient produced by the probe. This is done using a diffusion pulse sequence that has been modified to include a weak 'read' gradient. VnmrJ features a sequence 'Doneshot_nugmap' that is based on the standard 'oneshot' sequence (Doneshot), but which includes a read gradient during acquisition. Gradient calibration should be run by the system administrator once for each probe - therefore it is not made available from the experiment selection menu for ordinary users and operators.

The Doneshot_nugmap sequence and its parameter list:

Parameters:	
delflag	'y' runs the Doneshot_nugmap sequence
	'n' runs the normal s2pul sequence
avflag	'n' runs Doneshot sequence with a read gradient
	'y' as above plus an increased gradient pulse top move the echo to middle of at
del	the actual diffusion delay
gt1	total diffusion-encoding pulse strength
gzlvl1	diffusion-encoding pulse strength
gstab	gradient stabilization delay (~0.0002-0.0003 s)
gt3	spoiling gradient duration
gzlvl3	spoiling gradient strength
gzlvl_max	maximum accepted gradient strength 32767 with Performa II or IV, 2047 with Performa I
gzlvl_read	gradient strength during acquisition, typically around 25 DAC units on a Performa II or Performa IV or about 7 DAC units on a Performa I system – the HDO signal width should be between 300- 400 Hz
kappa	unbalancing factor between bipolar pulses as a proportion of gradient strength (~0.2)
tweak	correction to final gradient pulse, typically around 1 DAC point

awm	0 selects absolute value experiment 1 selects phase sensitive experiment
nugcal_[1-5]	a 5-membered parameter array summarizing the results of the calibration of non-uniform field gradients. Created by the Doneshot_nugmap sequence and then copied to the corresponding probe file
probe_	stores the probe name used to acquire the DOSY experiment

NOTE: Select the transmitter offset tof to be on-resonance on the HDO signal.

The parameters for the heating gradients (gt4, gzlvl4) are calculated in the sequence. They cannot be set directly.

The calibration is typically done by measuring ¹H profiles using the standard doped 1% $H_2O/99\%D_2O$ sample; the temperature dependence of diffusion coefficient for this sample can be estimated by interpolation from values in the literature.

To set up the Doneshot nugmap gradient mapping experiment, do the following:

- 1. Calibrate the probe temperature using one of the standard samples.
- 2. Insert the doped $1\% H_2O/99\% D_2O$ sample into the magnet.
- 3. Regulate the probe (VT) temperature and note the (calibrated) sample temperature.
- 4. Optimize the lock parameters, tune the probe and shim the sample.
- 5. Ensure that the correct probe has been selected in VnmrJ by clicking on the **Probe** button on the Hardware Bar and selecting the appropriate probe file.
- 6. Call the Doneshot_nugcal macro from the command line.
- 7. This will set up the parameters for the Doneshot_nugmap sequence that allows the measurement of a set of diffusion-weighted profiles for characterizing the gradient non-uniformity. Select the transmitter offset tof to be on-resonance on the HDO signal. Review the parameters from the Acquire-Defaults and/or Acquire-Pulse Sequence panels, as shown in Figure 1 below.
- 8. Click Acquire to start the acquisition.

Figure 1 The Acquire-Defaults and Acquire-Pulse Sequence panels for the Doneshot_nugmap sequence

3.3 Processing the Gradient Mapping Data

Once the gradient mapping data have been acquired, the next step is to process the data. The processing involves the following steps:

- 1. Fourier transformation of the time-domain data to give a series of profiles
- 2. Baseline correction of the profiles
- 3. Fitting of corresponding points on each profile to the standard Stejskal-Tanner equation (eqn. 1) to give an apparent variation in diffusion coefficient (*D*) as a function of the position along the (*z*) axis of the sample
- 4. Fitting of the apparent variation in *D* to a power series to yield a gradient shape function. The coefficients of the power series are then stored in the probe file as parameters Probegradcoeff1, Probegradcoeff2, ..., Probegradcoeff9.
- 5. Calculation of the signal decay under the influence of the gradient shape function determined in 4.
- 6. Fitting of the signal decay to an exponential of a power series. The coefficients of the power series are then stored in the probe file as parameters Probenugcal1, Probenugcal2, ..., Probenugcal5.

Step-by-step description

tart Acquire	Process	Transform	Autoprocess	Display Spectrum	Clear Screen	Cancel
UG Calib refault 2D isplay 2D lot 2D ext Output	Calibrant fo D value for Mapping da Copy	g Fourier Transfor Baseline Correct r gradient mapp calibrant: ta measured at: y NUG coeffs to e/update NUG c	m Profiles All Profiles bing: 1% HOD 19.01 10 ⁻¹⁰ 25.0 deg. 0 global parameter oeffs in probe file	NUG coef Corrected of gcal_corm nugcal_[1 nugcal_[2 nugcal_3 nugcal_4 nugcal_[4 nugcal_5 rs Display/F Show fitte Show fitte	ficients toeffs d = 0.0018721] = 0.0018721] = 1.0000000] = -0.0012840] = -0.0000460] = -0.0000014 Plot ed gradient shape ted signal decay	System coeffs gcal = 0.0022400 nugcal[1] = 0.0022400 nugcal[2] = 0.6984672 nugcal[3] = -0.0006264 nugcal[4] = -0.0000157 nugcal[5] = -0.0000003 Plot fitted gradient shape Plot fitted signal decay

Figure 2 The Process/NUG Calib panel, used for processing gradient mapping data from the Doneshot_nugmap sequence

To process the gradient map data, do the following:

- 1. Click on **Fourier Transform Profiles**. This will perform a weighted Fourier transform of the FID data and display the first profile. A typical set of profiles (shown stacked vertically) obtained from the Doneshot_nugmap sequence is shown in Figure 3 below.
- 2. Display the first spectrum and set integral regions manually.
- 3. Now click the **Baseline Correct All Profiles** button. This will automatically baselinecorrect all the profiles using the integral settings defined above.
- 4. From the **Calibrant for gradient mapping** drop-down menu, select either 'Pure H2O', '1%HOD' or 'Other', depending on which sample was used to obtain the profiles. If 'Other' was selected, enter the expected diffusion coefficient for the calibrate at the temperature the data were recorded at.
- 5. Enter the (calibrated) temperature that the data were recorded at into the relevant field.
- Check or uncheck the options 'Copy NUG coeffs to global parameters' and 'Store/update NUG coeffs in probe file' as appropriate. If this is the first time the calibration has been done for a particular probe, it is recommended that these options be checked.
- 7. Click 'Calculate NUG coefficients'. a semi-logarithmic plot of the calculated versus fitted signal attenuation will be displayed, together with the calculated NUG coefficient.

The **Calculated nugcal_array** contains the NUG coefficients calculated using the original (uncorrected) probe file value of gcal (stored locally as gcal_). The **Corrected nugcal_array** contains the NUG coefficients calculated instead using a corrected version of gcal_

Corrected gcal_ = Original gcal_ * Correction factor

where the **Correction factor** is the square root of the second NUG coefficient. The corrected gcal is stored in the probe file as parameter Probegcal_corrd (see Section 3.4). Note that any DOSY measurements recorded after the gradient mapping has been carried out will use the corrected value of gcal in place of the original gcal. The corrected value is the signal-weighted average of the gradient strengths across the sample, and is generally different from that obtained from the width of the signal profile; the latter method is relatively inaccurate and does not allow for gradient non-uniformity corrections.

Figure 3 Set of profiles measured on a doped sample of 1% H₂O/99% D₂O, using the Doneshot_nugmap sequence. The top trace shows the profiles in 'absolute intensity' mode, while the bottom trace shows the profiles normalized to the same intensity. The 'smile' seen on the profiles displayed in normalized mode is due to the non-uniformity of the gradient having caused the profile to decay more quickly in the middle than at its edges.

Figure 4 Typical output from non-uniform gradient (NUG) processing.

3.4 Probe file entries

If the option 'Store/update NUG coeffs in probe file' is checked before the '**Calculate NUG Coefficients**' button was pressed then the following parameters are written to the probe file (see Figure 5):

Probeprobetype	liquids
Probenugcal1	0.01067000000
Probenugcal2	1.04977365653
Probenugcal3	-0.00273292896
Probenugcal4	-0.00012465238
Probenugcal5	-0.00000426686
Probegcal_corrd	0.009250
Probegradcoeff1	6.0000000000000000
Probegradcoeff2	1.0411584899999999
Probegradcoeff3	-0.0000984377422000
Probegradcoeff4	0.0000005243765730
Probegradcoeff5	-0.0000000110202274
Probegradcoeff6	-0.000000001095542
Probegradcoeff7	-0.00000000000368
Probegradcoeff8	-0.000000000000011
Probegradcoeff9	-0.00000000000000000

Figure 5 Excerpt from a typical probe file, showing the parameters stored during the NUG processing.

Probe gradient coefficients: the parameters Probegradcoeff1, Probegradcoeff2, ..., Probegradcoeff9, which correspond to the power series coefficients that describe the gradient shape produced by the probe. These coefficients are not used for the processing of data measured using the standard Varian-supplied DOSY pulse sequences, but are useful for the analysis of 'pureshift' and other spatially-resolved DOSY datasets ("Pure shift Proton DOSY: Diffusion-Ordered 1H Spectra without multiplet structure." M. Nilsson and G.A. Morris, Chem. Commun. 2007, 933-935.).

Non-uniform gradient (NUG) coefficients: the parameters Probenugcal1, Probenugcal2, ..., Probenugcal5, which describe the actual signal decay (as opposed to the 'idealized' signal decay described by the S-T equation). During the processing of routine DOSY data, if the **Correct for non-uniform gradients** option (nugcal='y') is selected on the **DOSY Process** panel then signal decays are fitted to an equation of the form:

$$S(G) = S(0) \exp\left[-\sum_{n=1}^{5} \operatorname{nugcal} n \eta^n G^{2n}\right]$$
[2]

where $\eta = D\gamma^2 \delta^2 \Delta$ and *G* is the nominal gradient amplitude.

A 'corrected' gcal: the parameter Probegcal_corrd corresponds to the conversion factor from gradient DAC units to the *average* gradient strength (in G/cm) across the sample:

Average gradient strength (G/cm) = gcal_corrd × gradient DAC units

gcal_corrd provides a more accurate estimate of the average gradient strength across the sample than gcal. Note that when subsequent DOSY experiments are set up, the value of gcal_corrd is used in place of gcal (and is stored locally as gcal_). Using gcal_corrd results in diffusion coefficients that converge upon the same values with and without non-uniform gradient correction, as the degree of diffusion weighting is reduced (i.e. for low signal attenuation).

3.5 Display and Plot Options

The Process-NUG Calib panel contains a number of display and plot options, which are outlined below:

3.5.1 Show (plot) apparent D wrt position

Display (plots) the variation of the apparent diffusion coefficient with respect to position. This apparent variation is due to the variation in gradient strength across the sample. Typically (though not always) the gradient is stronger in the middle of the coil and declines towards its edges (see Figure 6).

Figure 6 Typical plot of variation in diffusion coefficient version Z (position).

3.5.2 Show (plot) fitted gradient shape

Displays (plots) a comparison between the experimental gradient shape (shown in red), derived from the apparent variation in *D* across the signal profiles, and the fitted gradient shape (shown in blue) derived using the power series coefficients Probegradcoeff1 through to Probegradcoeff9 (see Figure 7).

Figure 7 Typical comparison between the experimental and fitted gradient shape produced by the probe.

3.5.3 Show (plot) Fitted Signal Decay

Displays (plots) a semi-logarithmic plot of the calculated (shown in red) versus fitted (shown in blue) signal decays (see Figure 8). There is normally good agreement between these two decays down to -9 (more than 1000-fold attenuation).

Figure 8 Typical semilog plot of calculated versus fitted signal decay.

Chapter 4 2D-DOSY Experiments

4.1 Setting up basic 2D-DOSY experiments

The current DOSY package includes four basic 2D-DOSY sequences: Dbppste, DgcsteSL, Doneshot and Dbppsteinept. To set up any of those experiments start with recording a normal s2pul spectrum on the nucleus to be observed, followed by calibrating (or checking) pulse widths if necessary. It is a good idea to reduce the spectral window to the region of interest as well as define integral regions for future baseline correction before selecting the requested experiment from the menu or calling the setup macro from the command line (which always has the same name as the pulse sequence itself).

Each sequence has a parameter called delflag. By setting it to 'y', the actual DOSY sequence is activated (default value), the 'n' option allows going back to the basic s2pul (Dbppste, DgcsteSL, Doneshot) or INEPT (Dbppsteinept) sequence without changing the experiment workspace or the parameter set.

All sequences use a common set of parameters to define the duration of the diffusion gradient length (gt1, the total defocusing time), the diffusion gradient level (gz1v11) and the diffusion delay (de1). Choosing the values of DOSY parameters for a given sample involves determining the proper relationship among these three parameters. The best setting primarily depends on the sample itself (solvent, viscosity, molecular size and shape, the isotope to be detected) and on the experimental conditions (temperature, etc.). It is therefore recommended that the experimental parameters be optimized using the DOSY sample to be measured and the pulse sequence to be used. To get an approximate idea for these parameters, use the "**Setup coarse gradient array**" button in the **Acquire/Pulse Sequence** VnmrJ panel. Alternatively, use the command line to set gt1=0.002, de1=0.05 s and to array the gradient strength:

gzlvl1=500,5000,15000,20000,25000,gzlvl1_max for Performa II or IV gradient amplifiers, or gzlvl1=50,500,1000,1500,gzlvl1_max for Performa I gradient system.

For the maximum gradient power used in the DOSY experiment, select the gzlvll value that attenuates the signal intensities to 5-15 % of the intensities obtained with the weakest gradient pulse. If the intensity drop is not sufficient at the end of the array, del or gtl may be increased. If no signal is detected towards the end of the array, decrease del or gtl and repeat the procedure again. Before the final setup the best baseline performance should be achieved. With the Varian-supplied sequences, alfa, rof2 and ddrtc delays should be set to (near) optimum by default. If, however, the spectra still need first order phase correction (lp <> 0), use the setlp0 macro to reach lp=0 and good baseline performance. After having determined suitable values for gtl, del and the maximum gradient power, the number of increments, the minimum and maximum gradient power can be set and a suitable gradient array be calculated by clicking on the "**Setup DOSY using conditions above**" button. The setup_dosy macro behind this button sets up a range of gzlvll values with their squares evenly spaced assuring that each gradient strength value will have the same weight when fitting the data to the Stejskal-Tanner formula. The minimum gradient strength may be set to 0.5-2 Gauss/cm.

The number of increments to use depends on the range of diffusion coefficients to be covered and on the balance between systematic and random errors, but will typically be in the range of 15 to 30. If significantly different diffusion coefficients are expected in a mixture more gradient strengths might be needed to have sufficient number of usable data points also for the slowest and the fastest diffusing component. As in any quantitative experiment, there is a balance to be struck between signal-to-noise and accuracy when choosing a repetition rate (d1). In DOSY experiments a delay of 1-2 T_1 suffices, provided that care is taken to establish a steady state before acquiring data. It is recommended to set ss to 8 or 16 to have steady-state pulses at the beginning of the experiment and run the acquisition interleaved (set il='y') especially for experiments covering several hours of experimental time.

Each sequence comes with a pulse sequence specific acquisition panel. It enables the operator to set parameters and setup related commands directly. Figure 9 shows the acquisition panels of the Doneshot sequence. The **Acquire/Defaults** panels provide access to the most important parameters to set up the experiment. For users with low panel level this is the only acquisition panel available. The **Acquire/Pulse Sequence** panel lists all relevant sequence related parameters.

Figure 9 The Acquire/Defaults and Acquire/Pulse Sequence VnmrJ panels of the Doneshot pulse sequence.

4.2 Simple 2D DOSY Pulse Sequences

4.2.1 Dbppste (DOSY Bipolar Pulse Pair STimulated Echo) Experiment

Reference:	Wu, D.; Chen, A.; Johnson, C.S., Jr., J.
	Magn. Reson. 1995, 115, Series(A), 260-264.

Parameters:

delflag	'y' runs the Dbppste sequence
	'n' runs the normal s2pul sequence
del	the actual diffusion delay
gt1	total diffusion-encoding pulse strength
gzlvl1	diffusion-encoding pulse strength
gstab	gradient stabilization delay (~0.0002-0.0003 s)
satmode	'y' turns on presaturation during d1 and/or during the diffusion delay
satfrq	presaturation frequency
satdly	saturation delay (part of d1)
alt_grd	flag to invert gradient sign on alternate scans (default='n')
lkgate_flg	flag to gate the lock sampling off during the diffusion period (default = 'n')
sspul	flag for a GRD-90-GRD homospoil block
gzlvlhs	gradient level for sspul
hsgt	gradient duration for sspul
probe_	stores the probe name used to acquire the DOSY experiment

Processing Parameters:

ncomp	determines the number of components to be used in fitting the signal decay in DOSY when dosyproc='discrete'.
	'n' uses simple mono- or multi-exponential fitting to estimate diffusion coefficients
nugflag	'y' uses a modified Stejskal-Tanner equation in which the exponent is replaced by a power series.
nugcal_[1-5]	a 5-membered parameter array summarizing the results of the calibration of non-uniform field gradients. Used if nugflag='y', requires a preliminary NUG-calibration by the Doneshot_nugmap sequence. The values are taken from the probe file at the time of

	the data acquisition
dosyproc	'discrete' - invokes monoexponential fitting with dosyfit if ncomp=1, and multiexponential fitting with the external programme SPLMOD if ncomp>1.
	'continuous' invokes processing with the external programme CONTIN and gives a continuous distribution in the diffusion domain.
dosybypoints	'n' divides the spectrum into individual peaks, creating one cross- peak for each individual peak found in the 1D spectrum
	'y' performs a diffusion fit for every point in the displayed region of the spectrum that lies above the selected threshold.

4.2.2 DgcsteSL (<u>D</u>OSY <u>G</u>radient <u>C</u>ompensated <u>S</u>timulated <u>E</u>cho with <u>S</u>pin <u>L</u>ock) Experiment

Reference: Pelta, M.D.; Barjat, H.; Morris, G.A.; Davis, A.L., Hammond, S.J. Magn. Reson. Chem. 1998, 36, 706.

Parameters:

delflag	'y' runs the Dbppste sequence
	'n' runs the normal s2pul sequence
del	the actual diffusion delay
gt1	total diffusion-encoding pulse strength
gzlvl1	diffusion-encoding pulse strength
gstab	gradient stabilization delay (~0.0002-0.0005 s)
tweek	tuning factor to limit eddy currents (can be set between 0 and 1, usually set to 0.0)
	'y' selects purging trim pulse
prg_flg	'n' omits purging pulse (default)
prgtime	purging pulse length (~0.002 s) used if prg_flg='y'
prgpwr	power level for the purge pulse (use 6-8 db less power than for tpwr)
lkgate_flg	flag to gate off the lock sampling during gradient pulses (default = 'n')
alt_grd	a flag to invert the gradient sign on alternate scans (default = 'n')
satmode	'y' turns on presaturation during d1 and/or during the diffusion delay

satfrq	presaturation frequency
satdly	saturation delay (part of d1)
sspul	flag for a GRD-90-GRD homospoil block
gzlvlhs	gradient level for sspul
hsgt	gradient duration for sspul
probe_	stores the probe name used to acquire the DOSY experiment

Processing Parameters:

ncomp	determines the number of components to be used in fitting the signal decay in DOSY when dosyproc='discrete'.
	'n' uses simple mono- or multi-exponential fitting to estimate diffusion coefficients
nugflag	'y' uses a modified Stejskal-Tanner equation in which the exponent is replaced by a power series.
nugcal_[1-5]	a 5-membered parameter array summarizing the results of the calibration of non-uniform field gradients. Used if nugflag='y', requires a preliminary NUG-calibration by the Doneshot_nugmap sequence. The values are taken from the probe file at the time of the data acquisition
	'discrete' - invokes monoexponential fitting with dosyfit if ncomp=1, and multiexponential fitting with the external programme SPLMOD if ncomp>1.
dosyproc	'continuous' invokes processing with the external programme CONTIN and gives a continuous distribution in the diffusion domain.
dosybypoints	'n' divides the spectrum into individual peaks, creating one cross- peak for each individual peak found in the 1D spectrum 'y' performs a diffusion fit for every point in the displayed region of the spectrum that lies above the selected threshold.

The optional purging pulse (prg_flg) can effectively eliminate dispersion signal components. It can also be used as a T₂ relaxation filter to get rid of undesired broad signals. One should, however, be careful not to create convection in the sample through RF heating caused by the trim pulse.

4.2.3 The "Doneshot" Experiment

Reference: M. D. Pelta, G. A. Morris, M. J. Tschedroff and S. J. Hammond: MRC 40, 147-152 (2002)

For eliminating radiation damping: M. A. Conell, A. L. Davis, A. M. Kenwright and G. A. Morris: Anal. Bioanal. Chem. 378, 1568-1573, (2004).

Parameters:

delflag	'y' runs the Doneshot sequence
	'n' runs the normal s2pul sequence
del	the actual diffusion delay
gt1	total diffusion-encoding pulse strength
gzlvl1	diffusion-encoding pulse strength
gstab	gradient stabilization delay (~0.0002-0.0003 s)
gt3	spoiling gradient duration (in seconds)
gzlvl3	spoiling gradient strength (destroys transverse magnetization during the diffusion delay)
gzlvl_max	maximum accepted gradient strength 32767 with Performa II or IV, 2047 with Performa I
kappa	unbalancing factor between bipolar pulses as a proportion of gradient strength (\sim 0.2)
startflip	flip angle of the first pulse to eliminate radiation damping for very concentrated samples labeled by e on the pulse sequence above
alt grd	flag to invert gradient sign on alternate scans (default='n')
lkgate flg	flag to gate the lock sampling off during gradient pulses (default='n')
sspul	flag for a GRD-90-GRD homospoil block
gzlvlhs	gradient level for sspul
hsgt	gradient duration for sspul
satmode	flag for optional solvent presaturation 'ynn' - does presat during satdly 'yyn' - does presat during satdly and the diffusion delay
satdly	presaturation delay before the sequence (part of d1)
satowr	saturation power level

satfrq	saturation frequency
wet	flag for optional wet solvent suppression
probe	stores the probe name used to acquire the dosy experiment
Processing Parameter	'S:
ncomp	determines the number of components to be used in fitting the signal decay in DOSY when dosyproc='discrete'.
	'n' uses simple mono- or multi-exponential fitting to estimate diffusion coefficients
nugflag	'y' uses a modified Stejskal-Tanner equation in which the exponent is replaced by a power series.
nugcal_[1-5]	a 5-membered parameter array summarizing the results of the calibration of non-uniform field gradients. Used if nugflag='y', requires a preliminary NUG-calibration by the Doneshot_nugmap sequence. The values are taken from the probe file at the time of the data acquisition
	'discrete' - invokes monoexponential fitting with dosyfit if ncomp=1, and multiexponential fitting with the external programme SPLMOD if ncomp>1.
dosyproc	'continuous' invokes processing with the external programme CONTIN and gives a continuous distribution in the diffusion domain.
dosybypoints	'n' divides the spectrum into individual peaks, creating one cross- peak for each individual peak found in the 1D spectrum 'y' performs a diffusion fit for every point in the displayed region of the spectrum that lies above the selected threshold.

The parameters for the heating gradients (gt4, gzlvl4) are calculated in the sequence, they cannot be set directly. The lock refocusing gradient is determined by kappa and gzlvl1 the dummy heating gradients are automatically adjusted by the sequence. For the maximum gradient power available in the experiment: $gzlvl_max > gzlvl1*(1+kappa)$. The total gradient power transmitted to the sample remains independent of the phase encoding gradient power.

4.2.4 Dbppsteinept (<u>D</u>OSY <u>Bipolar Pulse Pair Stimulated Echo INEPT</u>) Experiment

Reference : D.Wu, A.Chen and C.S.Johnson, Jr., J. Magn. Reson. Series A, 123, 222-225 (1996)

Parameters:

delflag	'y' runs the dosyinept 'n' runs the normal inept without dosy
del	the actual diffusion delay

gt1	total length of the phase encoding gradient
gzlvl1	strength of the phase encoding gradient
pp	90 deg. hard ¹ H pulse
pplvl	decoupler power level for pp pulses
sspul	flag for a GRD-90-GRD homospoil block
gzlvlhs	gradient level for sspul
hsgt	gradient duration for sspul
sspulX	flag for a GRD-90-GRD homospoil block during del to destroy original X magnetization (using hsgt and gzlvlhs)
jlxh	one-bond X-H coupling
mult	multiplicity; 1 selects CH's (doublets); 1.5 gives CH2's down, CH's and CH3's up; 0.5 enhances all protonated carbons
alt_grd	flag to invert gradient sign on alternate scans (default = 'n')
lkgate_flg	flag to gate the lock sampling off during gradient pulses
probe_	stores the probe name used to acquire the dosy experiment

5:
determines the number of components to be used in fitting the signal decay in DOSY when dosyproc='discrete'.
'n' uses simple mono- or multi-exponential fitting to estimate diffusion coefficients
'y' uses a modified Stejskal-Tanner equation in which the exponent is replaced by a power series.
a 5-membered parameter array summarizing the results of the calibration of non-uniform field gradients. Used if nugflag='y', requires a preliminary NUG-calibration by the Doneshot_nugmap sequence. The values are taken from the probe file at the time of the data acquisition
'discrete' - invokes monoexponential fitting with dosyfit if ncomp=1, and multiexponential fitting with the external programme SPLMOD if ncomp>1.
'continuous' invokes processing with the external programme CONTIN and gives a continuous distribution in the diffusion domain.
'n' divides the spectrum into individual peaks, creating one cross- peak for each individual peak found in the 1D spectrum 'y' performs a diffusion fit for every point in the displayed region of the spectrum that lies above the selected threshold.

This sequence uses the higher "resolving power" of the wide ¹³C chemical shift range, while the phase encoding and decoding step is done more effectively on the ¹H magnetization.

4.3 DOSY pulse sequences for H₂O samples

For biological samples dissolved in H_2O/D_2O mixture simple solvent presaturation is typically not sufficient to reduce the water amplitude to a level where signal intensities from the sample are not affected by the residual solvent signal or by its dispersive component. Therefore, solvent presaturation needs to be combined with efficient extra post-sequence solvent suppression scheme like Watergate 3-9-19 or excitation sculpting (Double Pulsed Field Gradient Spin Echo = DPFGSE). For best results, especially in sub-millimolar concentrations, using a digital solvent suppression filter may also be recommended during processing.

4.3.1 DgcsteSL_dpfgse - (<u>D</u>OSY <u>G</u>radient <u>C</u>ompensated <u>S</u>timulated <u>E</u>cho with <u>S</u>pin <u>L</u>ock) Experiment Using the DPFGSE Solvent Suppression Method

Parameters:

delflag	'y 'runs the DgcsteSL sequence
	'n' runs the normal s2pul sequence
del	the actual diffusion delay
gt1	total diffusion-encoding pulse width
gzlvl1	diffusion-encoding pulse strength
gstab	gradient stabilization delay (~0.0002-0.0003 s)
tweek	tuning factor to limit eddy currents, (can be set from 0 to 0.2, usually set to 0.0)
prg_flg	'y' selects purging pulse (default) 'n' omits purging pulse
prgtime	purging pulse length (~0.002 s), used if prg_flg='y'
prgpwr	purging pulse power, used if prg_flg='y'
lkgate_flg	lock gating flag, if set to 'y', the lock is gated off during gradient pulses (default = 'n')
satmode	flag for optional solvent presaturation 'ynn' - does presat during satdly 'yyn' - does presat during satdly and the diffusion delay
satdly	presaturation delay before the sequence (part of d1)
satpwr	saturation power level
satfrq	saturation frequency
wrefshape	shape file of the 180 deg. selective refocusing pulse on the solvent (may be convoluted for multiple solvents)
wrefpw	pulse width for wrefshape (as given by Pbox)

wrefpwr	power level for wrefshape (as given by Pbox)
wrefpwrf	fine power for wrefshape, by default 2048, needs optimization for multiple solvent suppression with fixed wrefpw
gt2	gradient duration for the solvent suppression echo
gzlvl2	gradient power for the solvent suppression echo
alt_grd	alternate gradient sign(s) on even transients (default = 'n')
sspul	flag for a GRD-90-GRD homospoil block
gzlvlhs	gradient level for sspul
hsgt	gradient duration for sspul
probe_	stores the probe name used to acquire the dosy experiment
Processing Parameter	<u>s:</u>
ncomp	determines the number of components to be used in fitting the signal decay in DOSY when dosyproc='discrete'.
nugflag	'n' uses simple mono- or multi-exponential fitting to estimate diffusion coefficients
	'y' uses a modified Stejskal-Tanner equation in which the exponent is replaced by a power series.
nugcal_[1-5]	a 5-membered parameter array summarizing the results of the calibration of non-uniform field gradients. Used if nugflag='y', requires a preliminary NUG-calibration by the Doneshot_nugmap sequence. The values are taken from the probe file at the time of the data acquisition
dosyproc	'discrete' - invokes monoexponential fitting with dosyfit if ncomp=1, and multiexponential fitting with the external programme SPLMOD if ncomp>1.
	'continuous' invokes processing with the external programme CONTIN and gives a continuous distribution in the diffusion domain.
dosybypoints	'n' divides the spectrum into individual peaks, creating one cross- peak for each individual peak found in the 1D spectrum 'y' performs a diffusion fit for every point in the displayed region of the spectrum that lies above the selected threshold.

The water refocusing shape can be created/updated using the "Recreate water refocusing shape" button (update_wrefshape macro).

4.3.2 Dbppste_wg – (DOSY <u>Bipolar Pulse Pair ST</u>imulated <u>E</u>cho) Experiment Using Watergate 3-9-19 Solvent Suppression

Parameters:		
delflag	'y' runs the Dbppste sequence 'n' runs the normal s2pul sequence	
del	the actual diffusion delay	
gt1	total diffusion-encoding pulse width	
gzlvl1	diffusion-encoding pulse strength	
alt_grd	alternate gradient sign(s) on even transients (default = 'n')	
lkgate_flg	flag to gate the lock sampling off during the diffusion sequence	
d3	watergate delay, the excitation maximum is defined by 1.0/(2.0*d3)	
ex_max	excitation maximum from the XMTR position(=1/(2*d3)	
gt2	watergate diffusion-encoding pulse width	
gzlvl2	watergate encoding pulse strength	
gstab	gradient stabilization delay (~0.0002-0.0003 s)	
satmode	'y' turns on presaturation during d1 and/or del	
satdly	presaturation delay before the sequence (part of d1)	
satpwr	saturation power level	
satfrq	saturation frequency	
prg_flg	'y' selects purging pulse (default) 'n' omits purging pulse	
prgtime	purging pulse length (~0.002 s)	
prgpwr	purging pulse power	
sspul	flag for a GRD-90-GRD homospoil block	
gzlvlhs	gradient level for sspul	
hsgt	gradient duration for sspul	
probe_	stores the probe name used to acquire the dosy experiment	
Processing Parameters:		

<u> </u>	
	determines the number of components to be used in fitting the
ncomp	signal decay in DOSY when dosyproc='discrete'.

nugflag	 'n' uses simple mono- or multi-exponential fitting to estimate diffusion coefficients 'y' uses a modified Stejskal-Tanner equation in which the exponent is replaced by a power series. 	
nugcal_[1-5]	a 5-membered parameter array summarizing the results of the calibration of non-uniform field gradients. Used if nugflag='y', requires a preliminary NUG-calibration by the Doneshot_nugmap sequence. The values are taken from the probe file at the time of the data acquisition	
	'discrete' - invokes monoexponential fitting with dosyfit if ncomp=1, and multiexponential fitting with the external programme SPLMOD if ncomp>1.	
dosyproc	'continuous' invokes processing with the external programme CONTIN and gives a continuous distribution in the diffusion domain.	
dosybypoints	'n' divides the spectrum into individual peaks, creating one cross- peak for each individual peak found in the 1D spectrum	
	'y' performs a diffusion fit for every point in the displayed region of the spectrum that lies above the selected threshold.	

4.4 Convection and Convection-Compensation in Diffusion Experiments

Convection within the sample tube can seriously affect diffusion experiments, in particular at elevated temperatures. Convection currents are caused by small temperature gradients in the sample and result in additional signal decay that can be mistaken for faster diffusion.

The convection conditions are described by the *Rayleigh-Bénard* equation:

$R = \frac{g\beta R^4}{\partial T}$	$R_a = 67$ for insulating walls
$\Lambda_a = V \chi \partial z$	$R_{2} = 216$ for conducting

where *g* is the gravitational acceleration, ν is the viscosity, χ the thermal diffusivity, β the expansion coefficient of the liquid, *R* the internal diameter of the NMR tube and $\partial T/\partial z$ the temperature gradient along the sample axis. When the critical Rayleigh number (R_a) is exceeded convection will occur. Convection typically causes the following anomalies in diffusion experiments:

Anomalously large diffusion coefficients (D)

D values that are not independent of gradient duration (δ) and the diffusion delay (del)

Stejskal-Tanner plots that show periodicity

Irregular (non-Arrhenius) temperature dependence of D

A simple calculation based on the Rayleigh-Bénard equation indicates that, for a solvent like chloroform, a temperature gradient of as little as 0.05 K/cm is sufficient to cause convection flow. In general, larger temperature gradients are needed for more viscous solvents.

In a typical DOSY experiment, a uniform sample flow velocity *v* introduces a phase modulation of the signal:

$$S(G_{zi}) = S(0) \exp(-D_i \gamma^2 \delta^2 (G_{zi})^2 \Delta) * \exp(i \gamma \delta G_{zi} \nu \Delta))$$

Representing convection by a crude model of equal and opposite flows each of uniform velocity leads to cancellation of the imaginary part above and the result is a cosine modulation:

$$S(G_{zi}) = S(0) \exp(-D_i \gamma^2 \delta^2(G_{zi})^2 \Delta^* \cos(\gamma \delta G_{zi} \nu \Delta))$$

Observing such an oscillatory behavior of the signal decay (see Figure 14) is a clear sign that convection occurs.

With the assumption that convection is constant in time and is strictly laminar its effect on diffusion spectra can be efficiently eliminated. Figure 10 displays the necessary modifications (orange box) on a gradient stimulated echo pulse sequence: halfway through the diffusion delay the magnetization is moved back to the transverse plane by a 90° pulse and gets refocused by the first (green) gradient pulse. The second green gradient, identical in sign, duration and length to the previous one, phase labels the spins in the opposite direction, then the magnetization in converted back to axial for the second half of the diffusion delay. The ordered nature of convection assures that the phase evolution due to convection is opposite during the two halves of the diffusion delay and therefore compensate each other, while diffusion – being a random (and omnidirectional) process – does not get affected. In order to detect only desired coherences, homospoil gradient pulses (shown in red) are used in both halves of the diffusion delay.

Figure 10 Modification of a gradient stimulated echo experiment with convection compensation.

In the VnmrJ DOSY 3.0 package four pulse sequences are provided with convection compensation:

- DgsteSL_cc (Gradient STimulated Echo with Spin-Lock and Convection Compensation) has only the absolute minimum number of gradients (six) necessary for the pulse sequence to work.
- 2. **DgcsteSL_cc** (Gradient Compensated STimulated Echo with Spin-Lock and Convection Compensation) is a direct derivative of the DgcsteSL sequence and contains an identical number of positive and negative gradients to provide "internal" Eddy-current compensation as well. Note that of the 12 gradient pulses used in the pulse sequence, only two (the black ones) are used to measure diffusion.
- 3. **Dbppste_cc** (Bipolar Pulse Pair STimulated Echo with Convection Compensation) is a direct derivative of the Dbppste sequence. Apart from the "heating gradients" the pulse sequence has got all the features of the Doneshot sequence discussed earlier.

4. **Dpfgdste** (Pulse Field Gradient Double STimulated Echo) is a variant of the DgcsteSL_cc sequence with no spin-lock and with a different phase cycle.

Important sensitivity note: every pulse sequence with convection compensation contains an extra stimulated echo step and therefore has an inherent **50% signal attenuation** with respect to its equivalent without convection compensation. If the experimental conditions exclude the possibility of convection then the non-compensated pulse sequences should be used as they can provide twice the signal-to-noise. This does not apply to the I-DOSY type experiments discussed in chapter 7.

How can one find out whether convection is present in the NMR sample and, if yes, how serious its effect can be on the diffusion measurements? The most sensitive test can be provided by the NMR pulse sequence itself used to measure diffusion. It is easy to understand that complete convection compensation can only be achieved if the compensation block (orange box in Figure 10) is applied exactly halfway trough the diffusion delay. Therefore if the block is shifted towards either the beginning or the end of the diffusion delay (i.e. time symmetry is broken) then signal attenuation and/or phase distortion will be obtained in the presence of convection while without convection the signal amplitudes and phases must stay unaffected. Each pulse sequence below has an auxiliary delay parameter (del2) allowing the operator to move the convection compensation block systematically along the diffusion delay and by doing so to record a so called "velocity profile". This can be used either for qualitative (see Figure 11) or quantitative characterization of convection in diffusion experiments (for details see: N.M. Loening and J. Keeler, J. Magn. Reson. 139, 334-341 (1999).)

4.4.1 Pulse Sequences with Convection Compensation

4.4.1.1. Dbppste_cc (Bipolar Pulse Pair STimulated Echo with Convection Compensation)

Reference: A	Jerchow and N	Müller	I Magn	Reson	125	372-375	(1997)	1
Nelelelle. A.	JEICHUW and N.	iviuliei,	J. Mayn.	1163011.	120,	312-313	(1997)	

delflag	'y' runs the Dbppste_cc sequence
	'n' runs the normal s2pul sequence
del	the actual diffusion delay
del2	delay parameter that can shift the convection compensation sequence elements off the centre of the pulse sequence allowing to run a velocity profile can also be negative but in absolute value cannot exceed del/2 minus the gradient and gradient-stabilization delays (default value for diffusion measurements is zero)
gt1	total diffusion-encoding pulse width
gzlvl1	diffusion-encoding pulse strength
gstab	gradient stabilization delay (~0.0002-0.0003 s)
lkgate_flg	lock gating flag, if set to 'y', the lock is gated off during gradient pulses (default = 'n')
satmode	flag for optional solvent presaturation 'ynn' - does presat during satdly 'yyn' - does presat during satdly and the diffusion delay
satdly	presaturation delay before the sequence (part of d1)
satpwr	saturation power level
satfrq	saturation frequency
alt grd	alternate gradient sign(s) on even transients (default = 'n')

	flag for using triax gradient amplifiers and probes
triax_flg	'y' - homospoil gradients are applied along X- and Y- axis all the diffusion gradients are Z-gradients
	'n' - all gradients in the sequence are Z-gradients
gt2	1 st homospoil gradient duration
gzlvl2	1 st homospoil gradient power level executed as X-gradient if triax_flg is set and triax amplifier and probe is available.
gt3	2 nd homospoil gradient duration
gzlvl3	2 nd homospoil gradient power level executed as Y-gradient if triax_flg is set and triax amplifier and probe is available
wet	flag for optional wet solvent suppression
sspul	flag for a GRD-90-GRD homospoil block
gzlvlhs	gradient level for sspul
hsgt	gradient duration for sspul
probe_	stores the probe name used to acquire the dosy experiment

Processing Parameters:

ncomp	determines the number of components to be used in fitting the signal decay in DOSY when dosyproc='discrete'.
	'n' uses simple mono- or multi-exponential fitting to estimate diffusion coefficients
nugʻlag	'y' uses a modified Stejskal-Tanner equation in which the exponent is replaced by a power series.
nugcal_[1-5]	a 5-membered parameter array summarizing the results of the calibration of non-uniform field gradients. Used if nugflag='y', requires a preliminary NUG-calibration by the Doneshot_nugmap sequence. The values are taken from the probe file at the time of the data acquisition
dosyproc	'discrete' - invokes monoexponential fitting with dosyfit if ncomp=1, and multiexponential fitting with the external programme SPLMOD if ncomp>1.
	'continuous' invokes processing with the external programme CONTIN and gives a continuous distribution in the diffusion domain.
dosybypoints	'n' divides the spectrum into individual peaks, creating one cross- peak for each individual peak found in the 1D spectrum
	'y' performs a diffusion fit for every point in the displayed region of the spectrum that lies above the selected threshold.

4.4.1.2. DgsteSL_cc (Gradient STimulated Echo with Spin-Lock and Convection Compensation)

Reference: A. Jerchow and N. Müller, J. Magn. Reson. 125, 372-375 (1997).

Pa	ram	nete	rs:
	i ui i	ioio	

delflag	'y' runs the DgscteSL_cc sequence
	'n' runs the normal s2pul sequence
del	the actual diffusion delay
del2	delay parameter that can shift the convection compensation sequence elements off the centre of the pulse sequence allowing to run a velocity profile can also be negative but in absolute value cannot exceed del/2 minus the gradient and gradient-stabilization delays (default value for diffusion measurements is zero)
gt1	total diffusion-encoding pulse width
gzlvl1	diffusion-encoding pulse strength
gstab	gradient stabilization delay (~0.0002-0.0003 s)
alt_grd	flag to invert gradient sign on alternate scans (default = 'n')
lkgate_flg	flag to gate the lock signal during diffusion gradient pulses
triax_flg	flag for using triax gradient amplifiers and probes 'y' - homospoil gradients are applied along X- and Y- axis all the diffusion gradients are Z-gradients 'n' - all gradients in the sequence are Z-gradients
gt2	1 st homospoil gradient duration
gzlvl2	1 st homospoil gradient power level executed as X-gradient if triax_flg is set and triax amplifier and probe is available.
gt3	2 nd homospoil gradient duration
gzlvl3	2 nd homospoil gradient power level executed as Y-gradient if triax_flg is set and triax amplifier and probe is available
prg_flg	'y' selects purging pulse (default) 'n' omits purging pulse
prgtime	purging pulse length (~0.002 s), used if prg_flg='y'

prgpwr	purging pulse power, used if prg_flg='y'
satmode	flag for optional solvent presaturation 'ynn' - does presat during satdly 'yyn' - does presat during satdly and the diffusion delay
satdly	presaturation delay before the sequence (part of d1)
satpwr	saturation power level
satfrq	saturation frequency
wet	flag for optional wet solvent suppression
sspul	flag for a GRD-90-GRD homospoil block
gzlvlhs	gradient level for sspul
hsgt	gradient duration for sspul
probe	stores the probe name usedto acquire the dosy experiment

Processing Parameters:

ncomp	determines the number of components to be used in fitting the signal decay in DOSY when dosyproc='discrete'.
nugflag	'n' uses simple mono- or multi-exponential fitting to estimate diffusion coefficients 'y' uses a modified Stejskal-Tanner equation in which the exponent
	is replaced by a power series.
nugcal_[1-5]	a 5-membered parameter array summarizing the results of the calibration of non-uniform field gradients. Used if nugflag='y', requires a preliminary NUG-calibration by the Doneshot_nugmap sequence. The values are taken from the probe file at the time of the data acquisition
dosyproc	'discrete' - invokes monoexponential fitting with dosyfit if ncomp=1, and multiexponential fitting with the external programme SPLMOD if ncomp>1. 'continuous' invokes processing with the external programme
	CONTIN and gives a continuous distribution in the diffusion domain.
dosybypoints	'n' divides the spectrum into individual peaks, creating one cross- peak for each individual peak found in the 1D spectrum
	'y' performs a diffusion fit for every point in the displayed region of the spectrum that lies above the selected threshold.

4.4.1.3 DgcsteSL_cc (Gradient Compensated STimulated Echo with Spin-Lock and Convection Compensation)

Reference: A. Jerchow and N. Müller, J. Magn. Reson. 125, 372-375 (1997).

Parameters:	
delflag	'y' runs the DgcsteSL_cc sequence
	'n' runs the normal s2pul sequence
del	the actual diffusion delay
del2	delay parameter that can shift the convection compensation sequence elements off the centre of the pulse sequence allowing to run a velocity profile can also be negative but in absolute value cannot exceed del/2 minus the gradient and gradient-stabilization delays (default value for diffusion measurements is zero)
gtl	total diffusion-encoding pulse width
gzlvl1	diffusion-encoding pulse strength
gstab	gradient stabilization delay (~0.0002-0.0003 s)
alt_grd	flag to invert gradient sign on alternate scans (default = 'n')
lkgate_flg	flag to gate the lock signal during diffusion gradient pulses
	flag for using triax gradient amplifiers and probes
triax_flg	'y' - homospoil gradients are applied along X- and Y- axis all the diffusion gradients are Z-gradients
	'n' - all gradients in the sequence are Z-gradients
gt2	1 st homospoil gradient duration
gzlvl2	1 st homospoil gradient power level executed as X-gradient if triax_flg is set and triax amplifier and probe is available.
gt3	2 nd homospoil gradient duration
gzlvl3	2 nd homospoil gradient power level executed as Y-gradient if triax flg is set and triax amplifier and probe is available

prg_flg	'y' selects purging pulse (default) 'n' omits purging pulse
prgtime	purging pulse length (~0.002 s), used if prg_flg='y'
prgpwr	purging pulse power, used if prg_flg='y'
wet	flag for optional wet solvent suppression
satmode	flag for optional solvent presaturation 'ynn' - does presat during satdly 'yyn' - does presat during satdly and the diffusion delay
satdly	presaturation delay before the sequence (part of d1)
satpwr	saturation power level
satfrq	saturation frequency
sspul	flag for a GRD-90-GRD homospoil block
gzlvlhs	gradient level for sspul
hsgt	gradient duration for sspul
probe_	stores the probe name usedto acquire the dosy experiment

Processing Parameters:		
ncomp	determines the number of components to be used in fitting the signal decay in DOSY when dosyproc='discrete'.	
nugflag	'n' uses simple mono- or multi-exponential fitting to estimate diffusion coefficients	
	'y' uses a modified Stejskal-Tanner equation in which the exponent is replaced by a power series.	
nugcal_[1-5]	a 5-membered parameter array summarizing the results of the calibration of non-uniform field gradients. Used if nugflag='y', requires a preliminary NUG-calibration by the Doneshot_nugmap sequence. The values are taken from the probe file at the time of the data acquisition	
dosyproc	'discrete' - invokes monoexponential fitting with dosyfit if ncomp=1, and multiexponential fitting with the external programme SPLMOD if ncomp>1. 'continuous' invokes processing with the external programme CONTIN and gives a continuous distribution in the diffusion domain.	
dosybypoints	'n' divides the spectrum into individual peaks, creating one cross- peak for each individual peak found in the 1D spectrum	
	'y' performs a diffusion fit for every point in the displayed region of the spectrum that lies above the selected threshold	

4.4.1.4. Dpfgdste (Pulsed Field Gradient Double STimulated Echo)

Reference: Nilsson M, Gil AM, Delgadillo I, Morris GA. Anal Chem 2004.76:5418-5422

Parameters:	
delflag	'y' runs the Dpfgdste_cc sequence
	'n' runs the normal s2pul sequence
del	the actual diffusion delay
del2	delay parameter that can shift the convection compensation sequence elements off the centre of the pulse sequence allowing to run a velocity profile. Can also be negative but in absolute value cannot exceed del minus the gradient and gradient-stabilization delays (default value for diffusion measurements is zero)
gt1	total diffusion-encoding pulse width
gzlvl1	diffusion-encoding pulse strength
gzlvl3	2 nd homospoil gradient power level executed as Y-gradient if triax_flg is set and triax amplifier and probe is available
gt3	2 nd homospoil gradient duration
gzlvl2	1 st homospoil gradient power level executed as X-gradient if triax_flg is set and triax amplifier and probe is available.
gstab	gradient stabilization delay (~0.0002-0.0003 s)
satmode	'y' turns on presaturation during d1and/ or during the diffusion delay
satfrq	saturation frequency
satdly	presaturation delay before the sequence (part of d1)
satpwr	saturation power level
wet	flag for optional wet solvent suppression
alt_grd	flag to invert gradient sign on alternate scans (default = 'n')
lkgate_flg	flag to gate the lock signal during diffusion gradient pulses
sspul	flag for a GRD-90-GRD homospoil block

gzlvlhs	gradient level for sspul
hsgt	gradient duration for sspul
probe_	stores the probe name used to acquire the dosy experiment
Processing Parameter	'S:
ncomp	determines the number of components to be used in fitting the signal decay in DOSY when dosyproc='discrete'.
nugflag	'n' uses simple mono- or multi-exponential fitting to estimate diffusion coefficients
	'y' uses a modified Stejskal-Tanner equation in which the exponent is replaced by a power series.
nugcal_[1-5]	a 5-membered parameter array summarizing the results of the calibration of non-uniform field gradients. Used if nugflag='y', requires a preliminary NUG-calibration by the Doneshot_nugmap sequence. The values are taken from the probe file at the time of the data acquisition
dosyproc	'discrete' - invokes monoexponential fitting with dosyfit if ncomp=1, and multiexponential fitting with the external programme SPLMOD if ncomp>1.
	'continuous' invokes processing with the external programme CONTIN and gives a continuous distribution in the diffusion domain.
dosybypoints	'n' divides the spectrum into individual peaks, creating one cross- peak for each individual peak found in the 1D spectrum 'y' performs a diffusion fit for every point in the displayed region of
	the spectrum that lies above the selected threshold.

4.4.2 Comparison of diffusion results obtained with and without convection compensation

This chapter compares experimental results of an aqueous solution of a mixture of nicotinic acid amide and amikacin (see Figure 12 for the structural formulas). The diffusion experiments were performed without (sequence: Dbppste) and with convection compensation (sequence: Dbppste_cc) at two different temperatures: 30 °C and 60 °C, respectively, in a 5 mm sample tube. One may think that this sample in not particularly challenging because the components differ significantly in size (or molecular weight) and there is no signal overlap between the aromatic and the sugar protons in the 500 MHz spectrum of the mixture. Both components, however, contain numerous proton lines (remember the DOSY analysis handles multiplet components individually) and therefore the sample is particularly suitable to provide information about the accuracy of the diffusion data.

Figure 12 500 MHz proton spectrum of a nicotinic acid amide – amikacin mixture in D₂O at 30 °C.

The two pulse sequences at 30 °C were run with identical diffusion delays (del = 120 ms), gradient duration (gtl = 2 ms) and the same 20 values of gradient strengths (varied between 1 and 30 G/cm). A visual inspection of the signal intensities (see Figure 13) does not reveal obvious anomalies i.e. the individual lines show exponentially attenuated intensities with increasing gradient power (please note that the HDO signal is truncated in the first 9 spectra). The DOSY analysis (see Figure 13), as expected, shows clear separation of the same molecule exhibit the solvent) along the diffusion axis. Practically all proton signals of the same molecule exhibit the same diffusion coefficient indicating high "relative" accuracy of the calculated D values. From this point of view there is no difference between the results of the two different measurements, consequently, if the only aim is the separation of the NMR spectra of the mixture components then the Dbppste sequence may be preferred as it has twice the sensitivity than that of its convection compensated counterpart (Dbppste_cc).

A comparison of the extracted D values, however, reveals that the coefficients with no convection compensation tend to be consequently bigger. The slower the diffusion of a certain component the bigger is the deviation (21% on amikacin but only 9% on the water). We may conclude that convection is clearly having its "contribution" to the calculated D values leading to a false suggestion as if the molecules were having higher mobility than in reality.

Moving away from ambient temperatures will definitely increase the risk of convection. This is clearly demonstrated by repeating the previous pair of experiments at 60 °C. In Figure 14 the attenuation of the signal intensities are far from being exponential (in reality they show an oscillatory behavior) and apart from the amplitude distortions serious phase deviations may also occur (see the inset of 3rd spectrum in Figure 14.. The exponential fit of the signal amplitudes in the experiment with no convection compensation is extremely large therefore the "resolution" of the 2D DOSY plot (see Figure 14) is dramatically reduced and the experimental results are hardly usable. At the same time the convection compensated pulse sequence provides excellent diffusion separation and reliable diffusion data.

Figure 13 Signal intensities as a function of gradient power (a) and the 2D DOSY plots (b) of the Nicotinic acid amide – amikacin mixture at 30 °C.

Figure 14 Signal intensities as a function of gradient power (a) and the 2D DOSY plots (b) of the nicotinic acid amide – amikacin mixture at 60 °C.

4.5 **Processing 2D-DOSY experiments**

Once DOSY data have been acquired, they need to be processed to give a 2D DOSY spectrum. This involves the following steps:

- 1. Basic Fourier transformation of the raw data
- 2. Reference deconvolution (fiddle command) optional, but useful if the spectrum contains a suitable reference line which diffuses with comparable speed as the solutes in the diffusion sample.
- 3. Baseline correction (fbc macro) also optional but strongly recommended
- 4. Extraction of diffusion data from the spectra and synthesis of a 2D DOSY display (dosy).

Figure 15 The VNMRJ DOSY Process panel for 2D-DOSY pulse sequences.

- After data acquisition with a DOSY experiment, a matching weighting function and zero filling (fn) should be chosen before Fourier transforming the FID array using the "Process all Spectra" button (executes wft command) on the DOSY Process panel (see Figure 15). Retrieving a DOSY FID from disk usually leads to auto-processing Fourier transformed array data arranged horizontally (wft dssh).
- 2. The fiddle program (FIDDLE panel, Figure 16) allows reference deconvolution to be used to correct the line shapes, frequencies, phases etc. of signals due to by instrumental imperfections if a suitable reference signal is present in the spectrum (typically a singlet). Reference deconvolution of DOSY spectra removes systematic errors resulting from disturbance of the magnetic field and field/frequency lock caused by gradient pulses.

Typically, set the weighting function of the ideal lineshape to a value which is minimum as large as the widest signal in the spectrum. Select a reference line using two cursors, hit "Select", then "Do FIDDLE". In case a TMS signal should be used for reference deconvolution, the "FIDDLE (TMS)" button on the DOSY Process panel or the "Include TMS satellite signals" checkbox on the FIDDLE panel should be used (required to fit the satellites of TMS correctly).

It is recommended to save the corrected data to disk by selecting the "Write out corrected data" option before clicking "Do FIDDLE" and use this data for further processing (using fiddle with the 'writefid' option rewrites to the original FID file). After loading this corrected dataset, set all the weighting parameters to 'n' to before Fourier transforming and proceeding to the next step.

Further instructions for the use of FIDDLE are shown by the "**Display FIDDLE manual**" button and more information can be found in the *User Guide: Liquids NMR*, and in the *Command and Parameter Reference* manual.

Start Acquire Pro	cess Transform Autoproc	ess Display Spectrum	Clear Screen Cancel
DOSY Process FIDDLE Default 1D Weighting Display 1D More 1D Integration Cursors/Line Lists Plot 1D Text Output	Data ID FT Size (fn/2) Acquired complex points (np Do FT Reference Line Select Reference Signal (Si Box/Cursor Select Do FIDDLE UVrite out corrected data as /home/vnmr1/vnmrsys/data/data/data/data/data/data/data/dat	32k 32k 9,615 Do Weighted FT inglet) Using Cursors Expand/Full Show Reference Line Info Display FIDDLE manual osytest_19Nov2009/dosyte	Ideal Lineshape Define the ideal lineshape using the standard weighting functions Interactive Weighting line broadening 0.6 ♥ sinebell 0 shift 0 gaussian 0.1 shift 0 shift 0 Include TMS satellite signals

Figure 16 The VNMRJ FIDDLE panel for 2D-DOSY pulse sequences.

- 3. baseline correction can now be applied to all spectra in the array with the "**Baseline Correct all Spectra**" button (fbc macro). The partial integral mode should be used to set integral regions to include all signals, while leaving as large an area of baseline as possible blank. This minimizes systematic errors in diffusion coefficient fits caused by baseline errors.
- 4. "Calculate Full DOSY" now generates the final DOSY 2D display (dosy macro). This processing determines the heights of all signals above the threshold (th) using the commands dll and fp, and then fits the decay curve for each signal to a Gaussian (using the program dosyfit). After this, the 1D process panels are replaced with 2D process panels. To return back to the original FIDs, use the "Recall original NMR spectra" button (redosy macro).

Warning: Do not process the data with **Calculate Full DOSY** (dosy macro) until the acquisition has been completed. Data loss may occur.

A summary of all diffusion coefficients and their estimated standard errors as well as various other results are stored in the directory userdir/expN/dosy:

- - diffusion_display.inp
- - diffusion_integral_spectrum
- diffusion_spectrum
- - dosy_in
- - fit_errors
- - general_dosy_stats,

The spectrum synthesized contains fn1/2 traces in the diffusion domain (f1), and fn complex points in the spectral domain (f2); fn1 is limited to the range 128-1024. Normally, setting fn to 16-64k suffices; if fn*fn1 is too large, spectral synthesis and display will be slow and/or VnmrJ may run out of disk space.

Note that after displaying a 2D spectrum, the variable ni will be set to fn1/2 (this is required by dconi), so if more data are to be acquired or the sequence is to be displayed (dps), ni must be set back to zero.

By default, dosy uses all the experimental spectra and covers the whole diffusion range seen in the experimental peaks. If desired, the diffusion dimension can be calculated in part only, for example to have higher display resolution with a lower Fourier number (which "costs" calculation time). To do this, choose a *D* value range and click the **"Calculate Partial DOSY**" button.

Additionally, selected spectra (data points) can be disregarded during DOSY calculation by clicking the "**W**/ **Dialogue**" buttons instead. A dialog in the command line will start which spectra shall be omitted.

These functions represent up to three arguments which can be supplied to the ${\tt dosy}$ macro:

dosy('prune') – starts a dialog to allow one or more spectra to be omitted from the analysis;

dosy(d1, d2) – where d1 and d2 are numbers causes the diffusion range of the synthesized spectrum to be limited to $d1*10^{-10}$ m²/s and $d2*10^{-10}$ m²/s;

dosy('prune', d1, d2) - combines the above options.

The message 'Systematic Gz deviations found' indicates that the decay curves are not purely exponential – very likely due to spatially non-uniform gradients. The non-linearity can be corrected during processing if NUG calibration data were available in the probe file when the experiment was set up.

The two-dimensional DOSY display (and plot) is constructed by taking the bandshape of a given signal from the first (lowest gradient area) spectrum, and convoluting it in a second dimension with a Gaussian line centered at the calculated diffusion coefficient and with a width determined by the estimated error of the diffusion coefficient obtained from the fitting process.

To extract spectra of the mixture components separated along the diffusion axis, select the region of interest using the two cursors in the interactive 2D display (dconi) mode, click on **Proj** (projection) and **Hproj(sum)** (horizontal projection). The spectrum can be ploted by the **Plot** menu.

When the DOSY processing is complete two functions "Show Fit for Peak # Above" (showdosyfit macro) and "Show Residual for Peak # Above" (showdosyresidual macro) provide a graphical display of the quality of the fit for each individual peak (see Figure 15) that allows identifying systematic errors or may help to exclude erroneous data points from the analyses. When the "Auto increment peak #" option is active, each click of the "Show Fit..." or "Show Residual..." buttons advances the displayed peak number by one.

The "**Show Diffusion Projection**" function (sdp command) displays the integral projection of a DOSY dataset onto the diffusion axis. The macro uses the file userdir+'/expN/dosy/diffusion_spectrum' as input for the sdp command. Unlike in previous versions, in DOSY 3.0 the sdp command may be launched in the same experiment where the diffusion processing is taking place.

4.6 Plotting 2D-DOSY experiments

DOSY data can be plotted in various ways:

To plot the 1D array, use "Auto Plot" or "Auto Plot Preview" buttons from the Plot1D panel or the "Plot DOSY"/"Preview DOSY" buttons on the DOSY Process panel. Alternatively, use the display and plotting tools of the vertical "ArrayedSpectra" panel.

To auto-plot 2D DOSY data with a diffusion dimension, the same buttons from the **DOSY Process** panel can be used. In this case, a diffusion projection (sdp) is plotted on the diffusion axis while the spectrum axis (typically ¹H) depends on the availability of a PROTON which was stored via "File – Auto Save" (or during automation) prior to the auto-saving of the DOSY data. If a hi-res (PROTON) spectrum is found, it is loaded and printed on the spectrum axis automatically. The same principles as with plotting standard 2D spectra apply.

The **Plot2D** panel offers some more advanced plotting options including the choice of plotting high-resolution top/side spectra, from disk or from another workspace (see description of general 2D plotting) or plotting projections. The diffusion dimension is always plotted as projection (sdp). If "**Projection**" is chosen for the frequency axis, a full projection along F2 is generated (via proj command) and plotted. A rotation of the diffusion/frequency axes is also respected.

Chapter 5 Absolute Value 3D-DOSY Experiments

3D DOSY adds a diffusion domain to "conventional" 2D experiments such as COSY or HMQC. The package contains sequences for DOSY-COSY (**Dgcstecosy**) and DOSY-HMQC (**Dgcstehmqc**), but it is straightforward to add diffusion encoding for many other 2D experiments. The 3D DOSY sequences provide better resolving power than the 2D counterparts (the probability of overlapping cross-peaks in 2D spectra is much lower than the probability of overlapping lines in 1D proton detected experiments) at the expense of data size and experiment time.

An arrayed set of 2D experiments is performed using different values of gradient strength (gzlvll), the data are doubly Fourier transformed, and the 1st 2D spectrum is used to define 2D volume integral regions automatically or manually. The dosy analysis then fits the integral volumes in successive increments to Gaussians, and synthesizes 2D integral projections of the 3D data set between defined diffusion limits. Full 3D display is not implemented, although with patience a similar effect can be achieved by performing a series of projections.

5.1 Setting up absolute value 3D-DOSY experiments

Make sure that the "conventional" parameters of the COSY / HMQC experiment, such as pulse widths, transmitter offset, spectral windows etc. are set correctly. As with 2D DOSY find suitable lower and upper bounds for the gradient strength gzlvl1. There is no need to run 2D experiments for this purpose the 1st increment from a 2D run is normally adequate.

NOTE: in a COSY experiment with higher quantum filter (qlvl > 1), the first increment does not contain signals. Set the incremented delay (d2) to 0.05-0.1 during the gradient optimization process. Please do not forget to set d2 back to zero when starting the 3D-DOSY experiment.

Start Acquire	Process Show Time Acquire	Stop	Sequence
Defauits Acquisition Pulse Sequence Channels Flags Future Actions	DCosyIdosy DOSY Parameters Diffusion gradient level array Diffusion gradient length 2.0 ms Diffusion delay 50.0 ms Off-center delay (del2) 0.0 ms Grad. stab. delay 0.5 ms Select convection compensation Sequence Parameters Coherence selection gradient: level 216 duration 1.00 ms	DOSY Setup Setup coarse gradient array Number of increments 15 Lowest gradient value B2 Highest gradient value 2047 Setup DOSY using conditions above Probe gcal_: 0.009250 Gauss/cm/DAC Probe used: OneNMR	DOSY Options Alternate gradient sign Lock gating during gradients Solvent presaturation Do saturation: never Power O dB Delay1.00 s Frequency 480.588 Hz Steady State G-strength 1296 G-strength 1296 G-time 2 ms
Start Acquire F Defaults Acquisition Pulse Sequence	rocess Show Time Acquire	Stop Stop Stop Stop Stop Stop Stop Stop	equence
Pulse Sequence - A Channels Flags S Future Actions t	Scans per t1 increment 4 • t1 increments 128 •	Setup coarse gradient array Number of increments 15 Lowest gradient value 82 Highest gradient value 2047 Setup DOSY using conditions above Diffusion gradient level Diffusion gradient length 2.0 Diffusion delay 50.0	

Figure 17. The VNMRJAcquire/Defaults and Acquire/Pulse Sequence panel of an absolute value 3D-DOSY pulse sequence

Use the setup_dosy macro or the "Setup coarse gradient array" button to set up an array of trial gzlvl1 values. Having optimized the diffusion delay, del, and the corresponding gzlvl1 range set the number of increments, the lowest and strongest diffusion strength and click on the "Setup DOSY using conditions above" button in the Acquire/Pulse Sequence panel (see Figure 17) Bear in mind the total experiment time when choosing the number of gzlvl1 values, ni and nt.

5.2 Absolute value 3D-DOSY sequences

Parameters:

5.2.1 Dgcstecosy (<u>D</u>OSY <u>G</u>radient <u>C</u>ompensated <u>S</u>timulated <u>E</u>cho <u>COSY</u>) Experiment (AV mode)

Reference: Wu, D.; Chen, A.; Johnson, C.S., Jr., J. Magn. Reson. 1996, 121, (Series A), 88-91.

del	the actual diffusion delay
gt1	total diffusion-encoding pulse width
gzlvl1	diffusion-encoding pulse strength

gstab	gradient stabilization delay (~0.0002-0.0003 s)
tweek	tuning factor to limit eddy currents, (can be set from 0 to 0.2, usually set to 0.0)
gzlvl2	gradient power for pathway selection
gt2	gradient duration for pathway selection
sspul	flag for a GRD-90-GRD homospoil block
gzlvlhs	gradient level for sspul
wet	flag for optional wet solvent suppression
satmode	'yn' – turns on presaturation during satdly 'yy' – turns on presaturation during satdly and the diffusion delay the presaturation happens at the transmitter position (set tof right if presat option is used)
satdly	presaturation delay before the sequence (part of d1)
satpwr	saturation power level
hsgt	gradient duration for sspul
alt_grd	flag to invert gradient sign on alternate scans (default = 'n')
lkgate_flg	flag to gate the lock signal during diffusion gradient pulses
qlvl	quantum filter level (1=single quantum, 2=double quantum)
probe_	stores the probe name used to acquire the dosy experiment
D . D .	

probe	stores the probe name used to acquire the dosy experiment
Processing Parameter	S:
nugflag	'n' uses simple mono- or multi-exponential fitting to estimate diffusion coefficients
	'y' uses a modified Stejskal-Tanner equation in which the exponent is replaced by a power series.
nugcal_[1-5]	a 5-membered parameter array summarizing the results of the calibration of non-uniform field gradients. Used if nugflag='y', requires a preliminary NUG-calibration by the Doneshot_nugmap sequence. The values are taken from the probe file at the time of the data acquisition
dosy3Dproc	'ntype" – calls dosy with 3D option with N-type selection

5.2.2 Dgcstehmqc (<u>D</u>OSY <u>G</u>radient <u>C</u>ompensated <u>S</u>timulated <u>E</u>cho <u>HMQC</u>) Experiment (AV mode)

Parameters:	
del	the actual diffusion delay
gt1	total diffusion-encoding pulse width
gzlvl1	diffusion-encoding pulse strength
gtE	coherence pathway selection gradient length in HMQC
gzlvlE	gradient power for gtE
EDratio	Encode/Decode ratio
gstab	gradient stabilization delay (~0. 2-0. 3 ms)
sspul	flag for a GRD-90-GRD homospoil block
gzlvlhs	gradient level for sspul
hsgt	gradient duration for sspul
alt_grd	flag to invert gradient sign on alternate scans (default = 'n')
lkgate_flg	flag to gate the lock signal during diffusion gradient pulses
pwx	90 deg. X-pulse
pwxlvl	power level for pwx
jlxh	one-bond H-X coupling constant
jnxh	multiple-bond H-X coupling constant (for mbond='y')
mbond	flag to select multiple-bond correlations (HMBC)
c180	flag to make the 180 deg. X-pulse a composite pulse
satmode	presaturation flag 'yn' - does presat during satdly 'yy' - does presat during satdly and the diffusion delay
satfrq	saturation frequency
satdly	saturation delay
satpwr	saturation power
wet	flag for optional wet solvent suppression

Reference: H. Barjat, G. A. Morris and A. Swanson: JMR, 131, 131-138 (1998)

probe stores the probe name used to acquire the dosy experiment

Processing Parameters:		
nugflag	'n' uses simple mono- or multi-exponential fitting to estimate diffusion coefficients 'y' uses a modified Stejskal-Tanner equation in which the exponent is replaced by a power series.	
nugcal_[1-5]	a 5-membered parameter array summarizing the results of the calibration of non-uniform field gradients. Used if nugflag='y', requires a preliminary NUG-calibration by the Doneshot_nugmap sequence. The values are taken from the probe file at the time of the data acquisition	
dosy3Dproc	'ntype" – calls dosy with 3D option with N-type selection	

The choice of decoupling method in the DOSY-HMQC experiment is crucial, as even relatively low values of dpwr can cause sufficient convection currents to invalidate DOSY results. Adiabatic decoupling schemes (WURST, STUD) are recommended.

5.3 Processing 3D-DOSY experiments

In order to analyze 3D results, it is necessary to define the individual signal regions in the 2D spectrum automatically or manually:

2D Fourier transform the first increment of the 3D data set (i.e. that with the lowest gzlvl1 value), using proper weighting functions in both dimensions:

wft2d(1) for N-type

wft2d(1, 'ptype') for P-type selected data

Set vs2d and th properly, then define the signal regions in the first spectrum using the standard 112d command and its options ('reset', 'volume', 'clear', 'combine' etc.) The options have been made directly available for convenience on the "**DOSY Process**" panel (see Figure 18) via the corresponding buttons.

As a general rule all components of a given multiplet (cross-peak) should be included in a single signal region, provided there is no contamination by other signals. Grouping signals in this way maximizes the signal-to-noise ratio available for data fitting. This step offers the unique opportunity to exclude apparent spectral artifacts (t1-noise, decoupling sidebands, spurious peaks, etc. from the DOSY analyses.) As the manual peak selection is occasionally the most boring and time-consuming step of the whole procedure, once it is completed it is worth storing the file (using the "**Save peak assignment in FID file**" button) in the original FID directory for later processing. Please note that this action is only allowed if the DOSY fid has been previously saved and retrieved for processing i.e. the parameter file is not an empty string but the full filename of the stored FID.

Once the signal regions have been defined, call the dosy macro or press the "**Process 3D DOSY**" button. The macro then determines the volume of each region, for every value of gzlvl1 (this involves, among other things, as many 2D Fourier transforms as the number of gzlvl1 increments). The macro then fits the volumes as functions of gzlvl1, returning with a display in which each signal region is labeled with its diffusion coefficient $(10^{-10} \text{ m}^2/\text{s})$, and with its standard error in brackets. The coefficients are displayed using the label facility of the 112d command. Thus 6.05(0.05) indicates a diffusion coefficient of $6.05*10^{-10} \text{ m}^2/\text{s}$ (+/- $0.05*10^{-10} \text{ m}^2/\text{s}$). The 2D spectrum on which the display is based is that of the first 2D increment of the 3D experiment. A copy of the diffusion results is available from the file userdir+/dosy/expN/diffusion_display_3D.inp. This file contains 3 columns: the peak number (as obtained by 112dmode='nynn`), the diffusion coefficient and the standard error.

The display of diffusion coefficients as numbers on the screen can result in very crowded display. The type of information displayed can be changed using the ll2dmode
parameter (for details see the Command and Parameter Reference Manual and see Figure 18 and Figure 19).

In order to make the analysis easier, you can use sdp to obtain the integral projection of the 3D data set onto the diffusion axis. This diffusion spectrum can be used to choose suitable diffusion regions for which to examine 2D projections of the 3D DOSY data.

In the experiment containing the 3D data, type <code>makeslice(d1,d2)</code> where d1 and d2 are the diffusion limits (in units of 10^{10} m^2 /s) between which the 2D projection of the 3D DOSY spectrum is required. <code>makeslice</code> builds the slice and displays it after a few seconds. The <code>makeslice</code> command uses, among other things, the diffusion information in the file <code>userdir+'/expN/dosy/diffusion_display_3D.inp'</code>.

To return to the original spectrum, type showoriginal. This reverts to the original 2D spectrum for the first value of gzlvl1.

Both sequences are equipped with a VNMRJ **Process/DOSY Process** panel providing access to all necessary functions and parameters to process 3D DOSY data (see Figure 18).

The 2D data display, the slice selection and the switching between the original NMR and the diffusion data can most conveniently be done by via the separate **Process/DOSY Display** panel (see Figure 19).

Figure 18. The VNMRJ DOSY Process panel of the absolute value 3D-DOSY pulse sequences.

Figure 19 The VNMRJ DOSY Dispay panel of the 3D-DOSY pulse sequences.

Chapter 6 Phase Sensitive 3D-DOSY Experiments

6.1 Setting up phase sensitive 3D-DOSY experiments

Make sure that the "conventional" parameters such as pulse width, transmitter offset, spectral window etc. are set correctly. Before the final setup the alfa, rof2 and the ddrtc delays must be optimized to reach ideal phasing and baseline performance. As with 2D DOSY experiments, find suitable lower and upper bounds for the gradient strength gzlvl1. There is no need to run 2D NMR experiments for this purpose the 1st increment from a 2D run is normally adequate (with a sufficient number of transients to provide adequate signal/noise ratio). Use the setup_dosy macro or the "Setup coarse gradient array" button to set up an array of trial gzlvl1 values. Having optimized the diffusion delay, del, and the corresponding gzlvl1 range set the number of increments, the lowest and strongest diffusion strength and click on the "Setup DOSY using conditions above" button in the Acquire/Pulse Sequence panel (see Figure 20). Bear in mind the total experiment time when choosing the number of gzlvl1 values, ni and nt.

In every phase sensitive 2D NMR experiments the parameter phase needs to be arrayed (phase=1, 2). Phase sensitive 3D DOSY sequences therefore require a "double array", i.e. simultaneous arraying of gzlvl1 and phase. Data acquisition and processing in the VNMRJ 3.0 software is fully compatible with a double array.

For convenience set up the double phase, gzlvl1 array such that the array order is defined as: array='gzlvl1, phase'. If by accident the order was reversed at the time of data acquisition, using the reorder3D macro can still convert the data set to the format expected by the dosy macro.

6.2 Phase Sensitive 3D-DOSY Sequences

The Dgcstehmqc_ps and the Dbppste_ghsqcse pulse sequences have been designed and tested for N15-labeled peptide/protein samples. The Dbppste_ghsqcse has actually been taken over from BioPack and made compatible with the DOSY package. Therefore the cancellation of N14 or C12-bound protons in natural abundance may not provide perfect results.

6.2.1 Dgcstehmqc_ps (<u>D</u>OSY Gradient <u>C</u>ompensated <u>S</u>timulated <u>E</u>cho <u>HMQC</u>) experiment (<u>P</u>hase <u>S</u>ensitive mode)

Parameters:

del	the actual diffusion delay
gt1	total diffusion-encoding pulse width
gzlvll	diffusion-encoding pulse strength
gstab	gradient stabilization delay
pwx	90 deg. X-pulse
pwxlvl	power level for pwx
jlxh	one-bond H-X coupling constant
c180	flag to make the 180 deg. X-pulse a composite pulse
satmode	presaturation flag 'ynn' - does presat during satdly 'yyn' - does presat during satdly and the diffusion delay
satdly	saturation delay
satpwr	saturation power
satfrq	saturation frequency
alt_grd	flag to invert gradient sign on alternate scans (default = 'n')
lkgate_flg	flag to gate the lock signal during diffusion gradient pulses
sspul	flag for a GRD-90-GRD homospoil block
gzlvlhs	gradient level for sspul
hsgt	gradient duration for sspul
wet	flag for optional wet solvent suppression
probe_	stores the probe name used to acquire the dosy experiment
phase	1,2 for States-Haberkorn acquisition

Processing Parameters:

nugflag	'n' uses simple mono- or multi-exponential fitting to estimate diffusion coefficients
	'y' uses a modified Stejskal-Tanner equation in which the exponent is replaced by a power series.

nugcal_[1-5]	a 5-membered parameter array summarizing the results of the calibration of non-uniform field gradients. Used if nugflag='y', requires a preliminary NUG-calibration by the Doneshot_nugmap sequence. The values are taken from the probe file at the time of the data acquisition
dosy3Dproc	'v' – calls dosy with 3D option for phase sensitive data

Run the phase sensitive 2D HMQC spectra in the same experiment. To make the data set compatible with DOSY processing it is recommended to set the array as follows: array = 'gzlvl1, phase'

NOTE: if the array order has been accidentally reversed, the reorder3D macro can be used to retain processing compatibility with the DOSY package.

The sequence was implemented for N15 labeled protein samples for maximum sensitivity. Therefore it is using States-Haberkorn acquisition, i.e. no coherence selection is done by gradients.

6.2.2 Dbppste_ghsqcse (Bipolar Pulse Pair Stimulated Echo Gradient HSQC with Sensitivity Enhancement)

Reference: S. Rajagopalan, C. Chow, V. Vinodhkumar, C. G. Fry and S. Cavagnero; J. Biomol. NMR. 29. 505-516 2004.

Parameters:	
d1	relaxation delay
pw	90 degrees 1H pulse
tpwr	1H pulse power
pwx	90 degrees X pulse
pwxlvl	X pulse power level
jlxh	1JXH in Hz (140 for 1H-13C)

	'2','1' or '3' flag for signal selection in reverse INEPT sensitivity enhancement factors for different X-multiplicities against normal gHSQC:
xhn	'1': CH(enh):2.0 CH2(enh):1.0 CH3(enh):1.0
	'2': CH(enh):1.71 CH2(enh):1.41 CH3(enh):1.21 best for all
	'3': CH(enh):1.5 CH2(enh):1.37 CH3(enh):1.25
sspul	flag for a GRD-90-GRD homospoil block
gzlvlhs	gradient level for sspul
hsgt	gradient duration for sspul
gzlvlE	gradient amplitude for coherence selection
gtE	gradient time for coherence selection (in seconds)
EDratio	Encode/Decode ratio
gstab	delay for stability (~ 0.0003 seconds)
edit	'y' makes multiplicity selection (CH & CH3 same sign CH2s opposite sign)
f1180	flag to set initial delay for t1 for phase (-90,180)
satmode	'y' or 'n' turns presaturation on or off
satfrq	transmitter frequency for presaturation
satpwr	transmitter power for presaturation
satdly	duration of presaturation in seconds
del	diffusion delay
gzlvl1	gradient level for diffusion
gt1	gradient duration for gzlvl1
alt_grd	flag to invert diffusion gradient sign on alternate scans (default = 'n')
lkgate_flg	flag to gate the lock sampling off during the diffusion sequence
wet	flag for optional wet solvent suppression
probe_	stores the probe name used to acquire the dosy experiment
phase	1,2 for N & P-type selection

Processing Parameters:

nugflag	 'n' uses simple mono- or multi-exponential fitting to estimate diffusion coefficients 'y' uses a modified Stejskal-Tanner equation in which the exponent is replaced by a power series.
nugcal_[1-5]	a 5-membered parameter array summarizing the results of the calibration of non-uniform field gradients. Used if nugflag='y', requires a preliminary NUG-calibration by the Doneshot_nugmap sequence. The values are taken from the probe file at the time of the data acquisition

dosy3Dproc	'y' – calls dosy with 3D option for phase sensitive data
------------	--

Run the phase sensitive 2D HSQC spectra in the same experiment. To make the data set compatible with DOSY processing it is recommended to set the array as follows:array = 'gzlvl1, phase'

NOTE: if the array order has been accidentally reversed, the reorder3D macro can be used to retain processing compatibility with the DOSY package.

6.3 **Processing Phase Sensitive 3D-DOSY Experiments**

Load the 2D FID file into an experiment. Using the processing tools in Figure 21, select the window functions in both dimensions and correct phases in F2 and/or F1 in necessary. In VNMRJ 3.0 the wft1da(x) command may be used to process individual 2D spectra of a double array, where x is the serial number of the requested 2D data set. Transform the first data set, define the cross peaks and do volume integration. Tools for integration, deleting, selecting or combining cross peaks are easily accessible in the **Process/DOSY Process** panel and work in an identical way as for absolute value 3D DOSY spectra.

The final DOSY processing is done by the dosy macro or by clicking on the "**Process 3D DOSY**" button. At the end of the processing the original 2D with the weakest gradient is displayed together with the individual diffusion coefficients and their standard deviation. Chapter 8 contains one phase sensitive 3D FID (Si29-1H_Dghmqcidosy.fid) to practice processing.

Slice selection is identical to that for absolute value 3D spectra and can conveniently be done via the **DOSY Display** panel (see Figure 19).

Because of their three-dimensional nature, 3D-DOSY experiments cannot be plotted other than plotting individual 2D spectra of the array. This is no different than plotting "ordinary" 2D spectra – from the "Plot" panel.

Figure 21 The VNMRJ Process/DOSY Process panel of the phase sensitive 3D-DOSY sequences

Chapter 7 IDOSY (Inclusive DOSY) Experiments

7.1 The Concept of I-DOSY

There are three strategies for creating a DOSY pulse sequence: prepending the diffusion encoding (DOSY-X), appending it (X-DOSY), and incorporating it internally (X-IDOSY). Almost all published pulse sequences before 2006 have been X-DOSY or DOSY-X type, but where the parent pulse sequence either includes or can accommodate a diffusion delay Δ of a few tens of ms, the IDOSY approach can be simpler, quicker and more sensitive. In the absolute value COSY-IDOSY and 2DJ-IDOSY sequences the diffusion encoding is incorporated in the Hahn echo (or antiecho) and spin echo, respectively. In both cases the coherence transfer pathways are identical to those in the parent experiment. Long-range HMQC allows the incorporation of two separate diffusion weighting segments, to form an HMQC-IDOSY sequence.

As the magnetization is transverse during the diffusion delays, there is an inherent possibility for convection compensation with no extra sensitivity loss. Every single I-DOSY sequence provides this option by simply selecting "**Select convection compensation**" on the "**Acquire – Pulse Sequence**" panel (or setting the convcomp flag to 'y').

convcomp='n' del $\tau + t_1$ ¥ ¥ ¥ ¥ * * * δ δ convcomp='y' τ+t₁ ∆₁/2 ∆₂/2 ∆₂/2 ∆₁/2 δ δ P-type selection N-type selection

7.2 I-DOSY pulse sequences

Reference: Nilsson M, Gil AM, Delgadillo I, Morris GA. Chem. Commun. 2005 1737-1739. Parameters:

d1	relaxation delay
gt1	total diffusion-encoding pulse width
gzlvl1	diffusions gradient amplitude
gtl	gradient duration in seconds (0.001)

7.2.1 . Dcosyidosy - (COSY-IDOSY)

gstab	optional delay for stability
alt_grd	flag to invert diffusion gradient sign on alternate scans (default = 'n')
lkgate_flg	flag to gate the lock sampling off during the diffusion sequence
del2	delay parameter that can shift the convection compensation sequence elements off the centre of the pulse sequence allowing to run a velocity profile can also be negative but in absolute value cannot exceed del/2 minus the gradient and gradient-stabilization delays (default value for diffusion measurements is zero)
	'yn' turns on presaturation during satdly
satmode	'yy' turns on presaturation during satdly and del the presaturation happens at the transmitter position
	(set tof right if presat option is used)
satdly	presaturation delay (part of d1)
satpwr	presaturation power
sspul	gradient level for sspul
phase	1 (selects echo N-type coherence selection; default)
	2 (selects antiecho P-type coherence selection)
	'y': selects convection compensated cosyidosy
convcomp	'n': normal cosyidosy
wet	flag for optional wet solvent suppression
probe_	stores the probe name used to acquire the dosy experiment
Processing Parameter	<u>s:</u>

nugflag	'n' uses simple mono- or multi-exponential fitting to estimate diffusion coefficients
	'y' uses a modified Stejskal-Tanner equation in which the exponent is replaced by a power series.
nugcal_[1-5]	a 5-membered parameter array summarizing the results of the calibration of non-uniform field gradients. Used if nugflag='y', requires a preliminary NUG-calibration by the Doneshot_nugmap sequence. The values are taken from the probe file at the time of the data acquisition
dosy3Dproc	'ntype' – calls dosy with 3D option with N-type selection 'ptype' - calls dosy with 3D option with P-type selection

NOTE: In this experiment the diffusion delay is part of the 2D evolution time. Therefore, if used with the presaturation option, the transmitter offset (tof) must be set on resonance to the solvent signal to be saturated.

Reference: Nilsson M, Gil AM, Delgadillo I, Morris GA. Anal Chem 2004;76:5418-5422 Parameters:

del	the actual diffusion delay
del2	delay parameter that can shift the convection compensation sequence elements off the centre of the pulse sequence allowing to run a velocity profile can also be negative but in absolute value cannot exceed del minus the gradient and gradient-stabilization delays (default value for diffusion measurements is zero)
gt1	total diffusion-encoding pulse width
gzlvl1	diffusion encoding gradient power
gzlvl2	gradient amplitude of the crusher gradients flanking the p1 pulse
gt2	gradient duration for gzlvl2
gstab	optional delay for stability
pw	90 degree xmtr pulse
p1	180 degree xmtr pulse
satmode	'yn' turns on presaturation during satdly 'yy' turns on presaturation during satdly and del the presaturation happens at the transmitter position (set tof right if presat option is used)
satdly	presaturation delay (part of d1)
satpwr	presaturation power
wet	flag for optional wet solvent suppression
alt_grd	flag to invert gradient sign on alternate scans (default = 'n')

lkgate_flg	flag to gate the lock sampling off during gradient pulses
sspul	flag for a GRD-90-GRD homospoil block
gzlvlhs	gradient level for sspul
hsgt	gradient duration for sspul
	multiple of 1 (minimum)
nt	multiple of 16 (maximum and recommended)
	'y': selects convection compensated hom2djidosy
convcomp	'n': normal hom2djidosy
probe_	stores the probe name used to acquire the dosy experiment
Processing Parameter	S:
nugflag	'n' uses simple mono- or multi-exponential fitting to estimate diffusion coefficients
	'y' uses a modified Stejskal-Tanner equation in which the exponent is replaced by a power series.
nugcal_[1-5]	a 5-membered parameter array summarizing the results of the calibration of non-uniform field gradients. Used if nugflag='y', requires a preliminary NUG-calibration by the Doneshot_nugmap sequence. The values are taken from the probe file at the time of the data acquisition
dosy3Dproc	'ntype' – calls dosy with 3D option with N-type selection

NOTE: In this experiment the diffusion delay is part of the 2D evolution time. Therefore, if used with the presaturation option, the transmitter offset (tof) must be set on resonance to the solvent to be saturated.

7.2.3 Dghmqcidosy – (Gradient HMQC-IDOSY) dosy for long-range couplings, phase sensitive version

Reference: M.J. Stchedroff, A.M. Kenwright, G.A. Morris, M. Nilsson and R.K. Harris Phys. Chem. Chem Phys. 6, 3221-3227 (2004).

Parameters:	
del	the actual diffusion delay
gtl	total diffusion-encoding pulse width
gzlvl1	gradient amplitude (-32768 to +32768)
gzlvlE	gradient amplitude for coherence selection
gtE	gradient duration for coherence selection
EDratio	decode/encode ratio
gzlvl_max	maximum gradient power (2048 for Performa I, 32768 for Performa II, IV, and Triax)
gstab	optional delay for stability
pwx	90 deg. X-pulse
pwxlvl	power level for pwx
alt_grd	flag to invert gradient sign on alternate scans (default = 'n')
lkgate_flg	flag to gate the lock sampling off during gradient pulses
jnxh	heteronuclear coupling for the transfer delay
satmode	'yn' turns on presaturation during satdly 'yy' turns on presaturation during satdly and del the presaturation happens at the transmitter position (set tof right if presat option is used)
satdly	presaturation delay (part of d1)
satpwr	presaturation power
wet	flag for optional wet solvent suppression
sspul	flag for a GRD-90-GRD homospoil block
gzlvlhs	gradient level for sspul
hsgt	gradient duration for sspul
phase	1,2 for phase sensitive data
convcomp	'y': selects convection compensated hom2djidosy 'n': normal hom2djidosy
probe_	stores the probe name used to acquire the dosy experiment

Processing Parameters:

nugflag	 'n' uses simple mono- or multi-exponential fitting to estimate diffusion coefficients 'y' uses a modified Stejskal-Tanner equation in which the exponent is replaced by a power series
nugcal_[1-5]	a 5-membered parameter array summarizing the results of the calibration of non-uniform field gradients. Used if nugflag='y', requires a preliminary NUG-calibration by the Doneshot_nugmap sequence. The values are taken from the probe file at the time of the data acquisition

dosy3Dproc	'y' – calls dosy with 3D option for phase sensitive experiments
------------	---

NOTE: The jnxh coupling must be small enough to allow the diffusion delay embedded in the transfer delay. This pulse sequence was developed for ¹H-²⁹Si correlations with coupling constants of 7 Hz.

7.3 Processing I-DOSY Data

IDOSY sequences do not require special data processing. Depending on whether the data were acquired in the absolute value or phase sensitive mode the guidelines of sections 5.3 or 6.3 apply.

Chapter 8 Sample FIDs to Practice DOSY Processing

The package includes a few 2D and 3D FIDs (in /vnmr/fidlib/Dosy) to practise DOSY processing. Each experiment type has at least one example to process.

8.1 Data sets collected without NUG correction

These FIDs have been collected well before NUG calibration was made available. Still they may provide valuable data to practise data processing. When processing please:

do NOT activate the NUG correction flag (leave nugflag='n')

do NOT set dosyproc to "continuous" (leave it on "discrete")

do NOT activate the "point-by-point" analysis (leave dosybypoints='n')

8.1.1 Dbppste.fid

The sample is a mixture of 3 dipeptides (Phe-Val, Phe-Glu, Phe-Gly) and 3(trimethylsilyl)-1-propane-sulfonic acid dissolved in D_2O .

Processing via the VNMRJ DOSY Process panel:

Load the data file into the experiment.

Select line broadening and the gaussian window function and click on:

Process All Spectra

Baseline Correct All Spectra

Deselect line broadening (keep only the gaussian window function) flank the TMS line

(including the satellites) by the two cursors and click on

Fiddle(TMS)

Baseline Correct All Spectra

Select the threshold and click on:

Calculate Full DOSY

Two zoom into the region of the dipeptides set the lower and upper diffusion limits to 3.0 and 7.0, respectively and click on:

Recall Original NMR data

Calculate Partial DOSY spectrum

Manual processing via the command line:

Load the data file into the experiment.

Select 1b and gf then type wft and adjust the phase of the 1st spectrum.

Set the cursor to the TSP singlet and type nl rl(0).

Set the cursors 80 Hz either side of the TSP singlet, set lb='n' and gf=0.75, and type fiddle('satellites', 'TMS'). This performs reference deconvolution on all spectra, regularizing the lineshapes so that the peak heights in successive spectra accurately reflect the signal integrals.

The integral regions have already been set in the parameters supplied; display the integrals and see where the resets have been positioned

Type fbc to perform baseline correction

Set the threshold below the peaks of interest (vs=500, th=3).

Type dosy.

To zoom into the diffusion region of interest, type undosy dosy (4,7).

The following examples describe how to process DOSY data in the command mode (left column) or by using the VNMRJ **Process/DOSY Process** panels (right column). Instructions or comments regarding both types of operation can be read in the middle.

8.1.2 DgcsteSL.fid

The sample is a mixture of adenosine mono-, di-, tri-phosphate (AMP, ADP, ATP) and K_2HPO_4 in D_2O (pH=7). The data were acquired in a 3mm probe with direct ³¹P observe.

Commands	Comments, instructions for both	Buttons in the DOSY Process Panel
	Recall the FID: cd('/vnmr/fidlib/Dosy') rt('DgcsteSL.fid')	
lb=2 wft	Fourier transform	Process All Spectra
fbc	Do baseline correction	Baseline Correct All Spectra
	Select threshold	
dosy	Call dosy	Calculate full DOSY spectrum
undosy	To have better diffusion resolution you may calculate a partial dosy spectrum:	Recall original NMR spectra
dosy (6.1, 7.1)	Select high and low diffusion limits and reprocess DOSY	Calculate partial DOSY spectrum
	To display (and plot) the diffusion spectrum and call sdp	

8.1.3 DgcsteSL_dpfgse.fid

This is a sample of 28-member polypeptide at 0.2 mmolar concentration in a H_2O/D_2O 9:1 mixture with some low molecular weight impurities. The aim of the experiment was not to separate mixture components but to measure the diffusion coefficient to find out about possible aggregation.

The experiment does not require special processing the steps above are completely applicable. It, however, may provide an example what water suppression quality can (need to) be achieved when dealing with H_2O samples in extreme low concentrations.

8.1.4 Dbppsteinept.fid

The sample is a mixture of sucrose, methyl-alfa-D-glucopyranoside, 1,3,5,-O-methylidene-mioinosytol and dioxane (as internal reference) in D_2O . The experiment was run using an AutoSwitchable gradient probe.

Commands	Comments, instructions for both	Buttons in the DOSY Process Panel
	Recall the FID: cd('/vnmr/fidlib/Dosy') rt('Dbppsteinept.fid')	
lb='n' gf='n'		(unset lb and gf)
wft	Fourier transform	Process All Spectra
fbc	Do baseline correction	Baseline Correct All Spectra
	Select threshold	
lb=-0.4 gf=0.7	Set weighting functions	(Activate lb and gf)
	Expand the spectrum and put the two cursors around the most intense line (dioxane) +/- 15 Hz.	
fiddle	Call fiddle	FIDDLE (No TMS)
dosy	Call dosy	Calculate full DOSY spectrum
undosy	To have better diffusion resolution you may calculate a partial dosy spectrum:	Recall original NMR spectra
dosy (2.0, 5.0)	Select high and low diffusion limits and reprocess DOSY	Select upper and lower diff. limits Calculate partial DOSY spectrum
	To display (and plot) the diffusion spectrum call sdp	

8.1.5 Dgcstecosy.fid

The sample is a mixture of sucrose, methyl-alfa-D-glucopyranoside and 1,3,5,-O-methylidenemio-inosytol in D₂O. The experiment was run using an AutoSwitchable gradient probe.

Commands	Comments, instructions for both	Buttons in the DOSY Process Panel
	Recall the FID :	
	cd('/vnmr/fidlib/Dosy')	
	rt('Dgcstecosy.fid')	
wft2d('t2dc',1)	Fourier transform	Process 1 st 2D
	The signal regions for this file have already been saved. Recall the II2d file:	
112d('readtext',f	Retrieve peak assignment from FID file	
--	---	--
112dmode='nnyn'	Set Box Unset Cross, Number and Diffusion coefficient	
dconi	Display the 2D spectrum	Redisplay 2D spectrum
dosy	Call dosy	Process DOSY spectrum
wit coe Dis Yo 4.2 3.6 2.8 the are	m²/s)	
112dmode='nnnn'	Reset the peak labels	Unset Cross, Box, Number and Diffusion coefficient
dconi	Display the 2D spectrum	Redisplay 2D spectrum
<pre>makeslice (4.2, 4.8)</pre>	To display the inosytol spectrum	Low. Lim.: 4.2, Up. Lim:4.8 Show 2D projection within limits
makeslice (3.6, 3.9)	To display the glucopyranoside projection	Low. Lim.: 3.6, Up. Lim:3.9 Show 2D projection within limits
makeslice (2.8, 3.1)	To display the sucrose projection	Low. Lim.: 2.8, Up. Lim:3.1 Show 2D projection within limits

NOTE: By accident this cosy spectrum was run with an unusual parameter setting (sw <> sw1). It was absolutely unintended and should not affect the DOSY processing.

8.1.6 Dgcstehmqc.fid

The sample is a mixture of quinine, geraniol, camphene (and TMS) in deutero-methanol. (see: J. Magn. Reson. 1998, 131, 131-138.)

Commands	Comments, instructions for both	Buttons in the DOSY Process Panel
	Recall the FID :	
	cd('/vnmr/fidlib/Dosy')	
	it (bgestenniqe.iid)	
wft2d('ptyle',1)	Fourier transform	Process 1 st 2D

112d ('readtext',file+'/112d_text')		Retrieve peak assignment from FID file
		Set Box
112dmode='nnyn'	Check the preset signal regions, each crosspeak of interest is boxed	Unset Cross, Number and Diffusion coefficient
dconi	Display the 2D spectrum	Redisplay 2D spectrum
dosy	Call dosy	Calculate DOSY spectrum
When ready, th its diffusion coe	e HMQC spectrum is displayed again with e	each crosspeak labeled by
sdp	Show diffusion projection	Show diffusion display
	You will see a set of signals: 7.0-8.5 – quinine 10.2-11.5 – geraniol 14.0-15.4 – camphene the other lines around 18 D (10 ⁻¹⁰ m ² /s) are methanol and TMS.	
112dmode='nnnn'	Reset the peak labels	Unset Cross, Box, Number, and Diffusion coefficient
dconi	Display the 2D spectrum	Redisplay 2D spectrum
<pre>makeslice (7.0,8.5)</pre>	To display the quinine spectrum	Low. Lim.: 7.0, Up. Lim:8.5 Show 2D projection within limits
makeslice (10.2,11.5)	To display the geraniol projection	Low. Lim.: 10.2, Up. Lim:11.5 Show 2D projection within limits
makeslice (14.0, 15.4)	To display the camphene projection	Low. Lim.: 14.0, Up. Lim:15.4 Show 2D projection within limits

8.1.7 Si29-1H_Dghmqcidosy.fid

The sample is a mixture of cyclic dimethyl-siloxanes $-((CH_3)_2-SiO)_n$ - (n = 3...~20) (see: Phys. Chem. Chem. Phys., 2004, 6, 3221-3227.) This is an example to process phase sensitive 3D DOSY data.

Commands	Comments, instructions for both	Buttons in the DOSY Process Panel	
	Recall the FID:		
	rt('Dhmqcidosy.fid')		
(wft2da,1)	Process the first data set (This is a new feature in VnmrJ 3.0.)	Process 1 st 2D	

112d('reset')		Reset peak assignment
112d		
112d('adjust')	Define volume integrals	
112d('volume')	Ŭ	k and integrate all displayed peaks
112dmode='nnyn'	Check the selection	Set Box
dconi	Unset Cross, Number and Diff. Const.	Redisplay spectrum
dosy Do 3D processing		Process 3D DOSY

sdp	Show diffusion projection	Show diffusion display
makeslice (9.5,9.9)	Show slice between 9.5-9.9 (n=4)	Low. Lim.: 9.5, Up. Lim:9.9 Show diffusion projection within limits
makeslice (8.8,9.0)	Show slice between 8.8-9.0 (n=5)	Low. Lim.: 8.8, Up. Lim:9.0 Show diffusion projection within limits

The rest of the processing is identical to that described at the absolute value 3D examples. The 2D DOSY projection shows all oligomers up to n = 16 completely resolved except for the pairs 9,10 and 12,13.

8.2 NUG mapping data

8.2.1 Doneshot_nugmap_av.fid

The FID file contains NUG calibration data in the absolute value mode using a dilute H_2O sample in D_2O .

Measures apparent diffusion coefficient of the HDO signal as a function of frequency (z position), calculates the Stejskal-Tanner decay function, fits it with the exponential of a power series, and stores the value of gcal_ used and the power series coefficients in the local parameter nugcal_, and optionally in the global parameter nugcal and in the probe file. These data are provided only as an example for NUG calibration. Please do not try to store these values in your current probe file as the data are originated from a different probe/instrument.

Commands	Comments, instructions for both	Buttons in the DOSY Process Panel
	Recall the FID :	
	cd('/vnmr/fidlib/Dosy') rt('Doneshot_nugmap_av.fid')	
wft	Process the first data set	Fourier Transform Profiles

either nugcalib and follow dialogue: answer: 'd', '25', 'n', 'n' or nugcalib('d',25, 'n','n')	Calculate NUG coefficients	Set Calibrant for grad mapping to 1% HOD Set Mapping data measured at: 25 <i>Calculate NUG coefficients</i>
showgradfit	To show the gradient fitting	Show fitted gradient shape
shownugfit	To show the fitted signal decay	Show fitted signal decay
redosy	To show the D distribution along z	Show apparent D wrt position

NOTE: The displays (and the optional plots) show the variation of the apparent diffusion coefficient with position, the power series fit of the gradient as a function of position, and the log of the power series fit to the attenuation as a function of nominal gradient squared. The latter fit should be good down to about -9 (more than a 1000-fold signal attenuation) for ordinary liquids gradient probes.

8.2.2 Doneshot_nugmap_ph.fid

The file contains NUG calibration data in the phase sensitive mode using a dilute H_2O sample in D_2O .

Measures apparent diffusion coefficient of the HDO signal as a function of frequency (z position), calculates the Stejskal-Tanner decay function, fits it with the exponential of a power series, and stores the value of gcal_used and the power series coefficients in the local parameter nugcal_, and optionally in the global parameter nugcal and in the probe file. These data are provided only as an example for NUG calibration. Please do not try to store these values in your current probe file as the data are originated from a different probe/instrument.

Commands	Comments, instructions for both Buttons in the DOSY Process Panel					
	Recall the FID :					
	cd('/vnmr/fidlib/Dosy') rt('Doneshot_nugmap_av.fid')					
wft	Process the first data set	Fourier Transform Profiles				
aph	Adjust phase	Adjust phase manually				
fbc	Do baseline processing	Baseline Correct All Profiles				
either nugcalib and follow dialogue:		Set Calibrant for grad				
answer: 'd', '25', 'n', 'n' or	Calculate NUG coefficients	Set Mapping data				
nugcalib('d',25, 'n','n')		Calculate NUG coefficients				
showgradfit	To show the gradient fitting	Show fitted gradient shape				
shownugfit	To show the fitted signal decay	Show fitted signal decay				

redosy	To show the D distribution along z	Show apparent D wrt position
--------	------------------------------------	---------------------------------

NOTE: The displays (and the optional plots) show the variation of the apparent diffusion coefficient with position, the power series fit of the gradient as a function of position, and the log of the power series fit to the attenuation as a function of nominal gradient squared. The latter fit should be good down to about -9 (more than a 1000-fold signal attenuation) for ordinary liquids gradient probes.

8.3 Data sets with NUG calibration

8.3.1 QGConeshot.fid

The sample is a mixture of quinine, geraniol, camphene (and TMS) in deutero-methanol. The data have already been FIDDLEd to correct lineshape errors.

Commands	Comments, instructions for both Buttons in the DOSY Process Panel				
	Recall the FID :				
	cd('/vnmr/fidlib/Dosy') rt('QGConeshot.fid')				
	Process the data				
ft f full	Fourier transform	Process All Spectra			
fbc	Do baseline processing	Baseline Correct All Profiles			
th=2 vsadj	Set threshold and vertical scale	Set threshold and vs manually			
dosyproc='discrete'	Set processing type	Set Processing type: Discrete			
ncomp=1	Define number of components	Set Number of components for fit: 1			
nugflag='n'	Switch off NUG correction	Unset Correct for non- uniform gradients			
dosy	Calculate DOSY	Calculate Full DOSY			

NOTE: This gives a normal 2D DOSY spectrum; the geraniol and camphene signals are somewhat overlapped, but the quinine shows nice clean signals (see Figure 22).

F1 (D)		۵	a & &		••• p •••		стар ада ₆₁	° 4 o	
	10 12 14 16 18	dosyproo ncomp= nugflag=	c='discrete' 1 ''n'		Q * *	•	•		
cr1(D) 7.36		delta1(D) 0	s ' ' 7 cr(ppm) 1.15	delta(ppm) 10.24	5 F2 vsproj 525.7	4 (ppm) vs2d 10000.0	3 2	· · · · · · · · · · · · · · · · · · ·	¤ ×
Start Ad	quire	Process	Transform	Autoprocess	Display Spectrum	n Clear Screen	Cancel		
Default 2 Display 2 Plot 2D Text Out	2D 2D tput	Peak 1 2 3 4 5 6 7 8 9 10 11	biffus: Freq/ppm 8.6427 8.6308 7.9368 7.937 7.6622 7.6703 7.3919 7.3700 5.7493 5.7291 5.7236	221.3121 22.0235 17.2442 17.1466 19.8453 20.1746 45.7464 15.9023 4.6426 5.3846 4.8375	ed: 0.00 to 18.6 D/(10e-10 m2.2 4.6726 + 4.6740 + 4.6775 + 4.6675 + 4.6675 + 4.6755 + 4.6755 + 4.7309 + 4.739 + 4.7234 +	00 /*)+/-2*5td.err. /* 0.07179 0.005924 /* 0.07038 0.007032 /* 0.007032 /* 0.007032 /* 0.006833 /* 0.06831 /* 0.06891 /* 0.09112 0.009268 /* 0.009268 /* 0.009464		Text Basic dg DOSYproc Solv. Supp. Array Channels Shims Clear	

Doneshot

Figure 22. The 2D DOSY display of the QGC Doneshot data (dosyproc='discrete', ncomp=1, nugflag='n')

Figure 23 The results of the 2D DOSY fitting of the QGC Doneshot data (dosyproc='discrete', ncomp=1, nugflag='n') Note the significant systematic errors caused by non-uniform gradients.

	Now reprocess the data with NUG correction	
ft f full	Fourier transform	Process All Spectra
fbc	Do baseline correction	Baseline Correct All Profiles
th=2 vsadj	Set threshold and vertical scale	Set threshold and vs manually
dosyproc='discrete'	Set processing conditions	Set Processing type: Discrete
ncomp=1	Define number of components	Set Number of components for fit: 1
nugflag='y'	Switch on NUG correction	Set Correct for non- uniform gradients
dosy	Calculate DOSY	Calculate Full DOSY

NOTE: the results are very similar to the one in Figure 23 but the diffusion scale changes slightly, and the fitting statistics improve substantially (see Figure 24).

Figure 24 The 2D DOSY display of the QGC Doneshot data (dosyproc='discrete', ncomp=1, nugflag='y')

showdogyfit(1, 100)	Display the fitting results of peak	Set Peak #: 1 and Fit
5110wd05y110(1,100)	#1	multiplier: 100

Figure 25 The results of the 2D DOSY fitting of the QGC Doneshot data (dosyproc='discrete', ncomp=1, nugflag='y')

Now the residual is almost pure noise, showing that the systematic errors have been corrected.

	Multiexponential processing without NUG correction	
ft f full	Fourier transform	Process All Spectra
fbc	Do baseline processing	Baseline Correct All Profiles
th=2 vsadj	Set threshold and vertical scale	Set threshold and vs manually
dosyproc='discrete'	Set processing conditions	Set Processing type: Discrete
ncomp=2	Define number of components	Set Number of components for fit: 2
nugflag='n'	Switch off NUG correction	UnSet Correct for non- uniform gradients
dosy	Calculate DOSY	Calculate Full DOSY

Does a biexponential fit; because the data have high S/N, many lines appear to have two diffusion coefficients because of the gradient non-uniformity.

Figure 26 The 2D DOSY display of the QGC Doneshot data (dosyproc='discrete', ncomp=2, nugflag='n')

The residuals might look very good – a biexponential fit will accommodate the effects of nonuniform gradients very nicely, but both intensities and the diffusion coefficients will be incorrect!

	Multiexponential processing with	
ft f full	Fourier transform	Process All Spectra
fbc	Do baseline processing	Baseline Correct All Profiles
th=2 vsadj	Set threshold and vertical scale	Set threshold and vs manually
dosyproc='discrete'	Set processing conditions	Set Processing type: Discrete
ncomp=2	Define number of components	Set Number of components for fit: 2
nugflag='y'	Switch on NUG correction	Set Correct for non- uniform gradients
dosy	Calculate DOSY	Calculate Full DOSY

Exp:10 S	eq: Doneshot	Index: 3					
F1 (D)							
(0)							
4_							
6.		- -				•	-
8						·	
				-		-	
10-							
12_	dosyproc='d	liscrete'	-	•	· · · · · · · · · · · · · · · · · · ·	· ·	
14	ncomp=2						
	nugflag='y'		_				
16-			_				
10-			<u>, , , , , , , , , , , , , , , , , , , </u>		<u> </u>		
	, in the second s	1	0 0	F2 (ppm)	5 2	1	0
cr1(D)	delta1(D) 17.80	cr(ppm) delta(opm) vsproj 525.7	vs2d			
[Second A course			Disalaur	Class Concern	Connect		д ×
Start Acqui		ransform Autopre	Display Speci	dum Clear Screen	Cancer		
DOSY Proces	ss Back to F	Pulse Sequence Pa	iel	\frown		Text	
Display 2D	25 4.8	3749 14.32 3749 0.78	0 5.1/92	+/- 0.02049		A Pasis da	
Plot 2D	26 4.8	14.62	0 5.2225	+/- 0.012469		Dasic ug	
Text Output	26 4.8	14/4 0.35 1881 21.49	0 18.5312	+/- 2.3813/3 +/- 0.005394	**rejected**	DOSYproc	
	28 4.4	793 22.69	0 11.4233	+/- 0.003268		- Soly, Supp.	
	29 4.0	865 42.60	0 8.2082	+/+ 0.002403			
	31 3.9	9501 101.86	0 5.1998	+/- 0.002000		Array	
	32 3.7	294 2.65	7 5.2058	+/- 0.005758			
	33 3.7	230 2.67	7 5.2044	+/- 0.005658		Channels	
	34 3.7	166 2.68	5.2119	+/1 0.005586		Chime	
	36 3.6	5744 7 77	1 5.2000	+/- 0.003304		Jiiiis	
	37 3.6	689 2.74	5.2109	+/- 0.005686		Clear	
	38 3.6	625 2.65	5.1903	+/- 0.006609		-	
	20 23	110 12 00	1 1 1 200	0 012204			

Figure 27 The 2D DOSY display of the QGC Doneshot data (dosyproc='discrete', ncomp=2, nugflag='y')

The biexponential fit with NUG correction shows a much cleaner spectrum and most lines show a single and correctly positioned diffusion peak with small residuals.

Figure 28 The results of the 2D DOSY fitting of the QGC Doneshot data (dosyproc='discrete', ncomp=2, nugflag='y')

The same QGC Doneshot data set can be used to practice point by point, rather than peak by peak analysis. The effect of signal overlap then is to give signals that change apparent diffusion coefficient within a peak as the relative amounts of different overlapping signals change. Thus a peak at 4.98 ppm, which is composed of overlapping contributions from quinine and methanol OH/water, is spread over a range of apparent diffusion coefficients.

	Monoexponential point-by-point processing without NUG correction	
ft	Fourier transform	Process All Spectra
sp=4.86p wp=0.25p	Expand the spectrum	Expand the spectrum manually between 4.86 and 5.11 ppm
fbc	Do baseline processing	Baseline Correct All Profiles
th=2 vsadj	Set threshold and vertical scale	Set threshold and vs manually
dosyproc='discrete'	Set processing conditions	Set Processing type: Discrete
ncomp=1	Define number of components	Set Number of components for fit: 1
nugflag='y'	Switch on NUG correction	Set Correct for non- uniform gradients
dosybypoints='y'	Select point-by-point analysis	Set Perform point-by-point analysis
vs2d=4e2	Adjust 2D vertical scale	Set vs2d=4e2
dosy(0,20)	Calculate DOSY	Set D value range: 0 and 20
		Calculate Partial DOSY

Figure 29 The 2D partial DOSY display of the QCDoneshot data (dosyproc='discrete', ncomp=1, nugflag='y', dosybypoints='y')

	Biexponential point-by-point processing without NUG correction	
ft	Fourier transform	Process All Spectra
sp=4.86p wp=0.25p	Expand the spectrum	Expand the spectrum manually between 4.86 and 5.11 ppm
fbc	Do baseline correction	Baseline Correct All Profiles
th=2 vsadj	Set threshold and vertical scale	Set threshold and vs manually
dosyproc='discrete'	Set processing conditions	Set Processing type: Discrete
ncomp=2	Define number of components	Set Number of components for fit: 2
nugflag='y'	Switch on NUG correction	Set Correct for non- uniform gradients
dosybypoints='y'	Select point-by-point analysis	Set Perform point-by-point analysis
vs2d=4e2	Adjust 2D vertical scale	Set vs2d=4e2
dosy(0,20)	Calculate DOSY	Set D value range: 0 and 20
		Calculate Partial DOSY

Figure 30 The 2D partial DOSY display of the QCDoneshot data (dosyproc='discrete', ncomp=2, nugflag='y', dosybypoints='y')

Using biexponential fitting now gives clean discrimination between the overlapping quinine and water signals. Note that the combination of point-by-point fitting and biexponential fitting is slow, so it is best to use this combination on narrow spectral regions rather than whole spectra.

	Processing with dosyproc='continuous'	
ft f full	Fourier transform	Process All Spectra Display the whole spectrum
th=5 vsadj	Set threshold and vertical scale	In the command line type: th=5 vsadj
fn1=128	Set Fourier number in F1	Set fn1
dosyproc='discrete'	Set processing conditions	Set Processing type: Discrete
ncomp=2	Define number of components	Set Number of components for fit: 2
nugflag='y'	Switch on NUG correction	Set Correct for non-uniform gradients
dosyproc='continuous'	Set processing conditions	Set Processing type: Continuous
dosybypoints='n'	Select point-by-point analysis	Unset Perform point-by-point analysis
vs2d=20	Adjust 2D vertical scale	Set vs2d=20
dosy	Calculate DOSY	Calculate Full DOSY

This setting does a CONTIN fit of the most intense lines; CONTIN analysis is very computationally intensive, so it is best to keep both fn1 and the number of lines selected low. Obviously this analysis is more appropriate for a polydisperse sample.

8.3.2 DextranMix.fid

The data are from a sample containing glucose, dextran 6K and dextran 2M. The dextrans are polydisperse, but with a sufficient narrow distribution that we can successfully treat each as monodisperse. There is naturally severe spectral overlap of all three species. These data cannot easily be corrected by reference deconvolution due to the high molecular weights of the dextrans; a line broadening of 3 Hz is therefore used to reduce the effects of frequency drifts.

Commands	Comments, instructions for both	Buttons in the DOSY Process Panel
	Recall the FID :	
	cd('/vnmr/fidlib/Dosy') rt('DextranMix.fid')	
	Process the data (Monoexponential processing)	
lb=3 ft f full	Fourier transform	Process All Spectra
fbc	Do baseline processing	Baseline Correct All Profiles
th=2 vsadj	Set threshold and vertical scale	Set threshold and vs manually
dosyproc='discrete'	Set processing conditions	Set Processing type: Discrete
ncomp=1	Define number of components	Set Number of components for fit: 1
nugflag='y'	Switch on NUG correction	Unset Correct for non- uniform gradients
dosy	Calculate DOSY	Calculate Full DOSY

This should give a normal 2D DOSY with a large difference between glucose and dextran signals where there is no overlap, but many peaks at intermediate apparent diffusion coefficients where signals do overlap.

Figure 31 The 2D DOSY display of the DextranMix data (dosyproc='discrete', ncomp=1, nugflag='y') The following parameter set makes a CONTIN fit of the most overlapped region:

	Process the data (Triexponential processing)	
lb=3 ft f full	Fourier transform	Process All Spectra
fbc	Do baseline processing	Baseline Correct All Spectra
th=2 vsadj	Set threshold and vertical scale	Set threshold and vs manually
dosyproc='discrete'	Set processing conditions	Set Processing type: Discrete
ncomp=3	Define number of components	Set Number of components for fit: 3
nugflag='y'	Switch on NUG correction	Set Correct for non- uniform gradients
dosy	Calculate DOSY	Calculate Full DOSY

The triexponential analysis should show good separation of signals from all three components. Note that the water peak also shows biexponential behavior. This may stem from exchange, tight binding, or overlap with the slowly diffusing dextrans. Similarly, the TSP peak shows the presence of a small amount of TSP bound to dextran.

Figure 32 The 2D DOSY display of the DextranMix data (dosyproc='discrete', ncomp=3, nugflag='y') The following parameter set makes a CONTIN fit of the most overlapped region:

	Process with dosyproc='continuous'	
lb=3 wft f full	Fourier transform	Process All Spectra
th=3 vsadj	Set threshold and vertical scale	In the command line type: th=3 vsadj
fnl=256	Set Fourier number in F1	Set fnl to 256
sp=3.1p wp=1.0p	Make expansion	Expand the spectrum between 3.1 and 4.1 ppm
dosyproc='continuous'	Set processing condition	Set Processing type: Continuous
ncomp=3	Define number of components	Set Number of components for fit: 3
nugflag='y'	Switch on NUG correction	Set Correct for non- uniform gradients
dosybypoints='n'	Deselect point-by-point analysis	Unset Perform point-by- point analysis
vs2d=10	Adjust 2D vertical scale	Set vs2d=10
dosy(0.001,10)	Calculate DOSY	Set D value range: 0.001 and 10 <i>Calculate Partial DOSY</i>

Figure 33 The 2D DOSY display of the DextranMix data (dosyproc='continuous', ncomp=3, nugflag='y')

8.3.3 GQC_quickCOSYiDOSY.fid

The sample is a mixture of quinine, geraniol, camphene (and TMS) in deutero-methanol.

Commands	Comments, instructions for both	Buttons in the DOSY Process Panel
	Recall the FID :	
	cd('/vnmr/fidlib/Dosy') rt('GQC_quickCOSYiDOSY.fid')	
wft2d(1)	Fourier transform	Process the 1 st 2D spectrum
112d('reset')	Define volume integrals	Reset peak assignment
112d		
112d('adjust')		
112d('volume')		Pick and integrate all displayed peaks
dconi	Display the 2D spectrum	Redisplay 2D spectrum
nugflag='y'	Set processing conditions	Set Correct for non- uniform gradients
dosy	Call DOSY	Calculate Full DOSY

Commands	Comments, instructions for both	Buttons in the DOSY Process Panel
sdp	Show diffusion projection	Show diffusion display
	You will see a set of signals:	

	6.5-8.0 – quinine 10.0-11.6 – geraniol 14.0-15.4 – camphene 17.5-18.5 – TMS 19.0-20.0 – Methanol	
112dmode='nnnn'	Reset the peak labels	Unset Cross, Box, Number and Diffusion coefficient
<pre>makeslice (6.5,9.0)</pre>	To display the quinine spectrum	Low.Lim.:6.5, Up. Lim:8.0 Show 2D projection within limits
makeslice (10.0,11.5)	To display the geraniol projection	Low.Lim.:10.0, Up. Lim:11.5 Show 2D projection within limits
makeslice (6.5,9.0)	To display the camphene spectrum	Low.Lim.:14.0, Up. Lim:15.4 Show 2D projection within limits

There is some overlap – the entire data set was recorded in 45 minutes – so the separation of the COSY planes is good but not perfect.

Chapter 9 DOSY-Related Literature

Morris, K.F.; Johnson, C.S., Jr., Resolution of Discrete and Continuous Molecular Size Distributions by Means of Diffusion-Ordered 2D NMR Spectroscopy. J. Am. Chem. Soc. 1993, 115, 4291-4299.

Wider, G.; Dötsch, V.; Wütrich, K., Self-Compensating Pulsed Magnetic-Field Gradients for Short Recovery Times. J. Magn. Reson. 1994, 108 (Series A) 255-258.

Barjat, H.; Morris, G.A.; Smart, S.; Swanson, A.G.; Williams, S.C.R., High-Resolution Diffusion-Ordered 2D Spectroscopy (HR-DOSY) – A New Tool for the Analysis of Complex Mixtures. J. Magn. Reson. 1995, 108 (Series B), 170-172.

Wu, D.; Chen, A.; Johnson, C.S., Jr., An Improved Diffusion-Ordered Spectroscopy Experiment Incorporating Bipolar-Gradient Pulses J. Magn. Reson., 1995, 115, (Series A) 260-264.

Gozansky, E.K.; Gorenstein, D.G., DOSY-NOESY: Diffusion-Ordered NOESY. J. Magn. Reson. 1996, 111, (Series B) 94-96.

Wu, D.; Chen, A.; Johnson, C.S., Jr., Three-Dimensional Diffusion-Ordered NMR Spectroscopy: The Homonuclear COSY-DOSY Experiment. J. Magn. Reson. 1996, 121, (Series A), 88-91.

Wu, D.; Chen, A.; Johnson, C.S., Jr., Heteronuclear-Detected Diffusion-Ordered NMR Spectroscopy through Coherence Transfer. J. Magn. Reson. 1996, 123, (Series A), 215-218.

Jerschow, A.; Müller, N., 3D Diffusion-Ordered TOCSY for Slowly Diffusing

Molecules. J. Magn. Reson. 1996, 123, (Series A), 222-225.

Lin, M., Shapiro, M.J., Mixture Analysis in Combinatorial Chemistry. Application of Diffusion-Resolved NMR Spectroscopy, **J. Org. Chem. 1996, 61, 7617-7619.**

Birlikaris, N,; Guittet, E., A New Approach in the Use of Gradients for Size-Resolved 2D-NMR Experiments. J. Am. Chem. Soc. 1996, 118, 13083-13084.

Jerschow , A.; Müller, N., Suppression of Convection Artifacts in Stimulated Echo Diffusion Experiments. Double-Stimulated-Echo Experiments. J. Magn. Reson. 1997, 125, 372-375.

Barjat, H.; Morris, G.A.; Swanson, A.G., A Three-Dimensional DOSY-HMQC Experiment for the High-Resolution Analysis of Complex Mixtures. J. Magn. Reson. 1998, 131, 131-138.

Pelta, M.D.; Barjat, H.; Morris, G.A.; Davis, A.L., Hammond, S.J. Pulse Sequences for High Resolution Diffusion-Ordered Spectroscopy (HR-DOSY). **Magn. Reson. Chem. 1998, 36, 706.**

Tillett, M.L.; Lian, L.Y.; Norwood, T.J., Practical Aspects of the Measurement of the Diffusion of Proteins in Aqueous Solution. J. Magn. Reson. 1998, 133, 379-384.

Loening, N.M., Keeler, J., Measurement of Convection and Temperature Profiles in Liquid Samples. J. Magn. Reson. 1999, 139, 334-341.

Gounarides, J.S.; Chen, A.; Shapiro, M.J., Nuclear Magnetic Resonance Chromatography: Applications of Pulse Field Gradient Diffusion NMR to Mixture Analysis and Ligand-Receptor Interactions. **Journal of Chromatography B**, **1999**, **725**, **79-90**.

Jerchow, A., Thermal Convection Currents in NMR: Flow Profiles and Implications for Coherent Pathway Selection. J. Magn. Reson. 2000, 145, 125-131.

Hodge, P., Monvisade, P., Morris, G.A., Preece, I., A Novel NMR Method for Screening Soluble Compound Libraries. **Chem. Commun., 2001, 239-240.**

Loening, N. M., Keeler, J. and Morris, G. A. (2001). One-dimensional DOSY. J. Magn. Reson. 2001, 153, 103-112.

Harris, R.K. Kinnear, K.A., Morris, G.A., Stchedroff, M.J., Samadi-Maybody, A., Azizi, N., Silicon-29 Diffusion-Ordered NMR Spectroscopy (DOSY) as a Tool for Studying Aqueous Silicates. **Chem. Commun., 2001, 2422-2423.**

Pelta, M. D., Morris, G. A., Stchedroff, M. J. and Hammond, S. J. A one-shot sequence for high-resolution diffusion-ordered spectroscopy. **Magn. Reson. Chem. 2002, 40, 47-52**.

Bilia, A.R. Bergonzi, M.C. Vincieri, F.F., Lo Nostro, P., Morris, G.A., A Diffusion-Ordered NMR Study of the Solubilization of Artemisinin by Octanolyl-6-O-Ascorbic Acid Micelles. **Journal of Pharmaceutical Sciences**, 2002, Vol. 91, No. 10, 2265-2270.

Price, W.S., Elwinger, F. Vigouroux, C., Stilbs, P., PGSE-WATERGATE, a New Tool for NMR Diffusion-based Studies of Ligand-Macromolecule Binding. **Magn. Res. Chem. 2002, 40, 391-395.**

Antalek, B., Hewitt, J.M., Windig, W., Yacobucci, P.D., Mourey, T., Le, K., The Use of PGSE NMR and DECRA for Determining Polymer Composition. **Magn. Reson. Chem. 2002, 40, 560-571.**

Evans, C-L., Morris, G.A., Davis, A.L., A New Method for Variable Temperature Gradient Shimming. J. Magn. Reson. 2002, 154, 325-328.

Yan, J., Kline, A.D., Mo, H., Zartler, E.R., Shapiro, M.J., Epitope Mapping of Ligand-Receptor Interactions by Diffusion NMR. JACS. 2002, 124, 9984-9985.

Thrippleton, M. J., Loening, N. M. and Keeler, J. A fast method for the measurement of diffusion coefficients: one-dimensional DOSY. **Magn. Reson. Chem. 2003, 41, 6, 441-447.**

M. Nilsson, I.F. Duarte, C. Almeida, I. Delgadillo, B.J. Goodfellow, A.M. Gil and G.A. Morris, High-Resolution NMR and Diffusion-Ordered Spectroscopy of Port Wine, **J. Agric. Food Chem. 2004**, **52**, **3736-3743**.

M. Nilsson, A.M. Gil, I. Delgadillo and G.A. Morris, Improving Pulse Sequences for 3D Diffusion-Ordered NMR Spectroscopy: 2DJ-IDOSY, **Anal. Chem. 2004, 76, 5418-5422.**

Connell, M. A., Davis, A. L., Kenwright, A. M. and Morris, G. A. NMR measurements of diffusion in concentrated samples: avoiding problems with radiation damping. **Analytical and Bioanalytical Chemistry 2004**, **378**, **6**, **1568-1573**.

J.C. Cobas and M. Martin-Pastor, A homodecoupled diffusion experiment for the analyses of complex mixtures by NMR, J.Magn.Reson. 2004, 171, 20-24.

M.J. Stchedroff, A.M. Kenwright, G.A. Morris, M. Nilsson and R.K. Harris, 2D and 3D DOSY methods for studying mixtures of oligomeric dimethylsiloxanes, **Phys. Chem. Chem. Phys. 2004**, **6**, **3221-3227**.

M. Nilsson, A.M. Gil, I. Delgadillo and G.A. Morris, Improving Pulse Sequences for 3D DOSY: COSY-IDOSY, Chem. Commun. 2005, 1737-1739.

Bradley, S. A., Krishnamurthy, K. and Hu, H. Simplifying DOSY spectra with selective TOCSY edited preparation. J. Magn. Reson. 2005, 172, 1, 110-117.

Cobas, J. C., Groves, P., Martin-Pastor, M. and De Capua, A. New applications, processing methods and pulse sequences using diffusion NMR. **Current Analytical Chemistry 2005**, **1**, **3**, **289-305**.

Momot, K. I. and Kuchel, P. W. Convection-compensating diffusion experiments with phasesensitive double-quantum filtering. J. Magn. Reson. 2005, 174, 2, 229-236.

Avram, L. and Cohen, Y. Diffusion measurements for molecular capsules: Pulse sequences effect on water signal decay. J. Am. Chem. Soc. 2005, 127, 15, 5714-5719.

M. Nilsson and G.A. Morris, Improving Pulse Sequences for 3D DOSY: Convection Compensation, **JMR**, 2005, 177, 203-211.

M. Nilsson, M.A. Connel, A. Davis and G.A. Morris, Biexponential Fitting of Diffusion-Ordered NMR Data: Practicalities and Limitations, **Anal. Chem. 2006**, **78**, **3040-3045**.

Park, K. D. and Lee, Y. J. (2006). Slice-selected LED and BPPLED: application of slice selection to DOSY. Magn. Reson. Chem. 2006, 44, 9, 887-891.

M. Nilsson and G.A. Morris, Corrections of systematic errors in CORE processing of DOSY data, Magn. Res. Chem. 2006, 44, 655-660.

Antalek, B. Using PGSE NMR for chemical mixture analysis: Quantitative aspects. **Concepts in Magnetic Resonance 2007, Part A 30A, 5, 219-235.**

Nilsson, M. and Morris, G. A. Improved DECRA processing of DOSY data: correcting for nonuniform field gradients. **Magn. Reson. Chem. 2007, 45, 8, 656-660.**

Brand, T., Cabrita, E. J., Morris, G. A., Gunther, R., Hofmann, H. J. and Berger, S. Residuespecific NH exchange rates studied by NMR diffusion experiments. J. Magn. Res. 2007, 187, 1, 97-104.

Crutchfield, C. A. and Harris, D. J. Molecular mass estimation by PFG NMR spectroscopy. J. Magn. Reson. 2007, 185, 1, 179-182.

Pell, A. J., Edden, R. A. E. and Keeler, J. Broadband proton-decoupled proton spectra. **Magn.** Reson. Chem. 2007, 45, 4, 296-316.

Nilsson, M. and Morris, G. A. Pure shift proton DOSY: diffusion-ordered H-1 spectra without multiplet structure. **Chemical Communications 2007, 9, 933-935.**

Newman, J. M. and Jerschow, A. Improvements in complex mixture analysis by NMR: DQF-COSY iDOSY. Analytical Chemistry 2007, 79, 7, 2957-2960.

Stait-Gardner, T., Kumar, P. G. A. and Price, W. S. Steady state effects in PGSE NMR diffusion experiments. Chemical Physics Letters 2008, 462, 4-6, 331-336.

Torres, A. M., Dela Cruz, R. and Price, W. S. Removal of J-coupling peak distortion in PGSE experiments. J. Magn. Reson. 2008, 193, 2, 311-316.

Nilsson, M. and Morris, G. A. Speedy component resolution: An improved tool for processing diffusion-ordered spectroscopy data. **Analytical Chemistry 2008, 80, 10, 3777-3782.**

Viel, S. and Caldarelli, S. Improved 3D DOSY-TOCSY experiment for mixture analysis. **Chemical Communications 2008, 17, 2013-2015.**

Li, D. Y., Hopson, R., Li, W. B., Liu, J. and Williard, P. G. C-13 INEPT diffusion-ordered NMR spectroscopy (DOSY) with, internal references. **Organic Letters 2008, 10, 5, 909-911.**

Evans, R., Haiber, S., Nilsson, M. and Morris, G. A. Isomer Resolution by Micelle-Assisted Diffusion-Ordered Spectroscopy. **Analytical Chemistry 2009, 81, 11, 4548-4550**.

Li, D. Y., Kagan, G., Hopson, R. and Williard, P. G. Formula Weight Prediction by Internal Reference Diffusion-Ordered NMR Spectroscopy (DOSY). J. Am. Chem. Soc. 2009, 131, 15, 5627-5634.

Connell, M. A., Bowyer, P. J., Bone, P. A., Davis, A. L., Swanson, A. G., Nilsson, M. and Morris, G. A. Improving the accuracy of pulsed field gradient NMR diffusion experiments: Correction for gradient non-uniformity. **J. Magn. Reson. 2009, 198, 1, 121-131**.

Balayssac, S., Delsuc, M. A., Gilard, V., Prigent, Y. and Malet-Martino, M. Two-dimensional DOSY experiment with Excitation Sculpting water suppression for the analysis of natural and biological media. **J. Magn. Reson. 2009, 196, 1, 78-83.**

Zielinski, M. E. and Morris, K. F. Using perdeuterated surfactant micelles to resolve mixture components in diffusion-ordered NMR spectroscopy. **Magn. Reson. Chem. 2009, 47, 1, 53-56.**

Gradient Calibration

R. Mills.: "Self –Diffusion in Normal and Heavy Water in the Range 1-45 degrees.", J. Phys. Chem. Vol. 77. No. 5. 685 (1973).

DOSY Review Papers

Morris, G.A.; Barjat, H., High Resolution Diffusion Ordered Spectroscopy. In **Methods for Structure Elucidation by High Resolution NMR**, K. Kövér, Gy. Batta, Cs. Szántay, Jr., Eds.; Elsevier, Amsterdam, 1997; pp. 209-226.

Morris, G.A.; Barjat, H.; Horne, T.J., Reference deconvolution methods (FIDDLE), **Progress in** Nuclear Magnetic Resonance Spectroscopy, 1997, 31, 197-257.

Johnson C.S. Jr., Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. **Progress in Nuclear Magnetic Resonance Spectroscopy**, **1999**, **34**, **203-256**.

Antalek, B., Using Pulsed Gradient Spin Echo NMR for Chemical Mixture Analysis: How to Obtain Optimum Results. **Concepts in Magnetic Resonance**, **2002**, **Vol. 14(4)**, **225-258**.

Morris, G.A., Diffusion Ordered Spectroscopy (DOSY). Encyclopaedia of Nuclear Magnetic Resonance, 2002, Vol. 9, 35-44.

Magnetic Resonance in Chemistry Volume 40 – Special diffusion issue

Please note that **Magnetic Resonance in Chemistry** devoted a whole special issue (Volume 40) in 2002 to diffusion experiments:

Fúró, I., Dvinskikh, S.V., NMR Methods Applied to Anisotropic Diffusion (Review). **Magnetic Resonance in Chemistry, 2002, 40, S3-S14.**

Callaghan, P.T., Komlosh, M.E., NMR Locally Anisotropic Motion in a Macroscopically Isotropic System: Displacement Correlations Measured Using Double Pulsed Gradient Spin-Echo NMR. **Magnetic Resonance in Chemistry, 2002, 40, S15-S19.**

Holmes W.H., Packer, K.J., Investigation of Thin Surface-Wetting Films in Two-Phase Saturated Porous Media. **Magnetic Resonance in Chemistry, 2002, 40, S20-S28.**

Mair, R.W., Rosen, M.S., Wang, R., Cory, D.G., Walsworth, R.L., Diffusion NMR Methods Applied to Xenon Gas for Materials Study. **Magnetic Resonance in Chemistry, 2002, 40, S29-S39.**

Griffiths, P.C., Cheung, A.Y.F., Davies, J.A., Paul, A., Tipples, C.N. Winnington, A.L., Probing Interactions within Complex Colloidal Systems Using PGSE-NMR. **Magnetic Resonance in Chemistry**, 2002, 40, S40-S50.

Duynhoven, J.P.M., Goudappel, G.J.W., van Dalen, G., Bruggen, P.C., Blonk, J.C.G., Eijkelenboom, A.P.A.M., Scope of Droplet Size Measurements in Food Emulsions by Pulsed Field Gradient NMR at Low Field. **Magnetic Resonance in Chemistry**, 2002, 40, S51-S59.

Antalek, B., Hewitt, J.M., Windig, W., Yacobucci, P.D., Mourey, T., Kim Le, The Use of PGSE NMR and DECRA for Determining Polymer Composition. **Magnetic Resonance in Chemistry**, **2002**, **40**, **S60-S71**.

Simpson, A.J., Determining the Molecular Weight, Aggregation, Structures and Interactions of Natural Organic Matter Using Diffusion Ordered Spectroscopy. **Magnetic Resonance in Chemistry, 2002, 40, S72-S82.**

Liu, M., Tang, H. Nicholson, J.K., Lindon, J.C., Use of ¹H NMR-Determined Diffusion Coefficients to Characterize Lipoprotein Fractions in Human Blood Plasma. **Magnetic Resonance in Chemistry, 2002, 40, S83-S88.**

Danielsson, J., Jarvet, J., Damberg, P., Gräslund, A., Translational Diffusion Measured by PFG-NMR on Full Length and Fragments of the Alzheimer Aß(1-40) Peptide. Determination of Hydrodynamic Radii of Random Coil Peptides of Varying Length. **Magnetic Resonance in Chemistry, 2002, 40, S89-S97.**

Derrick, T.S., Lucas, L.H., Dimicoli, J-L., Larive, C.K., ¹⁹F Diffusion NMR analysis of Enzime-Inhibitor Binding. **Magnetic Resonance in Chemistry**, 2002, 40, S98-S105.

Camoron, K.S. Fielding L., NMR Diffusion Coefficient Study of Steroid-Cyclodextrin Inclusion Complexes. **Magnetic Resonance in Chemistry, 2002, 40, S106-S109.**

Monteiro, C., Maechling, C., du Penhoat C.V., Monitoring the Non-Specific Interactions of Catechin through Diffusion Measurements Based on Pulsed-Field Gradients. **Magnetic Resonance in Chemistry, 2002, 40, S110-S114.**

Regan, D.G., Chapman, B.E., Kuchel, P.W., PGSE NMR Diffusion Study of the Self-Association of N-Methylacetamide in Carbon Tetrachloride. **Magnetic Resonance in Chemistry, 2002, 40, S115-S121.**

Cabrita, E.J. Berger, S., HR-DOSY as a New Tool for the Study of Chemical Exchange Phenomena. **Magnetic Resonance in Chemistry, 2002, 40, S122-S127.**

Price, W.S., Wälchli, M., NMR Diffusion Measurements of Strong Signals: The PGSE-Q-switch Experiment. **Magnetic Resonance in Chemistry, 2002, 40, S128-S132.**

Mouro, C, Mutzenhardt, P. Diter, B., Canet, D., HR-DOSY Experiments with Radiofrequency Field Gradients (RFG) and their Processing According to the HD Method. **Magnetic Resonance in Chemistry**, 2002, 40, S133-S138.

Sorland, G.H. Asknes, D., Artefacts and Pitfalls in Diffusion Measurements by NMR. **Magnetic Resonance in Chemistry, 2002, 40, S139-S146.**

Pelta, M.D., Morris, G.A., Stchedroff, M.J., Hammond S.J., A One-Shot Sequence for High Resolution Diffusion-Ordered Spectroscopy. **Magnetic Resonance in Chemistry**, 2002, 40, **S147**